Skip to main content

Src-Family Tyrosine Kinases in Oogenesis, Oocyte Maturation and Fertilization: An Evolutionary Perspective

  • Chapter
  • First Online:
Posttranslational Protein Modifications in the Reproductive System

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 759))

Abstract

The oocyte is a highly specialized cell poised to respond to fertilization with a unique set of actions needed to recognize and incorporate a single sperm, complete meiosis, reprogram maternal and paternal genomes and assemble them into a unique zygotic genome, and finally initiate the mitotic cell cycle. Oocytes accomplish this diverse series of events through an array of signal transduction pathway components that include a characteristic collection of protein tyrosine kinases. The src-family protein kinases (SFKs) figure importantly in this signaling array and oocytes characteristically express certain SFKs at high levels to provide for the unique actions that the oocyte must perform. The SFKs typically exhibit a distinct pattern of subcellular localization in oocytes and perform critical functions in different subcellular compartments at different steps during oocyte maturation and fertilization. While many aspects of SFK signaling are conserved among oocytes from different species, significant differences exist in the extent to which src-family-mediated pathways are used by oocytes from species that fertilize externally vs those which are fertilized internally. The observation that several oocyte functions which require SFK signaling appear to represent common points of failure during assisted reproductive techniques in humans, highlights the importance of these signaling pathways for human reproductive health.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hunt PA, Hassold TJ. Human female meiosis: what makes a good egg go bad? Trends Genet. 2008;24:86–93.

    CAS  PubMed  Google Scholar 

  2. Conti M. Signaling networks in somatic cells and oocytes activated during ovulation. Ann Endocrinol (Paris). 2010;71:189–90.

    CAS  Google Scholar 

  3. Conti M, Hsieh M, Musa ZA, Oh JS. Novel signaling mechanisms in the ovary during oocyte maturation and ovulation. Mol Cell Endocrinol. 2012;356:65–73.

    CAS  PubMed  Google Scholar 

  4. Liu J, Maller JL. Calcium elevation at fertilization coordinates phosphorylation of XErp1/Emi2 by Plx1 and CaMK II to release metaphase arrest by cytostatic factor. Curr Biol. 2005;15:1458–68.

    CAS  PubMed  Google Scholar 

  5. Maller JL. Pioneering the Xenopus oocyte and egg extract system. J Biol Chem. 2012;287:21640–53.

    CAS  PubMed Central  PubMed  Google Scholar 

  6. Sun QY. Regulating the orderly progression of oocyte meiotic maturation events in mammals. Reprod Fertil Dev. 2013;25:iii–v.

    PubMed  Google Scholar 

  7. Sato K, Tokmakov AA, Fukami Y. Fertilization signalling and protein-tyrosine kinases. Comp Biochem Physiol B. 2000;126:129–48.

    CAS  PubMed  Google Scholar 

  8. Kinsey WH. Tyrosine kinase signalling at fertilization. Biochem Biophys Res Commun. 1997;240:519–22.

    CAS  PubMed  Google Scholar 

  9. Tomashov-Matar R, Levi M, Shalgi R. The involvement of Src family kinases (SFKs) in the events leading to resumption of meiosis. Mol Cell Endocrinol. 2008;282:56–62.

    CAS  PubMed  Google Scholar 

  10. McGinnis L, Kinsey WH, Albertini DF. The functions of Fyn kinase in the completion of meiosis in mouse oocytes. Dev Biol. 2009;327:280–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  11. McGinnis LK, Carroll DJ, Kinsey WH. Protein tyrosine kinase signaling during oocyte maturation and fertilization. Mol Reprod Dev. 2011;78:831–45.

    CAS  PubMed Central  PubMed  Google Scholar 

  12. Lee DC, Jia Z. Emerging structural insights into bacterial tyrosine kinases. Trends Biochem Sci. 2009;34:351–7.

    CAS  PubMed  Google Scholar 

  13. Manning G, Young SL, Miller WT, Zhai Y. The protist, Monosiga brevicollis, has a tyrosine kinase signaling network more elaborate and diverse than found in any known metazoan. Proc Natl Acad Sci U S A. 2008;105:9674–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  14. de la Fuente van Bentem S, Hirt H. Protein tyrosine phosphorylation in plants: more abundant than expected? Trends Plant Sci. 2009;14:71–6.

    CAS  PubMed  Google Scholar 

  15. King N, Westbrook MJ, Young SL, Kuo A, Abedin M, Chapman J, Fairclough S, Hellsten U, Isogai Y, Letunic I, Marr M, Pincus D, Putnam N, Rokas A, Wright KJ, Zuzow R, Dirks W, Good M, Goodstein D, Lemons D, Li W, Lyons JB, Morris A, Nichols S, Richter DJ, Salamov A, Sequencing JG, Bork P, Lim WA, Manning G, Miller WT, McGinnis W, Shapiro H, Tjian R, Grigoriev IV, Rokhsar D. The genome of the choanoflagellate Monosiga brevicollis and the origin of metazoans. Nature. 2008;451:783–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  16. Lim WA, Pawson T. Phosphotyrosine signaling: evolving a new cellular communication system. Cell. 2010;142:661–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  17. Liu BA, Nash PD. Evolution of SH2 domains and phosphotyrosine signalling networks. Philos Trans R Soc Lond B Biol Sci. 2012;367:2556–73.

    CAS  PubMed Central  PubMed  Google Scholar 

  18. Suga H, Dacre M, de Mendoza A, Shalchian-Tabrizi K, Manning G, Ruiz-Trillo I. Genomic survey of premetazoans shows deep conservation of cytoplasmic tyrosine kinases and multiple radiations of receptor tyrosine kinases. Sci Signal. 2012;5:ra35.

    PubMed  Google Scholar 

  19. Li W, Young SL, King N, Miller WT. Signaling properties of a non-metazoan Src kinase and the evolutionary history of Src negative regulation. J Biol Chem. 2008;283: 15491–501.

    CAS  PubMed Central  PubMed  Google Scholar 

  20. Liang XQ, Nazarian A, Erdjument-Bromage H, Bornmann W, Tempst P, Resh MD. Heterogeneous fatty acylation of Src family kinases with polyunsaturated fatty acids regulates raft localization and signal transduction. J Biol Chem. 2001;276:30987–94.

    CAS  PubMed  Google Scholar 

  21. Perez Y, Gairi M, Pons M, Bernado P. Structural characterization of the natively unfolded N-terminal domain of human c-Src kinase: insights into the role of phosphorylation of the unique domain. J Mol Biol. 2009;391:136–48.

    CAS  PubMed  Google Scholar 

  22. Liang XQ, Lu Y, Wilkes M, Neubert TA, Resh MD. The N-terminal SH4 region of the Src family kinase Fyn is modified by methylation and heterogeneous fatty acylation – role in membrane targeting, cell adhesion, and spreading. J Biol Chem. 2004;279:8133–9.

    CAS  PubMed  Google Scholar 

  23. Xu D, Kishi H, Kawamichi H, Kajiya K, Takada Y, Kobayashi S. Involvement of Fyn tyrosine kinase in actin stress fiber formation in fibroblasts. FEBS Lett. 2007;581:5227–33.

    CAS  PubMed  Google Scholar 

  24. Pleiman CM, Clark MR, Gauen LK, Winitz S, Coggeshall KM, Johnson GL, Shaw AS, Cambier JC. Mapping of sites on the Src family protein tyrosine kinases p55blk, p59fyn, p56lyn which interact with the effector molecules phospholipase Cgamma, MAP kinase, GTPase activating protein, and phosphatidylinositol 3 kinase. Mol Cell Biol. 1993;13: 5877–87.

    CAS  PubMed Central  PubMed  Google Scholar 

  25. Xie Z, Singleton PA, Bourguignon LY, Bikle DD. Calcium-induced human keratinocyte differentiation requires src- and fyn-mediated phosphatidylinositol 3-kinase-dependent activation of phospholipase C-gamma1. Mol Biol Cell. 2005;16:3236–46.

    CAS  PubMed Central  PubMed  Google Scholar 

  26. Prasad K, Janssen O, Kapeller RRM, Cantley LC, Rudd C. SH3 domain of protein kinase p59fyn mediates binding to phosphatidylinositol 3 kinase PI-3 kinase in T-cells. Proc Natl Acad Sci U S A. 1993;90:7366–70.

    CAS  PubMed Central  PubMed  Google Scholar 

  27. Weng Z, Thomas SM, Rickles RJ, Taylor JA, Brauer AW, Seidel-Dugan C, Michael WM, Dreyfuss G, Brugge JS. Identification of Src, Fyn, and Lyn SH3-binding proteins: implications for a function of SH3 domains. Mol Cell Biol. 1994;14:4509–21.

    CAS  PubMed Central  PubMed  Google Scholar 

  28. Sato M, Sawahata R, Takenouchi T, Kitani H. Identification of Fyn as the binding partner for the WASP N-terminal domain in T cells. Int Immunol. 2011;23:493–502.

    CAS  PubMed  Google Scholar 

  29. Lang ML, Chen YW, Shen L, Gao H, Lang GA, Wade TK, Wade WF. IgA Fc receptor (FcalphaR) cross-linking recruits tyrosine kinases, phosphoinositide kinases and serine/threonine kinases to glycolipid rafts. Biochem J. 2002;364:517–25.

    CAS  PubMed Central  PubMed  Google Scholar 

  30. Beacham D, Ahn M, Catterall WA, Scheuer T. Sites and molecular mechanisms of modulation of Na(v)1.2 channels by Fyn tyrosine kinase. J Neurosci. 2007;27:11543–51.

    CAS  PubMed  Google Scholar 

  31. Xiao R, Xi XD, Chen Z, Chen SJ, Meng G. Structural framework of c-Src activation by integrin beta3. Blood. 2013;121:700–6.

    CAS  PubMed  Google Scholar 

  32. Liu BA, Engelmann BW, Nash PD. The language of SH2 domain interactions defines phosphotyrosine-mediated signal transduction. FEBS Lett. 2012;586:2597–605.

    CAS  PubMed  Google Scholar 

  33. Zheng XM, Resnick RJ, Shalloway D. Mitotic activation of protein-tyrosine phosphatase alpha and regulation of its Src-mediated transforming activity by its sites of protein kinase C phosphorylation. J Biol Chem. 2002;277:21922–9.

    CAS  PubMed  Google Scholar 

  34. Zheng XM, Resnick RJ, Shalloway D. A phosphotyrosine displacement mechanism for activation of Src by PTPa. EMBO J. 2000;19:964–78.

    CAS  PubMed Central  PubMed  Google Scholar 

  35. Hisatsune C, Kuroda Y, Nakamura K, Inoue T, Nakamura T, Michikawa T, Mizutani A, Mikoshiba K. Regulation of TRPC6 channel activity by tyrosine phosphorylation. J Biol Chem. 2004;279:18887–94.

    CAS  PubMed  Google Scholar 

  36. Twamley-Stein GM, Pepperkok R, Ansorge W, Courtneidge SA. The Src family tyrosine kinases are required for platelet-derived growth factor-mediated signal transduction in NIH 3 T3 cells. Proc Natl Acad Sci U S A. 1993;90:7696–700.

    CAS  PubMed Central  PubMed  Google Scholar 

  37. Lemeer S, Bluwstein A, Wu Z, Leberfinger J, Muller K, Kramer K, Kuster B. Phosphotyrosine mediated protein interactions of the discoidin domain receptor 1. J Proteomics. 2012;75:3465–77.

    CAS  PubMed  Google Scholar 

  38. Basu N, Bhandari R, Natarajan VT, Visweswariah SS. Cross talk between receptor guanylyl cyclase C and c-src tyrosine kinase regulates colon cancer cell cytostasis. Mol Cell Biol. 2009;29:5277–89.

    CAS  PubMed Central  PubMed  Google Scholar 

  39. Lindfors HE, Drijfhout JW, Ubbink M. The Src SH2 domain interacts dynamically with the focal adhesion kinase binding site as demonstrated by paramagnetic NMR spectroscopy. IUBMB Life. 2012;64:538–44.

    CAS  PubMed  Google Scholar 

  40. Leischner H, Albers C, Grundler R, Razumovskaya E, Spiekermann K, Bohlander S, Ronnstrand L, Gotze K, Peschel C, Duyster J. SRC is a signaling mediator in FLT3-ITD- but not in FLT3-TKD-positive AML. Blood. 2012;119:4026–33.

    CAS  PubMed  Google Scholar 

  41. Evans JV, Ammer AG, Jett JE, Bolcato CA, Breaux JC, Martin KH, Culp MV, Gannett PM, Weed SA. Src binds cortactin through an SH2 domain cystine-mediated linkage. J Cell Sci. 2012;125:6185–97.

    CAS  PubMed Central  PubMed  Google Scholar 

  42. Banavali NK, Roux B. Flexibility and charge asymmetry in the activation loop of Src tyrosine kinases. Proteins. 2009;74:378–89.

    CAS  PubMed Central  PubMed  Google Scholar 

  43. Yang S, Roux B. Src kinase conformational activation: thermodynamics, pathways, and mechanisms. PLoS Comput Biol. 2008;4:e1000047.

    PubMed Central  PubMed  Google Scholar 

  44. Roskoski Jr R. Src protein-tyrosine kinase structure and regulation. Biochem Biophys Res Commun. 2004;324:1155–64.

    CAS  PubMed  Google Scholar 

  45. Yadav SS, Yeh BJ, Craddock BP, Lim WA, Miller WT. Reengineering the signaling properties of a Src family kinase. Biochemistry. 2009;48:10956–62.

    CAS  PubMed Central  PubMed  Google Scholar 

  46. Bhandari V, Lim KL, Pallen CJ. Physical and functional interactions between receptor-like protein-tyrosine phosphatase alpha and p59fyn. J Biol Chem. 1998;273:8691–8.

    CAS  PubMed  Google Scholar 

  47. Djagaeva I, Doronkin S, Beckendorf SK. Src64 is involved in fusome development and karyosome formation during Drosophila oogenesis. Dev Biol. 2005;284:143–56.

    CAS  PubMed  Google Scholar 

  48. O’Neill FJ, Gillett J, Foltz KR. Distinct roles for multiple Src family kinases at fertilization. J Cell Sci. 2004;117:6227–38.

    PubMed  Google Scholar 

  49. Mehlmann LM, Jaffe LA. SH2 domain-mediated activation of an SRC family kinase is not required to initiate Ca2+ release at fertilization in mouse eggs. Reproduction. 2005;129:557–64.

    CAS  PubMed  Google Scholar 

  50. Townley IK, Schuyler E, Parker-Gur M, Foltz KR. Expression of multiple Src family kinases in sea urchin eggs and their function in Ca2+ release at fertilization. Dev Biol. 2009;327:465–77.

    CAS  PubMed  Google Scholar 

  51. Stricker SA, Carroll DJ, Tsui WL. Roles of Src family kinase signaling during fertilization and the first cell cycle in the marine protostome worm Cerebratulus. Int J Dev Biol. 2010;54:787–93.

    CAS  PubMed  Google Scholar 

  52. Steele RE, Deng JC, Ghosn CR, Fero JB. Structure and expression of Fyn genes in Xenopus laevis. Oncogene. 1990;5:369–76.

    CAS  PubMed  Google Scholar 

  53. Steele RE, Irwin M, Knudsen CL, Collett JW, Fero JB. The yes oncogene is present in amphibians and contributes to the maternal pool of RNA in the oocyte. Oncogene Res. 1989;4:223–33.

    CAS  PubMed  Google Scholar 

  54. Kamel C, Veno PA, Kinsey WH. Quantitation of a src-like tyrosine protein kinase during fertilization of the sea urchin egg. Biochem Biophys Res Commun. 1986;138:349–55.

    CAS  PubMed  Google Scholar 

  55. Kinsey WH. Biphasic activation of Fyn kinase upon fertilization of the sea urchin egg. Dev Biol. 1996;174:281–7.

    CAS  PubMed  Google Scholar 

  56. Steele RE, Unger TF, Mardis MJ, Fero JB. The two Xenopus laevis SRC genes are coexpressed and each produces functional pp60src. J Biol Chem. 1989;264:10649–53.

    CAS  PubMed  Google Scholar 

  57. Sato K, Aoto M, Mori K, Akasofu S, Tokmakov AA, Sahara S, Fukami Y. Purification and characterization of a Src-related p57 protein-tyrosine kinase from Xenopus oocytes. Isolation of an inactive form of the enzyme and its activation and translocation upon fertilization. J Biol Chem. 1996;271:13250–7.

    CAS  PubMed  Google Scholar 

  58. Sato K, Iwao Y, Fujimura T, Tamaki I, Ogawa K, Iwasaki T, Tokmakov AA, Hatano O, Fukami Y. Evidence for the involvement of a Src-related tyrosine kinase in Xenopus egg activation. Dev Biol. 1999;209:308–20.

    CAS  PubMed  Google Scholar 

  59. Iwasaki T, Sato K, Yoshino K, Itakura S, Kosuge K, Tokmakov AA, Owada K, Yonezawa K, Fukami Y. Phylogeny of vertebrate Src tyrosine kinases revealed by the epitope region of mAb327. J Biochem. 2006;139:347–54.

    CAS  PubMed  Google Scholar 

  60. Rongish BJ, Kinsey WH. Transient nuclear localization of Fyn kinase during development in zebrafish. Anat Rec. 2000;260:115–23.

    CAS  PubMed  Google Scholar 

  61. Wu W, Kinsey W. Fertilization triggers activation of Fyn kinase in the zebrafish egg. Int J Dev Biol. 2000;44:837–41.

    CAS  PubMed  Google Scholar 

  62. Talmor A, Kinsey WH, Shalgi R. Expression and immunolocalization of p59c-fyn tyrosine kinase in rat eggs. Dev Biol. 1998;194:38–46.

    CAS  PubMed  Google Scholar 

  63. Mehlmann LM, Carpenter G, Rhee SG, Jaffe LA. SH2 domain-mediated activation of phospholipase Cgamma is not required to initiate Ca2+ release at fertilization of mouse eggs. Dev Biol. 1998;203:221–32.

    CAS  PubMed  Google Scholar 

  64. Meng L, Luo J, Li C, Kinsey WH. Role of SH2 domain-mediated PTK signaling in mouse zygotic development. Reproduction. 2006;132:413–21.

    CAS  PubMed  Google Scholar 

  65. Kurokawa M, Sato K, Smyth J, Wu H, Fukami K, Takenawa T, Fissore RA. Evidence that activation of Src family kinase is not required for fertilization-associated [Ca2+]i oscillations in mouse eggs. Reproduction. 2004;127:441–54.

    CAS  PubMed  Google Scholar 

  66. Tsai WB, Zhang X, Sharma D, Wu W, Kinsey WH. Role of yes kinase during early zebrafish development. Dev Biol. 2005;277:129–41.

    CAS  PubMed  Google Scholar 

  67. Yamamoto Y, Maruyama T, Sakai N, Sakurai R, Shimizu A, Hamatani T, Masuda H, Uchida H, Sabe H, Yoshimura Y. Expression and subcellular distribution of the active form of c-Src tyrosine kinase in differentiating human endometrial stromal cells. Mol Hum Reprod. 2002;8:1117–24.

    CAS  PubMed  Google Scholar 

  68. Peaucellier G, Veno PA, Kinsey WH. Protein tyrosine phosphorylation in response to fertilization. J Biol Chem. 1988;263:13806–11.

    CAS  PubMed  Google Scholar 

  69. Jiang WP, Veno PA, Wood RW, Peaucellier G, Kinsey WH. pH regulation of an egg cortex tyrosine kinase. Dev Biol. 1991;146:81–8.

    CAS  PubMed  Google Scholar 

  70. Sharma D, Kinsey WH. Fertilization triggers localized activation of Src-family protein kinases in the zebrafish egg. Dev Biol. 2006;295:604–14.

    CAS  PubMed  Google Scholar 

  71. Levi M, Maro B, Shalgi R. Fyn kinase is involved in cleavage furrow ingression during meiosis and mitosis. Reproduction. 2010;140:827–34.

    CAS  PubMed  Google Scholar 

  72. Sharma D, Kinsey WH. Regionalized calcium signaling in zebrafish fertilization. Int J Dev Biol. 2008;52:561–70.

    PubMed  Google Scholar 

  73. Levi M, Maro B, Shalgi R. The involvement of Fyn kinase in resumption of the first meiotic division in mouse oocytes (note: not free access). Cell Cycle. 2010;9:1577–89.

    CAS  PubMed  Google Scholar 

  74. Talmor-Cohen A, Tomashov-Matar R, Tsai WB, Kinsey WH, Shalgi R. Fyn kinase–tubulin interaction during meiosis of rat eggs. Reproduction. 2004;128:387–93.

    CAS  PubMed  Google Scholar 

  75. Sette C, Paronetto MP, Barchi M, Bevilacqua A, Geremia R, Rossi P. Tr-kit-induced resumption of the cell cycle in mouse eggs requires activation of a Src-like kinase. EMBO J. 2002;21:5386–95.

    CAS  PubMed Central  PubMed  Google Scholar 

  76. Zheng KG, Meng XQ, Yang Y, Yu YS, Liu DC, Li YL. Requirements of Src family kinase during meiotic maturation in mouse oocyte. Mol Reprod Dev. 2007;74:125–30.

    CAS  PubMed  Google Scholar 

  77. Ley SC, Verbi W, Pappin D, Davies A, Crumpton M. Tyrosine phosphorylation of alpha tubulin in human T lymphocytes. Eur J Immunol. 1994;24:99–106.

    CAS  PubMed  Google Scholar 

  78. Campbell KS, Cooper S, Dessing M, Yates S, Buder A. Interaction of p59fyn kinase with the dynein light chain, Tctex-1, and colocalization during cytokinesis. J Immunol. 1998;161: 1728–37.

    CAS  PubMed  Google Scholar 

  79. Wu Y, Ozaki Y, Inoue K, Satoh K, Ohmori T, Yatomi Y, Owada K. Differential activation and redistribution of c-Src and Fyn in platelets, assessed by MoAb specific for C-terminal tyrosine-dephosphorylated c-Src and Fyn. Biochim Biophys Acta. 2000;1497:27–36.

    CAS  PubMed  Google Scholar 

  80. Yamada T, Aoyama Y, Owada MK, Kawakatsu H, Kitajima Y. Scraped-wounding causes activation and association of C-Src tyrosine kinase with microtubules in cultured keratinocytes. Cell Struct Funct. 2000;25:351–9.

    CAS  PubMed  Google Scholar 

  81. McGinnis LK, Albertini DF, Kinsey WH. Localized activation of Src-family protein kinases in the mouse egg. Dev Biol. 2007;306:241–54.

    CAS  PubMed Central  PubMed  Google Scholar 

  82. Peaucellier G, Andersen AC, Kinsey WH. Protein tyrosine phosphorylation during meiotic divisions of starfish oocytes. Dev Biol. 1990;138:391–9.

    CAS  PubMed  Google Scholar 

  83. Spivack JG, Erikson RL, Maller JL. Microinjection of pp60v-src into Xenopus oocytes increases phosphorylation of ribosomal protein S6 and accelerates the rate of progesterone-induced meiotic maturation. Mol Cell Biol. 1984;4:1631–4.

    CAS  PubMed Central  PubMed  Google Scholar 

  84. Tokmakov A, Iwasaki T, Itakura S, Sato K, Shirouzu M, Fukami Y, Yokoyama S. Regulation of Src kinase activity during Xenopus oocyte maturation. Dev Biol. 2005;278:289–300.

    CAS  PubMed  Google Scholar 

  85. Boonyaratanakornkit V, Scott MP, Ribon V, Sherman L, Anderson SM, Maller JL, Miller WT, Edwards DP. Progesterone receptor contains a proline-rich motif that directly interacts with SH3 domains and activates c-Src family tyrosine kinases. Mol Cell. 2001;8:269–80.

    CAS  PubMed  Google Scholar 

  86. Golas JM, Lucas J, Etienne C, Golas J, Discafani C, Sridharan L, Boghaert E, Arndt K, Ye F, Boschelli DH, Li F, Titsch C, Huselton C, Chaudhary I, Boschelli F. SKI-606, a Src/Abl inhibitor with in vivo activity in colon tumor xenograft models. Cancer Res. 2005;65:5358–64.

    CAS  PubMed  Google Scholar 

  87. Hanke JH, Gardner JP, Dow RL, Changelian PS, Brissette WH, Weringer EJ, Pollok BA, Connelly PA. Discovery of a novel, potent, and Src family-selective tyrosine kinase inhibitor. Study of Lck and Fyn-dependent T cell activation. J Biol Chem. 2002;271:695–701.

    Google Scholar 

  88. Blake RA, Broome MA, Liu XD, Wu JM, Gishizky M, Sun L, Courtneidge SA. SU6656, a selective Src family kinase inhibitor, used to probe growth factor signaling. Mol Cell Biol. 2000;20:9018–27.

    CAS  PubMed Central  PubMed  Google Scholar 

  89. Bain J, McLauchlan H, Elliott M, Cohen P. The specificities of protein kinase inhibitors: an update. Biochem J. 2003;371:199–204.

    CAS  PubMed Central  PubMed  Google Scholar 

  90. Luo J, McGinnis LK, Kinsey WH. Role of Fyn kinase in oocyte developmental potential. Reprod Fertil Dev. 2010;22:966–76.

    CAS  PubMed Central  PubMed  Google Scholar 

  91. Luo J, McGinnis LK, Kinsey WH. Fyn kinase activity is required for normal organization and functional polarity of the mouse oocyte cortex. Mol Reprod Dev. 2009;76:819–31.

    CAS  PubMed Central  PubMed  Google Scholar 

  92. Unger TF, Steele RE. Biochemical and cytological changes associated with expression of deregulated pp60src in Xenopus oocytes. Mol Cell Biol. 1992;12:5485–98.

    CAS  PubMed Central  PubMed  Google Scholar 

  93. Thorn JM, Armstrong NA, Cantrell LA, Kay BK. Identification and characterisation of Xenopus moesin, a Src substrate in Xenopus laevis oocytes. Zygote. 1999;7:113–22.

    CAS  PubMed  Google Scholar 

  94. Wellbrock C, Schartl M. Activation of phosphatidylinositol 3-kinase by a complex of p59fyn and the receptor tyrosine kinase Xmrk is involved in malignant transformation of pigment cells. Eur J Biochem. 2000;267:3513–22.

    CAS  PubMed  Google Scholar 

  95. Saksena S, Gill RK, Tyagi S, Alrefai WA, Ramaswamy K, Dudeja PK. Role of Fyn and PI3K in H2O2-induced inhibition of apical Cl−/OH− exchange activity in human intestinal epithelial cells. Biochem J. 2008;416:99–108.

    CAS  PubMed Central  PubMed  Google Scholar 

  96. Roche S, Koegl M, Barone MV, Roussel MF, Courtneidge SA. DNA synthesis induced by some but not all growth factors requires Src family protein tyrosine kinases. Mol Cell Biol. 1995;15:1102–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  97. Taylor SJ, Shalloway D. Src and the control of cell division. Bioessays. 1996;18:9–11.

    CAS  PubMed  Google Scholar 

  98. Messina S, Onofri F, Bongiorno-Borbone L, Giovedi S, Valtorta F, Girault JA, Benfenati F. Specific interactions of neuronal focal adhesion kinase isoforms with Src kinases and amphiphysin. J Neurochem. 2003;84:253–65.

    CAS  PubMed  Google Scholar 

  99. Samayawardhena LA, Kapur R, Craig AW. Involvement of Fyn kinase in Kit and integrin-mediated Rac activation, cytoskeletal reorganization, and chemotaxis of mast cells. Blood. 2007;109:3679–86.

    CAS  PubMed Central  PubMed  Google Scholar 

  100. Tournaviti S, Hannemann S, Terjung S, Kitzing TM, Stegmayer C, Ritzerfeld J, Walther P, Grosse R, Nickel W, Fackler OT. SH4-domain-induced plasma membrane dynamization promotes bleb-associated cell motility. J Cell Sci. 2007;120:3820–9.

    CAS  PubMed  Google Scholar 

  101. Ciapa B, Borg B, Whitaker M. Polyphosphoinositide metabolism during the fertilization wave in sea urchin eggs. Development. 1992;115:187–95.

    CAS  PubMed  Google Scholar 

  102. De-Nadai C, Cailliau K, Epel D, Ciapa B. Detection of phospholipase Cgamma in sea urchin eggs. Dev Growth Differ. 1998;40:669–76.

    CAS  PubMed  Google Scholar 

  103. Shearer J, De Nadai C, Emily-Fenouil F, Gache C, Whitaker M, Ciapa B. Role of phospholipase Cgamma at fertilization and during mitosis in sea urchin eggs and embryos. Development. 1999;126:2273–84.

    CAS  PubMed  Google Scholar 

  104. Giusti AF, Carroll DJ, Abassi YA, Terasaki M, Foltz KR, Jaffe LA. Requirement of a Src family kinase for initiating calcium release at fertilization in starfish eggs. J Biol Chem. 1999;274:29318–22.

    CAS  PubMed  Google Scholar 

  105. Shen SS, Kinsey WH, Lee SJ. Protein tyrosine kinase-dependent release of intracellular calcium in the sea urchin egg. Dev Growth Differ. 1999;41:345–55.

    CAS  PubMed  Google Scholar 

  106. Kinsey WH, Shen SS. Role of the Fyn kinase in calcium release during fertilization of the sea urchin egg. Dev Biol. 2000;225:253–64.

    CAS  PubMed  Google Scholar 

  107. Runft LL, Jaffe LA. Sperm extract injection into ascidian eggs signals Ca2+ release by the same pathway as fertilization. Development. 2000;127:3227–36.

    CAS  PubMed  Google Scholar 

  108. Runft LL, Jaffe LA, Mehlmann LM. Egg activation at fertilization: where it all begins. Dev Biol. 2002;245:237–54.

    CAS  PubMed  Google Scholar 

  109. Whitaker M. Calcium at fertilization and in early development. Physiol Rev. 2006;86:25–88.

    CAS  PubMed Central  PubMed  Google Scholar 

  110. Genazzani AA, Mezna M, Dickey DM, Michelangeli F, Walseth TF, Galione A. Pharmacological properties of the Ca2+− release mechanism sensitive to NAADP in the sea urchin egg. Br J Pharmacol. 1997;121:1489–95.

    CAS  PubMed Central  PubMed  Google Scholar 

  111. Parrington J, Davis LC, Galione A, Wessel G. Flipping the switch: how a sperm activates the egg at fertilization. Dev Dyn. 2007;236:2027–38.

    CAS  PubMed  Google Scholar 

  112. Churamani D, Boulware MJ, Ramakrishnan L, Geach TJ, Martin AC, Vacquier VD, Marchant JS, Dale L, Patel S. Molecular characterization of a novel cell surface ADP-ribosyl cyclase from the sea urchin. Cell Signal. 2008;20:2347–55.

    CAS  PubMed  Google Scholar 

  113. Glahn D, Mark SD, Behr RK, Nuccitelli R. Tyrosine kinase inhibitors block sperm-induced egg activation in Xenopus laevis. Dev Biol. 1999;205:171–80.

    CAS  PubMed  Google Scholar 

  114. Sato KI, Tokmakov AA, Iwasaki T, Fukami Y. Tyrosine kinase-dependent activation of phospholipase Cgamma is required for calcium transient in Xenopus egg fertilization. Dev Biol. 2000;224:453–69.

    CAS  PubMed  Google Scholar 

  115. Sato K, Tokmakov AA, He CL, Kurokawa M, Iwasaki T, Shirouzu M, Fissore RA, Yokoyama S, Fukami Y. Reconstitution of Src-dependent phospholipase Cgamma phosphorylation and transient calcium release by using membrane rafts and cell-free extracts from Xenopus eggs. J Biol Chem. 2003;278:38413–20.

    CAS  PubMed  Google Scholar 

  116. Tokmakov AA, Sato KI, Iwasaki T, Fukami Y. Src kinase induces calcium release in Xenopus egg extracts via PLCgamma and IP3-dependent mechanism. Cell Calcium. 2002;32:11–20.

    CAS  PubMed  Google Scholar 

  117. Yamasaki-Mann M, Demuro A, Parker I. Modulation of endoplasmic reticulum Ca2+ store filling by cyclic ADP-ribose promotes inositol trisphosphate (IP3)-evoked Ca2+ signals. J Biol Chem. 2010;285:25053–61.

    CAS  PubMed Central  PubMed  Google Scholar 

  118. Webb SE, Miller A. Calcium signalling during zebrafish embryonic development. Bioessays. 2000;22:113–23.

    CAS  PubMed  Google Scholar 

  119. Webb SE, Miller AL. Ca2+ signaling and early embryonic patterning during the blastula and gastrula periods of zebrafish and Xenopus development. Biochim Biophys Acta. 2006;1763:1192–208.

    CAS  PubMed  Google Scholar 

  120. Sharma D, Kinsey WH. PYK2: a calcium-sensitive protein tyrosine kinase activated in response to fertilization of the zebrafish oocyte. Dev Biol. 2013;373:130–40.

    CAS  PubMed Central  PubMed  Google Scholar 

  121. McGinnis LK, Luo J, Kinsey WH. Protein tyrosine kinase signaling in the mouse oocyte cortex during sperm–egg interactions and anaphase resumption. Mol Reprod Dev. 2013;80: 260–72.

    CAS  PubMed Central  PubMed  Google Scholar 

  122. Levi M, Maro B, Shalgi R. The conformation and activation of Fyn kinase in the oocyte determine its localisation to the spindle poles and cleavage furrow. Reprod Fertil Dev. 2011;23:846–57.

    CAS  PubMed  Google Scholar 

  123. Yasunaga M, Tagi T, Hanzawa N, Yasuda M, Yamanashi Y, Yamamoto T, Aizawa S, Miyauchi Y, Nishikawa S. Involvement of Fyn tyrosine kinase in progression through cytokinesis of B lymphocyte progenitor. J Cell Biol. 1996;132:91–9.

    CAS  PubMed  Google Scholar 

  124. Wright SJ, Schatten G. Protein tyrosine phosphorylation during sea urchin fertilization: microtubule dynamics require tyrosine kinase activity. Cell Motil Cytoskeleton. 1995;30:1122–35.

    Google Scholar 

  125. Nakayama Y, Matsui Y, Takeda Y, Okamoto M, Abe K, Fukumoto Y, Yamaguchi N. c-Src but not Fyn promotes proper spindle orientation in early prometaphase. J Biol Chem. 2012;287:24905–15.

    CAS  PubMed Central  PubMed  Google Scholar 

  126. Besterman B, Schultz RM. Regulation of mouse preimplantation development: inhibitory effect of genistein, an inhibitor of tyrosine protein phosphorylation, on cleavage of one-cell embryos. J Exp Zool. 1990;256:44–53.

    CAS  PubMed  Google Scholar 

  127. Moore KL, Kinsey WH. Effects of protein tyrosine kinase inhibitors on egg activation and fertilization-dependent protein tyrosine kinase activity. Dev Biol. 1995;168:1–10.

    CAS  PubMed  Google Scholar 

  128. Li L, Baibakov B, Dean J. A subcortical maternal complex essential for preimplantation mouse embryogenesis. Dev Cell. 2008;15:416–25.

    CAS  PubMed Central  PubMed  Google Scholar 

  129. Moos J, Visconti PE, Moore GD, Schultz RM, Kopf GS. Potential role of mitogen-activated protein kinase in pronuclear envelope assembly and disassembly following fertilization of mouse eggs. Biol Reprod. 1995;53:692–9.

    CAS  PubMed  Google Scholar 

  130. Sun QY, Wu GM, Lai L, Bonk A, Cabot R, Park KW, Day BN, Prather RS, Schatten H. Regulation of mitogen-activated protein kinase phosphorylation, microtubule organization, chromatin behavior, and cell cycle progression by protein phosphatases during pig oocyte maturation and fertilization in vitro. Biol Reprod. 2002;66:580–8.

    CAS  PubMed  Google Scholar 

  131. Jacquet P, Saint-Georges L, Barrio S, Baugnet-Mahieu L. Morphological effects of caffeine, okadaic acid and genistein in one-cell mouse embryos blocked in G2 by X-irradiation. Int J Radiat Biol. 1995;67:347–58.

    CAS  PubMed  Google Scholar 

  132. Fumagalli S, Totty NF, Hsuan JJ, Courtneidge SA. A target for Src in mitosis. Nature. 1994;368:871–4.

    CAS  PubMed  Google Scholar 

  133. Rawe VY, Olmedo SB, Nodar FN, Doncel GD, Acosta AA, Vitullo AD. Cytoskeletal organization defects and abortive activation in human oocytes after IVF and ICSI failure. Mol Hum Reprod. 2000;6:510–6.

    CAS  PubMed  Google Scholar 

  134. Swann K, Larman MG, Saunders CM, Lai FA. The cytosolic sperm factor that triggers Ca2+ oscillations and egg activation in mammals is a novel phospholipase C: PLCzeta. Reproduction. 2004;127:431–9.

    CAS  PubMed  Google Scholar 

  135. Gardner AJ, Williams CJ, Evans JP. Establishment of the mammalian membrane block to polyspermy: evidence for calcium-dependent and -independent regulation. Reproduction. 2007;133:383–93.

    CAS  PubMed  Google Scholar 

  136. Qian YW, Erikson E, Taieb FE, Maller JL. The polo-like kinase Plx1 is required for activation of the phosphatase Cdc25C and cyclin B-Cdc2 in Xenopus oocytes. Mol Biol Cell. 2001;12:1791–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  137. Ashwell JD, D’Oro U. CD45 and Src-family kinases: and now for something completely different. Immunol Today. 1999;20:412–6.

    CAS  PubMed  Google Scholar 

  138. Tsujikawa K, Ichijo T, Moriyama K, Tadotsu N, Sakamoto K, Sakane N, Fukada S, Furukawa T, Saito H, Yamamoto H. Regulation of Lck and Fyn tyrosine kinase activities by transmembrane protein tyrosine phosphatase leukocyte common antigen-related molecule. Mol Cancer Res. 2002;1:155–63.

    CAS  PubMed  Google Scholar 

  139. Pallen CJ. Protein tyrosine phosphatase alpha (PTPalpha): a Src family kinase activator and mediator of multiple biological effects. Curr Top Med Chem. 2003;3:821–35.

    CAS  PubMed  Google Scholar 

  140. Granot-Attas S, Elson A. Protein tyrosine phosphatase epsilon activates Yes and Fyn in Neu-induced mammary tumor cells. Exp Cell Res. 2004;294:236–43.

    CAS  PubMed  Google Scholar 

  141. Hebert CE, Dupuy JW, Letellier T, Dachary-Prigent J. Functional impact of PTP1B-mediated Src regulation on oxidative phosphorylation in rat brain mitochondria. Cell Mol Life Sci. 2011;68:2603–13.

    Google Scholar 

  142. Wu W, Kinsey WH. Role of PTPase(s) in regulating Fyn kinase at fertilization of the zebrafish egg. Dev Biol. 2002;247:286–94.

    CAS  PubMed  Google Scholar 

  143. Maruyama R, Velarde NV, Klancer R, Gordon S, Kadandale P, Parry JM, Hang JS, Rubin J, Stewart-Michaelis A, Schweinsberg P, Grant BD, Piano F, Sugimoto A, Singson A. EGG-3 regulates cell-surface and cortex rearrangements during egg activation in Caenorhabditis elegans. Curr Biol. 2007;17:1555–60.

    CAS  PubMed  Google Scholar 

  144. Parry JM, Velarde NV, Lefkovith AJ, Zegarek MH, Hang JS, Ohm J, Klancer R, Maruyama R, Druzhinina MK, Grant BD, Piano F, Singson A. EGG-4 and EGG-5 Link Events of the Oocyte-to-Embryo Transition with Meiotic Progression in C. elegans. Curr Biol. 2009;19:1752–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  145. Parry JM, Singson A. EGG molecules couple the oocyte-to-embryo transition with cell cycle progression. Results Probl Cell Differ. 2011;53:135–51.

    CAS  PubMed Central  PubMed  Google Scholar 

  146. Schaller MD, Hildebrand JD, Parsons JT. Complex formation with focal adhesion kinase: a mechanism to regulate activity and subcellular localization of Src kinases. Mol Biol Cell. 1999;10:3489–505.

    CAS  PubMed Central  PubMed  Google Scholar 

  147. Hanks SK, Ryzhova L, Shin NY, Brabek J. Focal adhesion kinase signaling activities and their implications in the control of cell survival and motility. Front Biosci. 2003;8:d982–96.

    CAS  PubMed  Google Scholar 

  148. Schlaepfer DD, Hauck CR, Sieg DJ. Signaling through focal adhesion kinase. Prog Biophys Mol Biol. 1999;71:435–78.

    CAS  PubMed  Google Scholar 

  149. Su A, Cooke M, Ching K, Hakak Y, Walker J, Wiltshire T, Orth A, Vega R, Sapinoso L, Moqrich A, Patapoutian A, Hampton G, Schults P, Hogenesch J. Large-scale analysis of the human and mouse transcriptomes. Proc Natl Acad Sci U S A. 2002;99:4465–70.

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

The field of PTK signaling during fertilization benefitted significantly from the contributions of Dr. David L. Garbers who provided important inspiration to this author as well as many others.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William H. Kinsey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kinsey, W.H. (2014). Src-Family Tyrosine Kinases in Oogenesis, Oocyte Maturation and Fertilization: An Evolutionary Perspective. In: Sutovsky, P. (eds) Posttranslational Protein Modifications in the Reproductive System. Advances in Experimental Medicine and Biology, vol 759. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0817-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0817-2_3

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-0816-5

  • Online ISBN: 978-1-4939-0817-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics