Skip to main content

Output-only Modal Identification

  • Chapter
  • First Online:
Operational Modal Analysis of Civil Engineering Structures

Abstract

This chapter is focused on the methods for modal parameter estimation from previously acquired and pretreated time histories of the structural response to ambient vibrations. The fundamental assumptions of OMA methods and the basic concepts of structural dynamics models in time and frequency domain are illustrated, pointing out the common mathematical background behind different and apparently unrelated procedures. Then, criteria for the classification of OMA methods are summarized and fundamental theoretical aspects of well-established and popular OMA techniques are illustrated, providing relevant details for their software implementation. Finally, additional aspects concerning post-processing of modal parameter estimates, validation of layout and modal identification results, and correlation with numerical models are discussed. The ultimate objective of this chapter is to provide the reader all relevant information for implementation and practical application of a number of OMA methods and post-processing tools for validation and correlation. In this sense the implementation details and the basic software provided with the book are intended to fit the needs of both the modal analysts on one hand and undergraduate/graduate students, researchers, and developers on the other. The latter, in fact, are usually interested in writing their own code for further developments or business opportunities, and the accompanying software serves as a reference. On the other hand, modal analysts can find here the tools and the fundamental information to promptly start the modal tests and properly interpret the results. Using the basic software accompanying the book they can take confidence with different OMA procedures and choose their favorite ones. Thus, the chapter can be also intended as a guide supporting the choice among the different commercial software packages available on the market and relying on different OMA methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allemang RJ, Brown DL (1982) A correlation coefficient for modal vector analysis. In: Proc 1st international modal analysis conference, November 8–10, 1982, Orlando, FL

    Google Scholar 

  • Allemang RJ, Brown DL (1998) A unified matrix polynomial approach to modal identification. J Sound Vib 211(3):301–322

    Article  MATH  Google Scholar 

  • Andersen P (1997) Identification of civil engineering structures using vector ARMA models, Ph.D. thesis. University of Aalborg, Aalborg

    Google Scholar 

  • Andersen P, Brincker R (1999) Estimation of modal parameters and their uncertainties. In: Proc XVII international modal analysis conference, February 8–11, 1999, Kissimmee, FL

    Google Scholar 

  • Andersen P, Brincker R, Kirkegaard PH (1996) Theory of covariance equivalent ARMAV models of civil engineering structures. In: Proc XIV international modal analysis conference, February 12–15, 1996, Dearborn, MI

    Google Scholar 

  • Ans B, Hérault J, Jutten C (1985) Adaptive neural architectures: detection of primitives. In: Proc COGNITIVA’85, June 4–7, 1985, Paris

    Google Scholar 

  • Aoki M (1987) State space modeling of time series. Springer, Berlin

    Book  MATH  Google Scholar 

  • Asmussen JC, Brincker R, Ibrahim SR (1999) Statistical theory of the vector random decrement technique. J Sound Vib 226(2):329–344

    Article  MATH  MathSciNet  Google Scholar 

  • Bartlett MS (1946) The theoretical specification and sampling properties of autocorrelated time-series. J R Stat Soc 8(1):27–41, Supplement

    MATH  MathSciNet  Google Scholar 

  • Belouchrani A, Abed-Meraim K, Cardoso JF, Moulines E (1997) A blind source separation technique using second-order statistics. IEEE Trans Signal Process 45:434–444

    Article  Google Scholar 

  • Bendat JS, Piersol AG (2000) Random data: analysis and measurement procedures, 3rd edn. Wiley, New York, NY

    Google Scholar 

  • Brincker R, Andersen P (1999) ARMA models in modal space. In: Proc XVII international modal analysis conference, February 8–11, 1999, Kissimmee, FL

    Google Scholar 

  • Brincker R, Andersen P (1999) Ambient response modal analysis for large structures. In: Proc 6th Int Congr on Sound and Vib, July 5–8, 1999, Copenhagen

    Google Scholar 

  • Brincker R, Zhang L (2009) Frequency domain decomposition revisited. In: Proc 3rd international operational modal analysis conference, May 4–6, 2009, Portonovo

    Google Scholar 

  • Brincker R, Krenk S, Kirkegaard PH, Rytter A (1992) Identification of dynamical properties from correlation function estimates. Bygningsstatiske Meddelelser 63(1):1–38

    Google Scholar 

  • Brincker R, Zhang L, Andersen P (2001) Modal identification of output-only systems using frequency domain decomposition. Smart Mat Struct 10:441–445

    Article  Google Scholar 

  • Cardoso JF, Souloumiac A (1996) Jacobi angles for simultaneous diagonalization. SIAM J Matrix Anal Appl 17:161–164

    Article  MATH  MathSciNet  Google Scholar 

  • Cauberghe B (2004) Applied frequency-domain system identification in the field of experimental and operational modal analysis, Ph.D. thesis. Vrije Universiteit Brussels, Brussels

    Google Scholar 

  • Cauberghe B, Guillaume P, Verboven P, Vanlanduit S, Parloo E (2005) On the influence of the parameter constraint on the stability of the poles and the discrimination capabilities of the stabilisation diagrams. Mech Syst Signal Process 19:989–1014

    Article  Google Scholar 

  • Chelidze D, Zhou W (2006) Smooth orthogonal decomposition-based vibration mode identification. J Sound Vib 292:461–473

    Article  Google Scholar 

  • Chopra AK (2000) Dynamics of structures – theory and applications to earthquake engineering, 2nd edn. Prentice Hall, Upper Saddle River, NJ

    Google Scholar 

  • Cole HA (1968) On-the-line analysis of random vibrations. In: Proc AIAA/ASME 9th structures, structural dynamics and materials Conf, April 1–3, 1968, Palm Springs, CA

    Google Scholar 

  • Cole HA (1973) On-line failure detection and damping measurement of aerospace structures by random decrement signatures. NASA contractor report CR22-05

    Google Scholar 

  • Comon P (1994) Independent component analysis, a new concept? Signal Process 36:287–314

    Article  MATH  Google Scholar 

  • De Troyer T, Guillaume P, Steenackers G (2009a) Fast variance calculation of polyreference least-squares frequency-domain estimates. Mech Syst Signal Process 23:1423–1433

    Article  Google Scholar 

  • De Troyer T, Guillaume P, Pintelon R, Vanlanduit S (2009b) Fast calculation of confidence intervals on parameter estimates of least-squares frequency-domain estimators. Mech Syst Signal Process 23:261–273

    Article  Google Scholar 

  • Devriendt C, Guillaume P (2007) The use of transmissibility measurements in output-only modal analysis. Mech Syst Signal Process 21(7):2689–2696

    Article  Google Scholar 

  • Devriendt C, Guillaume P (2008) Identification of modal parameters from transmissibility measurements. J Sound Vib 314:343–356

    Article  Google Scholar 

  • Devriendt C, De Sitter G, Vanlanduit S, Guillaume P (2009) Operational modal analysis in the presence of harmonic excitations by the use of transmissibility measurements. Mech Syst Signal Process 23:621–635

    Article  Google Scholar 

  • Devriendt C, Steenackers G, De Sitter G, Guillaume P (2010) From operating deflection shapes towards mode shapes using transmissibility measurements. Mech Syst Signal Process 24:665–677

    Article  Google Scholar 

  • Even J, Moisan E (2005) Blind source separation using order statistics. Signal Process 85:1744–1758

    Article  MATH  Google Scholar 

  • Ewins DJ (2000) Modal testing: theory, practice and application, 2nd edn. Research Studies Press Ltd., Baldock

    Google Scholar 

  • Feeny BF, Kappagantu R (1998) On the physical interpretation of proper orthogonal modes in vibrations. J Sound Vib 211:607–616

    Article  Google Scholar 

  • Felber AJ (1993) Development of a hybrid bridge evaluation system, Ph.D. thesis. University of British Columbia, Vancouver

    Google Scholar 

  • Franklin GF, Powell JD, Workman ML (2006) Digital control of dynamic systems, 3rd edn. Ellis-Kagle Press, Half Moon Bay, CA

    Google Scholar 

  • Friswell MI, Mottershead JE (1995) Finite element model updating in structural dynamics. Kluwer Academic Publishers, Dordrecht

    Book  MATH  Google Scholar 

  • Gade S, Møller NB, Herlufsen H, Konstantin-Hansen H (2005) Frequency domain techniques for operational modal analysis. In: Proc 1st international operational modal analysis conference, April 26–27, 2005, Copenhagen

    Google Scholar 

  • Golub GH, Van Loan CF (1996) Matrix computations, 3rd edn. The Johns Hopkins University Press, Baltimore, MD

    MATH  Google Scholar 

  • Gouttebroze S, Lardies J (2001) On using the wavelet transform in modal analysis. Mech Res Comm 28(5):561–569

    Article  MATH  Google Scholar 

  • Han J-G, Ren W-X, Xu X-X (2005) Wavelet-based modal parameter identification through operational measurements. In: Proc 1st international operational modal analysis conference, April 26–27, 2005, Copenhagen

    Google Scholar 

  • Hanson D, Randall RB, Antoni J, Thompson DJ, Waters TP, Ford RAJ (2007) Cyclostationarity and the cepstrum for operational modal analysis of mimo systems – Part I: modal parameter identification. Mech Syst Signal Process 21(6):2441–2458

    Article  Google Scholar 

  • Herlufsen H, Andersen P, Gade S, Møller N (2005) Identification techniques for operational modal analysis – an overview and practical experiences. In: Proc 1st international operational modal analysis conference, April 26–27, 2005, Copenhagen

    Google Scholar 

  • Hermans L, Van Der Auweraer H (1999) Modal testing and analysis of structures under operational conditions: industrial applications. Mech Syst Signal Process 13(2):193–216

    Article  Google Scholar 

  • Heylen W, Lammens S, Sas P (1998) Modal analysis theory and testing. Katholieke Universiteit Leuven, Leuven

    Google Scholar 

  • Ho BL, Kalman RE (1966) Effective construction of linear state-variable models from input/output data. Regelungstechnik 14:545–548

    MATH  Google Scholar 

  • Hunt DL (1992) Application of an enhanced coordinate modal assurance criterion (ECOMAC). In: Proc 10th international modal analysis conference, February 3–7, 1992, San Diego, CA

    Google Scholar 

  • Ibrahim SR (1977) Random decrement technique for modal identification of structures. J Spacecraft Rockets 14(11):696–700

    Article  Google Scholar 

  • Ibrahim SR, Mikulcik EC (1977) A method for direct identification of vibration parameters from the free response. Shock Vib Bul 47:183–198

    Google Scholar 

  • Ibrahim SR, Brincker R, Asmussen JC (1996) Modal parameter identification from responses of general unknown random inputs. In: Proc 14th international modal analysis conference, February 12–15, 1996, Dearborn, MI

    Google Scholar 

  • Jacobsen N-J, Andersen P, Brincker R (2008) Applications of frequency domain curve-fitting in the EFDD technique. In: Proc 26th international modal analysis conference, February 4–7, 2008, Orlando, FL

    Google Scholar 

  • James GH, Carne TG, Lauffer JP, Nord AR (1992) Modal testing using natural excitation. In: Proc 10th international modal analysis conference, February 3–7, 1992, San Diego, CA

    Google Scholar 

  • James GH, Carne TG, Lauffer JP (1995) The natural excitation technique (next) for modal parameter extraction from operating structures. J Anal Exp Modal Anal 10(4):260–277

    Google Scholar 

  • Juang J-N (1994) Applied system identification. PTR Prentice Hall, Englewood Cliffs, NJ

    MATH  Google Scholar 

  • Juang J-N, Pappa RS (1985) An eigensystem realization algorithm for modal parameter identification and model reduction. AIAA J Guid Contr Dynam 8:620–627

    Article  MATH  Google Scholar 

  • Kailath T (1980) Linear systems. Prentice Hall, Englewood Cliffs, NJ

    MATH  Google Scholar 

  • Katayama T (2005) Subspace methods for system identification. Springer, London

    Book  MATH  Google Scholar 

  • Kerschen G, Golinval JC (2002) Physical interpretation of the proper orthogonal modes using the singular value decomposition. J Sound Vib 249:849–865

    Article  MATH  MathSciNet  Google Scholar 

  • Kerschen G, Golinval JC, Vakakis AF, Bergman LA (2005) The method of proper orthogonal decomposition for dynamical characterization and order reduction of mechanical systems: an overview. Nonlin Dynam 41:147–170

    Article  MATH  MathSciNet  Google Scholar 

  • Kerschen G, Poncelet F, Golinval JC (2007) Physical interpretation of independent component analysis in structural dynamics. Mech Syst Signal Process 21:1561–1575

    Article  Google Scholar 

  • Lardies J, Gouttebroze S (2002) Identification of modal parameters using the wavelet transform. Int J Mech Sci 44:2263–2283

    Article  MATH  Google Scholar 

  • Ljung L (1999) System identification: theory for the user, 2nd edn. Prentice Hall, Upper Saddle River, NJ

    Google Scholar 

  • Magalhaes F, Cunha A (2011) Explaining operational modal analysis with data from an arch bridge. Mech Syst Signal Process 25:1431–1450

    Article  Google Scholar 

  • Maia NMM, Silva JMM, He J, Lieven NAJ, Lin RM, Skingle GW, To W-M, Urgueira APV (1997) Theoretical and experimental modal analysis. Research Studies Press, Taunton

    Google Scholar 

  • McNeill SI, Zimmerman DC (2008) A framework for blind modal identification using joint approximate diagonalization. Mech Syst Signal Process 22:1526–1548

    Article  Google Scholar 

  • Mohanty P (2005) Operational modal analysis in the presence of harmonic excitations, Ph.D. thesis. Technische Universiteit Delft, Delft

    Google Scholar 

  • Mottershead JE, Link M, Friswell MI (2011) The sensitivity method in finite element model updating: a tutorial. Mech Syst Signal Process 25(7):2275–2296

    Article  Google Scholar 

  • Olsen P, Brincker R (2013) Using random response input in Ibrahim Time Domain. In: Proc XXXI International Modal Analysis Conference, February 11–14, 2013, Garden Grove, CA

    Google Scholar 

  • Pandit SM (1991) Modal and spectrum analysis: data dependent systems in state space. Wiley, New York, NY

    MATH  Google Scholar 

  • Pandit SM, Wu SM (1983) Time series and system analysis with applications. Wiley, New York, NY

    MATH  Google Scholar 

  • Pappa RS, Elliott KB, Schenk A (1992) A consistent mode indicator for the eigensystem realization algorithm. NASA Report TM-107607

    Google Scholar 

  • Peeters B (2000) System identification and damage detection in civil engineering, Ph.D. thesis. Katholieke Universiteit Leuven, Leuven

    Google Scholar 

  • Peeters B, De Roeck G (1999) Reference-based stochastic subspace identification for output-only modal analysis. Mech Syst Signal Process 13(6):855–878

    Article  Google Scholar 

  • Peeters B, Van der Auweraer H (2005) PolyMAX: a revolution in operational modal analysis. In: Proc 1st international operational modal analysis conference, April 26–27, 2005, Copenhagen

    Google Scholar 

  • Pintelon R, Guillaume P, Rolain Y, Schoukens J, Van Hamme H (1994) Parametric identification of transfer functions in the frequency domain – a survey. IEEE Trans Automat Contr 39(11):2245–2260

    Article  MATH  Google Scholar 

  • Pintelon R, Guillaume P, Schoukens J (2007) Uncertainty calculation in (operational) modal analysis. Mech Syst Signal Process 21:2359–2373

    Article  Google Scholar 

  • Poncelet F, Golinval JC, Kerschen G, Verhelst D (2007) Output-only modal analysis using blind source separation techniques. Mech Syst Signal Process 21:2335–2358

    Article  Google Scholar 

  • Rainieri C, Fabbrocino G, Cosenza E (2010) Some remarks on experimental estimation of damping for seismic design of civil constructions. Shock Vib 17:383–395

    Article  Google Scholar 

  • Reynders E (2009) System identification and modal analysis in structural mechanics, Ph.D. thesis. Katholieke Universiteit Leuven, Leuven

    Google Scholar 

  • Reynders E, Houbrechts J, De Roeck G (2012) Fully automated (operational) modal analysis. Mech Syst Signal Process 29:228–250

    Article  Google Scholar 

  • Reynders E, Pintelon R, De Roeck G (2008) Uncertainty bounds on modal parameters obtained from stochastic subspace identification. Mech Syst Signal Process 22:948–969

    Article  Google Scholar 

  • Richardson M, Schwarz B (2003) Modal parameter estimation from operating data. Sound Vib 302:1–8

    Google Scholar 

  • Rodrigues J, Brincker R, Andersen P (2004) Improvement of frequency domain output-only modal identification from the application of the random decrement technique. In: Proc XXII international modal analysis conference, January 26–29, 2004, Dearborn, MI

    Google Scholar 

  • Ruzzene M, Fasana A, Garibaldi L, Piombo B (1997) Natural frequencies and dampings identification using wavelet transform: application to real data. Mech Syst Signal Process 11(2):207–218

    Article  Google Scholar 

  • Schoukens J, Pintelon R (1991) Identification of linear systems: a practical guide to accurate modeling. Pergamon Press, London

    Google Scholar 

  • Shih CY, Tsuei YG, Allemang RJ, Brown DL (1988) Complex mode indication function and its applications to spatial domain parameter estimation. Mech Syst Signal Process 2(4):367–377

    Article  MATH  Google Scholar 

  • Srikantha Phani A, Woodhouse J (2007) Viscous damping identification in linear vibration. J Sound Vib 303:475–500

    Article  Google Scholar 

  • Tamura Y, Suganuma S-Y (1996) Evaluation of amplitude-dependent damping and natural frequency of buildings during strong winds. J Wind Eng Ind Aerodyn 59:115–130

    Article  Google Scholar 

  • Tong L, Liu RW, Soon VC, Huang YF (1991) Indeterminacy and identifiability of blind identification. IEEE Trans Circ Syst 38:499–509

    Article  MATH  Google Scholar 

  • Van Overschee P, De Moor B (1993) Subspace algorithm for the stochastic identification problem. Automatica 29(3):649–660

    Article  MATH  MathSciNet  Google Scholar 

  • Van Overschee P, De Moor B (1996) Subspace identification for linear systems: theory - implementation – applications. Kluwer Academic Publishers, Dordrecht

    Book  MATH  Google Scholar 

  • Vandiver JK, Dunwoody AB, Campbell RB, Cook MF (1982) A mathematical basis for the random decrement vibration signature analysis technique. J Mech Des 104(2):307–313

    Article  Google Scholar 

  • Verboven P (2002) Frequency-domain system identification for modal analysis, Ph.D. thesis. Vrije Universiteit Brussels, Brussels

    Google Scholar 

  • Verboven P, Guillaume P, Cauberghe B, Vanlanduit S, Parloo E (2005) A comparison of frequency-domain transfer function model estimator formulations for structural dynamics modeling. J Sound Vib 279(3–5):775–798

    Article  Google Scholar 

  • Vold H, Kundrat J, Rocklin T, Russell R (1982) A multi-input modal estimation algorithm for mini-computers. SAE Trans 91(1):815–821

    Google Scholar 

  • Waters TP (1995). Finite element model updating using measured frequency response functions, Ph.D. thesis. University of Bristol, Bristol

    Google Scholar 

  • Yi J-H, Yun C-B (2004) Comparative study on modal identification methods using output-only information. Struct Eng Mech 17(3–4):445–466

    Article  Google Scholar 

  • Zhang L, Wang T, Tamura Y (2005) A frequency-spatial domain decomposition (FSDD) technique for operational modal analysis. In: Proc 1st international operational modal analysis conference, April 26–27, 2005, Copenhagen

    Google Scholar 

  • Zhang L, Brincker R, Andersen P (2005) An overview of operational modal analysis: major development and issues. In: Proc 1st international operational modal analysis conference, April 26–27, 2005, Copenhagen

    Google Scholar 

  • Zhou W, Chelidze D (2007) Blind source separation based vibration mode identification. Mech Syst Signal Process 21:3072–3087

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

4.1 Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Chapter 4 (ZIP 565,300 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Rainieri, C., Fabbrocino, G. (2014). Output-only Modal Identification. In: Operational Modal Analysis of Civil Engineering Structures. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0767-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0767-0_4

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-0766-3

  • Online ISBN: 978-1-4939-0767-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics