Skip to main content

Closed Cranial Window Applications in the Rat: Studies on Neurovascular Coupling Involving Pial Arterioles and the Glia Limitans

  • Protocol
  • First Online:
Neurovascular Coupling Methods

Part of the book series: Neuromethods ((NM,volume 88))

Abstract

Because of their intimate anatomic relationship with cerebral arterioles and neurons, astrocytes have been postulated to function as signal transducers, transferring information from activated neurons to the cerebral microcirculation. The above is labelled as “neurovascular coupling” and its components (i.e., neuron, astrocyte, and vascular cells) as the “neurovascular unit (NVU).” In the brain, NVUs can take a variety of forms. In the chapter, we highlight a well-represented cortical NVU consisting of pial arterioles, the glia limitans, and cortical neurons. This particular NVU can be readily examined in vivo using a closed cranial window system that permits one to monitor pial arteriolar diameter changes and manipulate astrocytic influences during periods of enhanced synaptic activity. In addition, this model can be used to evaluate mechanisms of upstream arteriolar relaxation. This dilation is necessary during periods of increased metabolic demand, in order to permit more blood to reach dilated downstream vessels, thereby improving nutrient supply to the activated neurons. Without pial arteriole dilation, downstream dilation in the vicinity of active synapses may be ineffective, placing neurons at risk, especially during episodes of intense neuronal activity, such as seizure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Xu HL, Mao L, Ye S, Paisansathan C et al (2008) Astrocytes are a key conduit for upstream signaling of vasodilation during cerebral cortical neuronal activation in vivo. Am J Physiol Heart Circ Physiol 294:H622–H632

    Article  CAS  PubMed  Google Scholar 

  2. Iadecola C, Nedergaard M (2007) Glial regulation of the cerebral microvasculature. Nat Neurosci 10:1369–1376

    Article  CAS  PubMed  Google Scholar 

  3. Oberheim NA, Tian GF, Han X et al (2008) Loss of astrocytic domain organization in the epileptic brain. J Neurosci 28:3264–3276

    Article  CAS  PubMed  Google Scholar 

  4. Filosa JA (2010) Vascular tone and neurovascular coupling: considerations toward an improved in vitro model. Front Neuroenergetics. doi:16. 10.3389/fnene.2010.00016

    Google Scholar 

  5. Xu HL, Koenig HM, Ye S et al (2004) Influence of the glia limitans on pial arteriolar relaxation in the rat. Am J Physiol Heart Circ Physiol 287:H331–H339

    Article  CAS  PubMed  Google Scholar 

  6. Xu HL, Ye S, Baughman VL et al (2005) The role of the glia limitans in ADP-induced pial arteriolar relaxation in intact and ovariectomized female rats. Am J Physiol Heart Circ Physiol 288:H382–H388

    Article  CAS  PubMed  Google Scholar 

  7. Allt G, Lawrenson JG (1997) Is the pial microvessel a good model for blood–brain barrier studies? Brain Res Brain Res Rev 24:67–76

    Article  CAS  PubMed  Google Scholar 

  8. Xu HL, Gavrilyuk V, Wolde HM et al (2004) Regulation of rat pial arteriolar smooth muscle relaxation in vivo through multidrug resistance protein 5-mediated cGMP efflux. Am J Physiol Heart Circ Physiol 286:H2020–H2027

    Article  CAS  PubMed  Google Scholar 

  9. Xu HL, Galea E, Santizo RA et al (2001) The key role of caveolin-1 in estrogen-mediated regulation of endothelial nitric oxide synthase function in cerebral arterioles in vivo. J Cereb Blood Flow Metab 21:907–913

    Article  CAS  PubMed  Google Scholar 

  10. Santizo R, Pelligrino DA (1999) Estrogen reduces leukocyte adhesion in the cerebral circulation of female rats. J Cereb Blood Flow Metab 19:1061–1065

    Article  CAS  PubMed  Google Scholar 

  11. Santizo RA, Xu HL, Galea E et al (2002) Combined endothelial nitric oxide synthase upregulation and caveolin-1 downregulation decrease leukocyte adhesion in pial venules of ovariectomized female rats. Stroke 33:613–616

    Article  CAS  PubMed  Google Scholar 

  12. Santizo RA, Anderson S, Ye S et al (2000) Effects of estrogen on leukocyte adhesion after transient forebrain ischemia. Stroke 31:2231–2235

    Article  CAS  PubMed  Google Scholar 

  13. Xu HL, Salter-Cid L, Linnik MD et al (2006) Vascular adhesion protein-1 plays an important role in postischemic inflammation and neuropathology in diabetic, estrogen-treated ovariectomized female rats subjected to transient forebrain ischemia. J Pharmacol Exp Ther 317:19–29

    Article  CAS  PubMed  Google Scholar 

  14. Paisansathan C, Xu HL, Vetri F et al (2010) Interactions between adenosine and potassium channel-related pathways in the coupling of somatosensory activation and pial arteriolar dilation. Am J Physiol Heart Circ Physiol 299:H2009–H2017

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Pelligrino DA, Vetri F, Xu HL (2011) Purinergic mechanisms in gliovascular coupling. Semin Cell Dev Biol 22:229–236

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Vetri F, Xu H, Mao L et al (2011) ATP hydrolysis pathways and their contributions to pial arteriolar dilation in rats. Am J Physiol Heart Circ Physiol 301:H1369–H1377

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Xu HL, Santizo RA, Baughman VL et al (2002) ADP-induced pial arteriolar dilation in ovariectomized rats involves gap junctional communication. Am J Physiol Heart Circ Physiol 283:H1082–H1091

    CAS  PubMed  Google Scholar 

  18. Xu HL, Wolde HM, Gavrilyuk V et al (2004) cAMP modulates cGMP-mediated cerebral arteriolar relaxation in vivo. Am J Physiol Heart Circ Physiol 287:H2501–H2509

    Article  CAS  PubMed  Google Scholar 

  19. Xu HL, Vetri F, Lee HK et al (2009) Estrogen replacement therapy in diabetic ovariectomized female rats potentiates postischemic leukocyte adhesion in cerebral venules via a RAGE-related process. Am J Physiol Heart Circ Physiol 297:H2059–H2067

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Taki K, Kaneko T, Mizuno N (2000) A group of cortical interneurons expressing mu-opioid receptor-like immunoreactivity: a double immunofluorescence study in the rat cerebral cortex. Neuroscience 98:221–231

    Article  CAS  PubMed  Google Scholar 

  21. Fahrenkrug J, Hannibal J, Tams J et al (2000) Immunohistochemical localization of the VIP1 receptor (VPAC1R) in rat cerebral blood vessels: relation to PACAP and VIP containing nerves. J Cereb Blood Flow Metab 20:1205–1214

    Article  CAS  PubMed  Google Scholar 

  22. Lenti L, Zimmermann A, Kis D et al (2009) PACAP and VIP differentially preserve neurovascular reactivity after global cerebral ischemia in newborn pigs. Brain Res 1283:50–57

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Tremoleda JL, Kerton A, Gsell W (2012) Anaesthesia and physiological monitoring during in vivo imaging of laboratory rodents: considerations on experimental outcomes and animal welfare. EJNMMI Res 2:44

    Article  PubMed Central  PubMed  Google Scholar 

  24. Tsurugizawa T, Uematsu A, Uneyama H et al (2010) Effects of isoflurane and alpha-chloralose anesthesia on BOLD fMRI responses to ingested L-glutamate in rats. Neuroscience 165:244–251

    Article  CAS  PubMed  Google Scholar 

  25. Statler KD, Janesko KL, Melick JA et al (2003) Hyperglycolysis is exacerbated after traumatic brain injury with fentanyl vs. isoflurane anesthesia in rats. Brain Res 994:37–43

    Article  CAS  PubMed  Google Scholar 

  26. Austin VC, Blamire AM, Allers KA et al (2005) Confounding effects of anesthesia on functional activation in rodent brain: a study of halothane and alpha-chloralose anesthesia. Neuroimage 24:92–100

    Article  CAS  PubMed  Google Scholar 

  27. Hyder F, Rothman DL, Shulman RG (2002) Total neuroenergetics support localized brain activity: implications for the interpretation of fMRI. Proc Natl Acad Sci U S A 99:10771–10776

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Meno JR, Nguyen TS, Jensen EM et al (2005) Effect of caffeine on cerebral blood flow response to somatosensory stimulation. J Cereb Blood Flow Metab 25:775–784

    Article  CAS  PubMed  Google Scholar 

  29. Dunn KM, Nelson MT (2010) Potassium channels and neurovascular coupling. Circ J 74:608–616

    Article  CAS  PubMed  Google Scholar 

  30. Fredholm BB, IJzerman AP, Jacobson KA et al (2011) International Union of Basic and Clinical Pharmacology. LXXXI. Nomenclature and classification of adenosine receptors—an update. Pharmacol Rev 63:1–34

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Ross FM, Brodie MJ, Stone TW (1998) Adenosine monophosphate as a mediator of ATP effects at P1 purinoceptors. Br J Pharmacol 124:818–824

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Pelligrino DA, Gay RL, Baughman VL et al (1996) Nitric oxide synthase inhibition modulates N-methyl-D-aspartate-induced changes in cerebral blood flow and EEG activity. Am J Physiol Heart Circ Physiol 271:H990–H995

    CAS  Google Scholar 

  33. Pfitzer G (2001) Invited review: regulation of myosin phosphorylation in smooth muscle. J Appl Physiol 91:497–503

    CAS  PubMed  Google Scholar 

  34. Somlyo AP, Somlyo AV (2003) Ca2+ sensitivity of smooth muscle and nonmuscle myosin II: modulated by G proteins, kinases, and myosin phosphatase. Physiol Rev 83:1325–1358

    CAS  PubMed  Google Scholar 

  35. Nishizaki T (2004) ATP- and adenosine-mediated signaling in the central nervous system: adenosine stimulates glutamate release from astrocytes via A2a adenosine receptors. J Pharmacol Sci 94:100–102

    Article  CAS  PubMed  Google Scholar 

  36. Pelligrino DA, Xu HL, Vetri F (2010) Caffeine and the control of cerebral hemodynamics. J Alzheimers Dis 20(suppl 1):S51–S62

    CAS  PubMed Central  PubMed  Google Scholar 

  37. Ngai AC, Winn HR (1993) Effects of adenosine and its analogues on isolated intracerebral arterioles—extraluminal and intraluminal application. Circ Res 73:448–457

    Article  CAS  PubMed  Google Scholar 

  38. Ko EA, Han J, Jung ID et al (2008) Physiological roles of K+ channels in vascular smooth muscle cells. J Smooth Muscle Res 44:65–81

    Article  PubMed  Google Scholar 

  39. Price DL, Ludwig JW, Mi H et al (2002) Distribution of rSlo Ca2+-activated K+ channels in rat astrocyte perivascular endfeet. Brain Res 956:183–193

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dale A. Pelligrino .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Xu, H., Paisansathan, C., Pelligrino, D.A. (2014). Closed Cranial Window Applications in the Rat: Studies on Neurovascular Coupling Involving Pial Arterioles and the Glia Limitans. In: Zhao, M., Ma, H., Schwartz, T. (eds) Neurovascular Coupling Methods. Neuromethods, vol 88. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-0724-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0724-3_9

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-0723-6

  • Online ISBN: 978-1-4939-0724-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics