Skip to main content

Analysis of Listeria monocytogenes Subproteomes

  • Protocol
  • First Online:
Listeria monocytogenes

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1157))

Abstract

The proteomic approaches have considerably evolved over the past two decades. This opened the doors for larger scale and deeper explorations of cellular physiology. Like for other living organisms, using the tools of proteomics has undoubtedly improved knowledge about the foodborne pathogen Listeria monocytogenes. Among the different technologies and approaches permanently evolving in the field of proteomics, the 2-DE is an analytical separation method of choice to resolve thousands of proteins simultaneously in a single gel, allowing their quantification, the study of their posttranslational modifications and the understanding of their biological function. In this, 2-DE remains a perfectly complementary technique to the new high-throughput techniques such as shotgun proteomics approaches. Moreover, in order to gain in analysis depth and improve knowledge about the target of action and the function of proteins in relation to their subcellular location, it is necessary to explore more specifically the different subcellular proteomes. Thus, the subproteomic analyses became essential and dramatically increased these last years, particularly on proteins secreted into the extracellular milieu, named exoproteome, or on cell envelope proteins (cell wall and membrane proteins) which are involved in the interactions with the surrounding environment. Here, the extraction and separation of L. monocytogenes subproteomes are described based on cell fractionation and 2-DE techniques. This chapter gives a workflow to obtain the exoproteome, the intracellular proteome, the cell wall, and membrane proteomes of the Gram-positive bacterium L. monocytogenes. The different steps of 2-DE technology, composed of a first dimension based on the separation of proteins according to their charge, an equilibration step, then a second dimension based on the separation of proteins according to their mass, and finally the staining of proteins in the gel are detailed. Emerging technologies to extract the exoproteome or the cell surface proteome after enzymatic shaving and to analyze them by shotgun method are also discussed briefly.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Cordwell SJ (2006) Technologies for bacterial surface proteomics. Curr Opin Microbiol 9:320–329

    Article  CAS  PubMed  Google Scholar 

  2. Santoni V, Molloy M, Rabilloud T (2000) Membrane proteins and proteomics: un amour impossible? Electrophoresis 21:1054–1070

    Article  CAS  PubMed  Google Scholar 

  3. Santoni V, Kiefer S, Desclaux D, Masson F, Rabilloud T (2000) Membrane proteomics: use of additive main effects with multiplicative interaction model to classify plasma membrane proteins according to their solubility and electrophoretic properties. Electrophoresis 21:3329–3344

    Article  CAS  PubMed  Google Scholar 

  4. Mastro R, Hall M (1999) Protein delipidation and precipitation by tri-n-butylphosphate, acetone, and methanol treatment for isoelectric focusing and two-dimensional gel electrophoresis. Anal Biochem 273:313–315

    Article  CAS  PubMed  Google Scholar 

  5. Deshusses JMP, Burgess JA, Scherl A, Wenger Y, Walter N, Converset V, Paesano S, Corthals GL, Hochstrasser DF, Sanchez J-C (2003) Exploitation of specific properties of trifluoroethanol for extraction and separation of membrane proteins. Proteomics 3:1418–1424

    Article  CAS  PubMed  Google Scholar 

  6. Schaumburg J, Diekmann O, Hagendorff P, Bergmann S, Rohde M, Hammerschmidt S, Jansch L, Wehland J, Karst U (2004) The cell wall subproteome of Listeria monocytogenes. Proteomics 4:2991–3006

    Article  CAS  PubMed  Google Scholar 

  7. Pucciarelli MG, Calvo E, Sabet C, Bierne H, Cossart P, Garcia del Portillo F (2005) Identification of substrates of the Listeria monocytogenes sortases A and B by a non-gel proteomic analysis. Proteomics 5:4808–4817

    Article  CAS  PubMed  Google Scholar 

  8. Calvo E, Pucciarelli MG, Bierne H, Cossart P, Albar JP, Garcia del Portillo F (2005) Analysis of the Listeria cell wall proteome by two-dimensional nanoliquid chromatography coupled to mass spectrometry. Proteomics 5:433–443

    Article  CAS  PubMed  Google Scholar 

  9. Folio P, Chavant P, Chafsey I, Belkorchia A, Chambon C, Hebraud M (2004) Two-dimensional electrophoresis database of Listeria monocytogenes EGDe proteome and proteomic analysis of mid-log and stationary growth phase cells. Proteomics 4:3187–3201

    Article  CAS  PubMed  Google Scholar 

  10. Dumas E, Meunier B, Berdague J-L, Chambon C, Desvaux M, Hebraud M (2008) Comparative analysis of extracellular and intracellular proteomes of twelve Listeria monocytogenes strains: differential protein expression is correlated to serovar. Appl Environ Microbiol 74:7399–7409

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Dumas E, Desvaux M, Chambon C, Hebraud M (2009) Insight into the core and variant exoproteomes of Listeria monocytogenes species by comparative subproteomic analysis. Proteomics 9:3136–3155

    Article  CAS  PubMed  Google Scholar 

  12. Renier S, Chambon C, Viala D, Chagnot C, Hebraud M, Desvaux M (2013) Exoproteomic analysis of the SecA2-dependent secretion in Listeria monocytogenes EGDe. J Proteomics 80:183–195

    Article  CAS  Google Scholar 

  13. Olaya-Abril A, Jiménez-Munguía I, Gómez-Gascón L, Rodríguez-Ortega MJ (2013) Surfomics: shaving live organisms for a fast proteomic identification of surface proteins. J Proteomics 97:164–176

    Google Scholar 

  14. Tjalsma H, Lambooy L, Hermans PW, Swinkels KW (2008) Shedding & shaving: disclosure of proteomic expressions on a bacterial face. Proteomics 8:1416–1428

    Article  Google Scholar 

  15. Solis N, Larsen MR, Cordwell SJ (2010) Improved accuracy of cell surface shaving proteomics in Staphylococcus aureus using a false-positive control. Proteomics 10:2037–2049

    Article  CAS  PubMed  Google Scholar 

  16. Dreisbach A, Hempel K, Buist G, Hecker M, Becher D, van Dijl JM (2010) Profiling the surfacome of Staphylococcus aureus. Proteomics 10:3082–3096

    Article  CAS  PubMed  Google Scholar 

  17. Bohle LA, Riaz T, Egge-Jacobsen W, Skaugen M, Busk OL, Eijsink VGH, Mathiesen G (2011) Identification of surface proteins in Enterococcus faecalis V583. BMC Genomics 12:135

    Article  PubMed Central  PubMed  Google Scholar 

  18. Olaya-Abril A, Gómez-Gascón L, Jiménez-Munguía I, Obando I, Rodríguez-Ortega MJ (2012) Another turn of the screw in shaving Gram-positive bacteria: optimization of proteomics surface protein identification in Streptococcus pneumoniae. J Proteomics 75:3733–3746

    Article  CAS  PubMed  Google Scholar 

  19. Wei Z, Fu Q, Liu X, Xiao P, Lu Z, Chen Y (2013) Identification of Streptococcus equi ssp. zooepidemicus surface associated proteins by enzymatic shaving. Vet Microbiol 159:519–525

    Article  Google Scholar 

  20. Neuhoff V, Stamm R, Eibl H (1985) Clear background and highly sensitive protein staining with coomassie blue dyes in polyacrylamide gels: a systematic analysis. Electrophoresis 6:427–448

    Article  CAS  Google Scholar 

  21. Neuhoff V, Arold N, Taube D, Ehrhardt W (1988) Improved staining of proteins in polyacrylamide gels including isoelectric focusing gels with clear background at nanogram sensitivity using Coomassie Brilliant Blue G-250 and R-250. Electrophoresis 9:255–262

    Article  CAS  PubMed  Google Scholar 

  22. Chevallet M, Santoni V, Poinas A, Rouquié D, Fuchs A, Kieffer S, Rossignol M, Lunardi J, Garin J, Rabilloud T (1998) New zwitterionic detergents improve the analysis of membrane proteins by two-dimensional electrophoresis. Electrophoresis 19:1901–1909

    Article  CAS  PubMed  Google Scholar 

  23. Tastet C, Charmont S, Chevallet M, Luche S, Rabilloud T (2003) Structure-efficiency relationships of zwitterionic detergents as protein solubilizers in two-dimensional electrophoresis. Proteomics 3:111–121

    Article  CAS  PubMed  Google Scholar 

  24. Planchon S, Chambon C, Desvaux M, Chafsey I, Leroy S, Talon R, Hebraud M (2007) Proteomic analysis of cell envelope from Staphylococcus xylosus C2a, a coagulase-negative Staphylococcus. J Res Proteome 6:3566–3580

    Article  CAS  Google Scholar 

  25. Planchon S, Desvaux M, Chafsey I, Chambon C, Leroy S, Hebraud M, Talon R (2009) Comparative subproteome analyses of plaktonic and sessile Staphylococcus xylosus C2a: new insight in cell physiology of a coagulase-negative Staphylococcus in biofilm. J Res Proteome 8:1797–1809

    Article  CAS  Google Scholar 

  26. Rabilloud T, Lelong C (2011) Two-dimensional gel electrophoresis in proteomics: a tutorial. J Proteomics 74:1829–1841

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

The author thanks I. Chafsey for her valuable technical expertise in proteomics approaches and its constantly renewed investment in the training of students to the different proteomics methodologies. The author also thanks C. Chambon, engineer on the proteomics component of the Metabolism Exploration Platform (PFEMcp) from INRA Clermont-Ferrand, who brings his skills to perform all our analysis by mass spectrometry with a remarkable efficiency and dedication and a constant concern to improve the methods and to optimize the analytical performances. Finally, I thank all my students who have contributed to the development and improvement of these techniques in the lab.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michel Hébraud .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Hébraud, M. (2014). Analysis of Listeria monocytogenes Subproteomes. In: Jordan, K., Fox, E., Wagner, M. (eds) Listeria monocytogenes. Methods in Molecular Biology, vol 1157. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-0703-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0703-8_10

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-0702-1

  • Online ISBN: 978-1-4939-0703-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics