Skip to main content

A Game Theoretical Model for Experiment Design Optimization

  • Chapter
  • First Online:
Optimization in Science and Engineering

Abstract

In this paper we present a noncooperative game theoretical model for the well known problem of experimental design. A virtual player decides the design variables of an experiment and all the players solve a Nash equilibrium problem by optimizing suitable payoff functions. The resulting game has nice properties, so that a computational procedure is performed by using genetic algorithm approach. We consider the case where the design variables are the coordinates of n points in a region of the plane and we look for the optimal configuration of the points under some constraints. The problem arises from a concrete situation: find the optimal location of n receivers able to pick up particles of cosmic ray in a given platform (some experiment to measure the quantities of gamma rays are ongoing in Nepal thanks to the altitude of the region). Theoretical and computational results are presented for this location problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Başar, T., Olsder, G.J.: Dynamic Noncooperative Game Theory. In: Classics in Applied Mathematics, 23. Society for Industrial and Applied Mathematics, Philadelphia (1999)

    Google Scholar 

  2. Benabbou, A., Borouchaki, H., Laug, P., Lu, J.: Sphere packing and applications to granular structure modeling. In: Garimella, R.V. (ed.) Proceedings of the 17th International Meshing Roundtable, 12–15 October 2008. Springer, Berlin (2008)

    Google Scholar 

  3. Clarich, A., Periaux, J., Poloni, C.: Combining game strategies and evolutionary algorithms for CAD parametrization and multi-point optimization of complex aeronautic systems. EUROGEN, Barcelona (2003)

    Google Scholar 

  4. Conway, J.H., Sloane, N.J.A.: Sphere Packings, Lattices and Groups. Springer, Berlin (1998) [ISBN-13 978-0387985855]

    Google Scholar 

  5. D’Amato, E., Daniele, E., Mallozzi, L., Petrone, G.: Equilibrium strategies via GA to Stackelberg games under multiple follower best reply. Int. J. Intell. Syst. 27, 74–85 (2012)

    Article  Google Scholar 

  6. D’Amato, E., Daniele, E., Mallozzi, L., Petrone, G., Tancredi, S.: A hierarchical multi-modal hybrid Stackelberg-Nash GA for a leader with multiple followers game. In: Sorokin, A., Murphey, R., Thai, M.T., Pardalos, P.M. (eds.) Dynamics of Information Systems: Mathematical Foundations. Springer Proceedings in Mathematics & Statistics, 20, pp. 267–280. Springer, New York (2012)

    Chapter  Google Scholar 

  7. Dean, A., Voss, D.: Design and Analysis of Experiments, In: Springer Texts in Statistics, Springer Science+Business Media, New York, USA (1998) [ISBN 978-0387985619]

    Google Scholar 

  8. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multi-objective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 181–197 (2002)

    Article  Google Scholar 

  9. Donev, A., Torquato, S., Stillinger, F.H., Connelly, R.: A linear programming algorithm to test for jamming in hard-sphere packings. J. Comput. Phys. 197(1), 139–166 (2004). doi:10.1016/j.jcp.2003.11.022 [ISSN 0021-9991]

    Google Scholar 

  10. Hales, T.C.: The sphere packing problem. J. Comput. Appl. Math. 42, 41–76 (1992)

    Article  MathSciNet  Google Scholar 

  11. Mallozzi, L.: Noncooperative facility location games. Oper. Res. Lett. 35, 151–154 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  12. Mallozzi, L.: An application of optimization theory to the study of equilibria for games: a survey. Cent. Eur. J. Oper. Res. 21(3), 523–539 (2013)

    Article  MathSciNet  Google Scholar 

  13. Mallozzi, L., D’Amato, E., Daniele, E., Petrone, G.: N leader - M follower coalition games with genetic algorithms and applications. In: Poloni, C., Quagliarella, D., Periaux, J., Gauger, N., Giannakoglou, K. (eds.) Evolutionary and Deterministic Methods for Design, Optimization and Control. CIRA, Capua (2011)

    Google Scholar 

  14. Monderer, D., Shapley, L.S.: Potential Games. Games Econ. Behav. 14, 124–143 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  15. Nurmela, K.J.: Stochastic optimization methods in sphere packing and covering problems in discrete geometry and coding theory. Ph.D. Thesis, Helsinki University of Technology, printed by Picaset Oy (1997) [ISBN 952-90-9460-4]

    Google Scholar 

  16. Periaux, J., Chen, H.Q., Mantel, B., Sefrioui, M., Sui, H.T.: Combining game theory and genetic algorithms with application to DDM-nozzle optimization problems. Finite Elem. Anal. Des. 37, 417–429 (2001)

    Article  MATH  Google Scholar 

  17. Sloane, N.J.A.: The Sphere Packing Problem. 1998 Shannon Lecture. AT&T Shannon Lab, Florham Park (1998)

    Google Scholar 

  18. Sorokin, A., Pardalos, P. (eds.): Dynamic of Information Systems: Algorithmics Approaches. In: Springer Proceedings in Mathematics & Statistics, 51. Springer Science+Business Media, New York, USA (2013)

    Google Scholar 

  19. Sutou, A., Dai, Y.: Global optimization approach to unequal sphere packing problems in 3D. J. Optim. Theory Appl. 114(3), 671–694 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  20. Voorneveld, M., Borm, P., van Megen, F., Tijs, S., Facchini, G.: Congestion games and potentials reconsidered. Int. Game Theory Rev. 1(3–4), 283–299 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  21. Wang, J.F., Periaux, J.: Multi-Point optimization using GAS and Nash/Stackelberg games for high lift multi-airfoil design in aerodynamics. In: Proceedings of the 2001 Congress on Evolutionary Computation, CEC2001 (May 2001), pp. 552–559 (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lina Mallozzi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Mallozzi, L., D’Amato, E., Daniele, E. (2014). A Game Theoretical Model for Experiment Design Optimization. In: Rassias, T., Floudas, C., Butenko, S. (eds) Optimization in Science and Engineering. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0808-0_18

Download citation

Publish with us

Policies and ethics