Skip to main content

Assisted Reproductive Techniques

  • Protocol
  • First Online:
Human Fertility

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1154))

Abstract

Assisted reproductive technologies (ART) encompass fertility treatments, which involve manipulations of both oocyte and sperm in vitro. This chapter provides a brief overview of ART, including indications for treatment, ovarian reserve testing, selection of controlled ovarian hyperstimulation (COH) protocols, laboratory techniques of ART including in vitro fertilization (IVF), and intracytoplasmic sperm injection (ICSI), embryo transfer techniques, and luteal phase support. This chapter also discusses potential complications of ART, namely ovarian hyperstimulation syndrome (OHSS) and multiple gestations, and the perinatal outcomes of ART.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Steptoe PC, Edwards RG (1976) Reimplantation of a human embryo with subsequent tubal pregnancy. Lancet 307(7965):880–882

    Google Scholar 

  2. Steptoe PC, Edwards RG (1978) Birth after reimplantation of a human embryo. Lancet 312(8085):366

    Google Scholar 

  3. International Committee for Monitoring Assisted Reproductive Technology, de Mouzon J, Lancaster P, Nygren KG, Sullivan E, Zegers-Hochschild F et al (2009) World collaborative report on assisted reproductive technology, 2002. Hum Reprod 24(9):2310–2320

    PubMed  Google Scholar 

  4. Centers for disease control and prevention (2010) What is assisted reproductive technology? http://www.cdc.gov/art/

  5. Centers for disease control and prevention (2013) 2011 Assisted reproductive technology success rates: national summary and fertility clinic reports. http://www.cdc.gov/art/ART2011/index.htm

  6. Benadiva CA, Kligman I, Davis O, Rosenwaks Z (1995) In vitro fertilization versus tubal surgery: is pelvic reconstructive surgery obsolete? Fertil Steril 64(6):1051–1061

    CAS  PubMed  Google Scholar 

  7. Practice Committee of American Society for Reproductive Medicine (2008) The role of tubal reconstructive surgery in the era of assisted reproductive technologies. Fertil Steril 90(5 Suppl 1):S250–S253

    Google Scholar 

  8. Strandell A, Lindhard A, Waldenstrom U, Thorburn J, Janson PO, Hamberger L (1999) Hydrosalpinx and IVF outcome: a prospective, randomized multicentre trial in Scandinavia on salpingectomy prior to IVF. Hum Reprod 14(11):2762–2769

    CAS  PubMed  Google Scholar 

  9. Johnson NP, van Voorst S, Sowter MC, Strandell A, Mol BW (2010) Surgical treatment for tubal disease in women due to undergo in vitro fertilisation. Cochrane Database Syst Rev 20(2):CD002125

    Google Scholar 

  10. Strandell A, Lindhard A (2002) Why does hydrosalpinx reduce fertility?: the importance of hydrosalpinx fluid. Hum Reprod 17(5):1141–1145

    PubMed  Google Scholar 

  11. Déchaud H, Daurès JP, Arnal F, Humeau C, Hédon B (1998) Does previous salpingectomy improve implantation and pregnancy rates in patients with severe tubal factor infertility who are undergoing in vitro fertilization? A pilot prospective randomized study. Fertil Steril 69(6):1020–1025

    PubMed  Google Scholar 

  12. The Practice Committee of the American Society for Reproductive Medicine (2006) Salpingectomy for hydrosalpinx prior to in vitro fertilization. Fertil Steril 86(5 Suppl 1)S200–S201

    Google Scholar 

  13. Surrey ES, Schoolcraft WB (2001) Laparoscopic management of hydrosalpinges before in vitro fertilization-embryo transfer: salpingectomy versus proximal tubal occlusion. Fertil Steril 75(3):612–617

    CAS  PubMed  Google Scholar 

  14. Rosenfield RB, Stones RE, Coates A, Matteri RK, Hesla JS (2005) Proximal occlusion of hydrosalpinx by hysteroscopic placement of microinsert before in vitro fertilization-embryo transfer. Fertil Steril 83(5):1547

    PubMed  Google Scholar 

  15. Darwish AM, El Saman AM (2007) Is there a role for hysteroscopic tubal occlusion of functionless hydrosalpinges prior to IVF/ICSI in modern practice? Acta Obstet Gynecol Scand 86(12):1484–1489

    PubMed  Google Scholar 

  16. Mijatovic V, Veersema S, Emanuel MH, Schats R, Hompes PGA (2010) Essure hysteroscopic tubal occlusion device for the treatment of hydrosalpinx prior to in vitro fertilization-embryo transfer in patients with a contraindication for laparoscopy. Fertil Steril 93(4):1338–1342

    PubMed  Google Scholar 

  17. Bayrak A, Harp D, Saadat P, Mor E, Paulson R (2006) Recurrence of hydrosalpinges after cuff neosalpingostomy in a poor prognosis population. J Assist Reprod Genet 23(6):285–288

    PubMed Central  PubMed  Google Scholar 

  18. Sowter M, Akande V, Williams J, Hull M (1997) Is the outcome of in-vitro fertilization and embryo transfer treatment improved by spontaneous or surgical drainage of a hydrosalpinx? Hum Reprod 12(10):2147–2150

    CAS  PubMed  Google Scholar 

  19. Thonneau P, Marchand S, Tallec A, Ferial ML, Ducot B, Lansac J et al (1991) Incidence and main causes of infertility in a resident population (1,850,000) of three French regions (1988–1989). Hum Reprod 6(6):811–816

    CAS  PubMed  Google Scholar 

  20. Lee RKK, Hou JW, Ho HY, Hwu YM, Lin MH, Tsai YC et al (2002) Sperm morphology analysis using strict criteria as a prognostic factor in intrauterine insemination. Int J Androl 25(5):277–280

    CAS  PubMed  Google Scholar 

  21. Van Voorhis BJ, Barnett M, Sparks AET, Syrop CH, Rosenthal G, Dawson J (2001) Effect of the total motile sperm count on the efficacy and cost-effectiveness of intrauterine insemination and in vitro fertilization. Fertil Steril 75(4):661–668

    PubMed  Google Scholar 

  22. Miller DC, Hollenbeck BK, Smith GD, Randolph JF, Christman GM, Smith YR et al (2002) Processed total motile sperm count correlates with pregnancy outcome after intrauterine insemination. Urology 60(3):497–501

    PubMed  Google Scholar 

  23. Campana A, Sakkas D, Stalberg A, Bianchi PG, Comte I, Pache T et al (1996) Intrauterine insemination: evaluation of the results according to the woman’s age, sperm quality, total sperm count per insemination and life table analysis. Hum Reprod 11(4):732–736

    CAS  PubMed  Google Scholar 

  24. Missmer SA, Hankinson SE, Spiegelman D, Barbieri RL, Marshall LM, Hunter DJ (2004) Incidence of laparoscopically confirmed endometriosis by demographic, anthropometric, and lifestyle factors. Am J Epidemiol 160(8):784–796

    PubMed  Google Scholar 

  25. Strathy JH, Molgaard CA, Coulam CB, Melton L Jr (1982) Endometriosis and infertility: a laparoscopic study of endometriosis among fertile and infertile women. Fertil Steril 38(6):667–672

    CAS  PubMed  Google Scholar 

  26. Toya M, Saito H, Ohta N, Saito T, Kaneko T, Hiroi M (2000) Moderate and severe endometriosis is associated with alterations in the cell cycle of granulosa cells in patients undergoing in vitro fertilization and embryo transfer. Fertil Steril 73(2):344–350

    CAS  PubMed  Google Scholar 

  27. Marcoux S, Maheux R, Bérubé S (1997) Laparoscopic surgery in infertile women with minimal or mild endometriosis. N Engl J Med 337(4):217–222

    CAS  PubMed  Google Scholar 

  28. Jacobson TZ, Duffy JM, Barlow D, Farquhar C, Koninckx PR, Olive D (2010) Laparoscopic surgery for subfertility associated with endometriosis. Cochrane Database Syst Rev 1:CD001398

    PubMed  Google Scholar 

  29. Tummon IS, Asher LJ, Martin JSB, Tulandi T (1997) Randomized controlled trial of superovulation and insemination for infertility associated with minimal or mild endometriosis. Fertil Steril 68(1):8–12

    CAS  PubMed  Google Scholar 

  30. Adamson GD, Pasta DJ (1994) Surgical treatment of endometriosis-associated infertility: meta-analysis compared with survival analysis. Am J Obstet Gynecol 171(6):1488–1504

    CAS  PubMed  Google Scholar 

  31. Kennedy S, Bergqvist A, Chapron C, D’Hooghe T, Dunselman G, Greb R et al (2005) ESHRE guideline for the diagnosis and treatment of endometriosis. Hum Reprod 20(10):2698–2704

    PubMed  Google Scholar 

  32. Surrey ES, Silverberg KM, Surrey MW, Schoolcraft WB (2002) Effect of prolonged gonadotropin-releasing hormone agonist therapy on the outcome of in vitro fertilization-embryo transfer in patients with endometriosis. Fertil Steril 78(4):699–704

    PubMed  Google Scholar 

  33. The Rotterdam ESHRE/ASRM‐sponsored PCOS consensus workshop group (2004) Revised 2003 consensus on diagnostic criteria and long‐term health risks related to polycystic ovary syndrome (PCOS). Hum Reprod 19(1):41–47

    Google Scholar 

  34. Martin K, Hall J, Adams J, Crowley W Jr (1993) Comparison of exogenous gonadotropins and pulsatile gonadotropin-releasing hormone for induction of ovulation in hypogonadotropic amenorrhea. J Clin Endocrinol Metab 77(1):125–129

    CAS  PubMed  Google Scholar 

  35. Greenblatt RB (1961) Chemical induction of ovulation. Fertil Steril 12:402–404

    CAS  PubMed  Google Scholar 

  36. Holzer H, Casper R, Tulandi T (2006) A new era in ovulation induction. Fertil Steril 85(2):277–284

    CAS  PubMed  Google Scholar 

  37. Legro RS, Barnhart HX, Schlaff WD, Carr BR, Diamond MP, Carson SA et al (2007) Clomiphene, metformin, or both for infertility in the polycystic ovary syndrome. N Engl J Med 356(6):551–566

    CAS  PubMed  Google Scholar 

  38. Messinis IE, Nillius SJ (1982) Comparison between tamoxifen and clomiphene for induction of ovulation. Acta Obstet Gynecol Scand 61(4):377–379

    CAS  PubMed  Google Scholar 

  39. MacDougall MJ, Tan SL, Jacobs HS (1992) In vitro fertilization and the ovarian hyperstimulation syndrome. Hum Reprod 7(5):597–600

    CAS  PubMed  Google Scholar 

  40. Agrawal R, Tan SL, Wild S, Sladkevicius P, Engmann L, Payne N et al (1999) Serum vascular endothelial growth factor concentrations in in vitro fertilization cycles predict the risk of ovarian hyperstimulation syndrome. Fertil Steril 71(2):287–293

    CAS  PubMed  Google Scholar 

  41. Nisker J, Tummon I, Daniel S, Kaplan B, Yuzpe A (1994) Conversion of cycles involving ovarian hyperstimulation with intra-uterine insemination to in-vitro fertilization. Hum Reprod 9(3):406–408

    CAS  PubMed  Google Scholar 

  42. Ashkenazi J, Feldberg D, Dicker D, Yeshaya A, Ayalon D, Goldman JA (1989) IVF-ET in women with refractory polycystic ovarian disease. Eur J Obstet Gynecol Reprod Biol 30(2):157–161

    CAS  PubMed  Google Scholar 

  43. Templeton AA, Penney GC (1982) The incidence, characteristics, and prognosis of patients whose infertility is unexplained. Fertil Steril 37(2):175–182

    CAS  PubMed  Google Scholar 

  44. Guzick DS, Grefenstette I, Baffone K, Berga SL, Krasnow JS, Stovall DW et al (1994) Infertility: Infertility evaluation in fertile women: a model for assessing the efficacy of infertility testing. Hum Reprod 9(12):2306–2310

    CAS  PubMed  Google Scholar 

  45. Reindollar RH, Regan MM, Neumann PJ, Levine B-S, Thornton KL, Alper MM et al (2010) A randomized clinical trial to evaluate optimal treatment for unexplained infertility: the fast track and standard treatment (FASTT) trial. Fertil Steril 94(3):888–899

    PubMed  Google Scholar 

  46. Tsafrir A, Simon A, Margalioth EJ, Laufer N (2009) What should be the first-line treatment for unexplained infertility in women over 40 years of age: ovulation induction and IUI, or IVF? Reprod Biomed Online 19(Suppl 4):47–56

    Google Scholar 

  47. Harton G, Braude P, Lashwood A, Schmutzler A, Traeger-Synodinos J, Wilton L et al (2011) ESHRE PGD consortium best practice guidelines for organization of a PGD centre for PGD/preimplantation genetic screening. Hum Reprod 26(1):14–24

    CAS  PubMed  Google Scholar 

  48. Xu K, Shi ZM, Veeck LL, Hughes MR, Rosenwaks Z (1999) First unaffected pregnancy using preimplantation genetic diagnosis for sickle cell anemia. JAMA 281(18):1701–1706

    CAS  PubMed  Google Scholar 

  49. Simpson JL (2010) Preimplantation genetic diagnosis at 20 years. Prenat Diagn 30(7):682–695

    PubMed  Google Scholar 

  50. Harper JC, Harton G (2010) The use of arrays in preimplantation genetic diagnosis and screening. Fertil Steril 94(4):1173–1177

    CAS  PubMed  Google Scholar 

  51. President’s Cancer Panel 2003–2004 Annual Report (2004) Living beyond cancer: finding a new balance. US Department of Health and Human Services, p 1–87

    Google Scholar 

  52. Lee SJ, Schover LR, Partridge AH, Patrizio P, Wallace WH, Hagerty K et al (2006) American Society of Clinical Oncology recommendations on fertility preservation in cancer patients. J Clin Oncol 24(18):2917–2931

    PubMed  Google Scholar 

  53. Ethics Committee of the American Society for Reproductive Medicine (2005) Fertility preservation and reproduction in cancer patients. Fertil Steril 83(6):1622–1628

    Google Scholar 

  54. American Society for Reproductive Medicine (2013) Mature oocyte cryopreservation: a guideline. Fertil Steril 99:37

    Google Scholar 

  55. Tulandi T, Huang JYJ, Tan SL (2008) Preservation of female fertility: an essential progress. Obstet Gynaecol 112(5):1160–1172

    Google Scholar 

  56. Cobo A, Diaz C (2011) Clinical application of oocyte vitrification: a systematic review and meta-analysis of randomized controlled trials. Fertil Steril 96(2):277–285

    PubMed  Google Scholar 

  57. Gougeon A, Ecochard R, Thalabard JC (1994) Age-related changes of the population of human ovarian follicles: increase in the disappearance rate of non-growing and early-growing follicles in aging women. Biol Reprod 50(3):653–663

    CAS  PubMed  Google Scholar 

  58. Faddy MJ, Gosden RG, Gougeon A, Richardson SJ, Nelson JF (1992) Accelerated disappearance of ovarian follicles in mid-life: implications for forecasting menopause. Hum Reprod 7(10):1342–1346

    CAS  PubMed  Google Scholar 

  59. Vaskivuo TE, Anttonen M, Herva R, Billig H, Dorland M, te Velde ER et al (2001) Survival of human ovarian follicles from fetal to adult life: apoptosis, apoptosis-related proteins, and transcription factor GATA-4. J Clin Endocrinol Metab 86(7):3421–3429

    CAS  PubMed  Google Scholar 

  60. Malizia BA, Hacker MR, Penzias AS (2009) Cumulative live-irth rates after in vitro fertilization. N Engl J Med 360(3):236–243

    CAS  PubMed  Google Scholar 

  61. Ziebe S, Loft A, Petersen JH, Andersen AG, Lindenberg S, Petersen K et al (2001) Embryo quality and developmental potential is compromised by age. Acta Obstet Gynecol Scand 80(2):169–174

    CAS  PubMed  Google Scholar 

  62. Hull MG, Fleming CF, Hughes AO, McDermott A (1996) The age-related decline in female fecundity: a quantitative controlled study of implanting capacity and survival of individual embryos after in vitro fertilization. Fertil Steril 65(4):783–790

    CAS  PubMed  Google Scholar 

  63. Spandorfer SD, Chung PH, Kligman I, Liu HC, Davis OK, Rozenwaks Z (2000) An analysis of the effect of Age on implantation rates. J Assist Reprod Genet 17(6):303–306

    CAS  PubMed Central  PubMed  Google Scholar 

  64. Liu H-C, Rosenwaks Z (1991) Early pregnancy wastage in IVF (in vitro fertilization) patients. J Assist Reprod Genet 8(2):65–72

    CAS  Google Scholar 

  65. Spandorfer SD, Davis OK, Barmat LI, Chung PH, Rosenwaks Z (2004) Relationship between maternal age and aneuploidy in in vitro fertilization pregnancy loss. Fertil Steril 81(5):1265–1269

    PubMed  Google Scholar 

  66. Spandorfer SD, Bendikson K, Dragisic K, Schattman G, Davis OK, Rosenwaks Z (2007) Outcome of in vitro fertilization in women 45 years and older who use autologous oocytes. Fertil Steril 87(1):74–76

    PubMed  Google Scholar 

  67. Navot D, Rosenwaks Z, Margalioth EJ (1987) Prognostic assessment of female fecundity. Lancet 2(8560):645–647

    CAS  PubMed  Google Scholar 

  68. Fanchin R, de Ziegler D, Olivennes F, Taieb J, Dzik A, Frydman R (1994) Endocrinology: exogenous follicle stimulating hormone ovarian reserve test (EFORT): a simple and reliable screening test for detecting ‘poor responders’ in in-vitro fertilization. Hum Reprod 9(9):1607–1611

    CAS  PubMed  Google Scholar 

  69. Winslow KL, Toner JP, Brzyski RG, Oehninger SC, Acosta AA, Muasher SJ (1991) The gonadotropin-releasing hormone agonist stimulation test: a sensitive predictor of performance in the flare-up in vitro fertilization cycle. Fertil Steril 56(4):711–717

    CAS  PubMed  Google Scholar 

  70. Muasher SJ, Oehninger S, Simonetti S, Matta J, Ellis LM, Liu HC et al (1988) The value of basal and/or stimulated serum gonadotropin levels in prediction of stimulation response and in vitro fertilization outcome. Fertil Steril 50(2):298–307

    CAS  PubMed  Google Scholar 

  71. Burger H, Cahir N, Robertson D, Groome N, Dudley E, Green A et al (1998) Serum Inhibins A and B fall differentially as FSH rises in perimenopausal women. Clin Endonol 48(6):809–813

    CAS  Google Scholar 

  72. Klein N, Illingworth P, Groome N, McNeilly A, Battaglia D, Soules M (1996) Decreased inhibin B secretion is associated with the monotropic FSH rise in older, ovulatory women: a study of serum and follicular fluid levels of dimeric inhibin A and B in spontaneous menstrual cycles. J Clin Endocrinol Metab 81(7):2742–2745

    CAS  PubMed  Google Scholar 

  73. Cameron TT, O’Shea FC, Rolland JM, Hughes EG, Kretser DMD, Healy DL (1988) Occult ovarian failure: a syndrome of infertility, regular menses, and elevated follicle-stimulating hormone concentrations. J Clin Endocrinol Metab 67(6):1190–1194

    CAS  PubMed  Google Scholar 

  74. Toner JP, Philput CB, Jones GS, Muasher S (1991) Basal follicle-stimulating hormone level is a better predictor of in vitro fertilization performance than age. Fertil Steril 55(4):784–791

    CAS  PubMed  Google Scholar 

  75. Akande VA, Fleming CF, Hunt LP, Keay SD, Jenkins JM (2002) Biological versus chronological ageing of oocytes, distinguishable by raised FSH levels in relation to the success of IVF treatment. Hum Reprod 17(8):2003–2008

    CAS  PubMed  Google Scholar 

  76. El-Toukhy T, Khalaf Y, Hart R, Taylor A, Braude P (2002) Young age does not protect against the adverse effects of reduced ovarian reserve: an eight year study. Hum Reprod 17(6):1519–1524

    PubMed  Google Scholar 

  77. Roberts JE, Spandorfer S, Fasouliotis SJ, Kashyap S, Rosenwaks Z (2005) Taking a basal follicle-stimulating hormone history is essential before initiating in vitro fertilization. Fertil Steril 83(1):37–41

    PubMed  Google Scholar 

  78. Smotrich DB, Widra EA, Gindoff PR, Levy MJ, Hall JL, Stillman RJ (1995) Prognostic value of day 3 estradiol on in vitro fertilization outcome. Fertil Steril 64(6):1136–1140

    CAS  PubMed  Google Scholar 

  79. Licciardi FL, Liu HC, Rosenwaks Z (1995) Day 3 estradiol serum concentrations as prognosticators of ovarian stimulation response and pregnancy outcome in patients undergoing in vitro fertilization. Fertil Steril 64(5):991–994

    CAS  PubMed  Google Scholar 

  80. Broekmans FJ, Kwee J, Hendriks DJ, Mol BW, Lambalk CB (2006) A systematic review of tests predicting ovarian reserve and IVF outcome. Hum Reprod Update 12(6):685–718

    CAS  PubMed  Google Scholar 

  81. Visser JA, Themmen APN (2005) Anti-Müllerian hormone and folliculogenesis. Mol Cell Endocrinol 234(1–2):81–86

    CAS  PubMed  Google Scholar 

  82. Fanchin R, Taieb J, Lozano DHM, Ducot B, Frydman R, Bouyer J (2005) High reproducibility of serum anti-Mullerian hormone measurements suggests a multi-staged follicular secretion and strengthens its role in the assessment of ovarian follicular status. Hum Reprod 20(4):923–927

    CAS  PubMed  Google Scholar 

  83. La Marca A, Giulini S, Tirelli A, Bertucci E, Marsella T, Xella S et al (2007) Anti-Mullerian hormone measurement on any day of the menstrual cycle strongly predicts ovarian response in assisted reproductive technology. Hum Reprod 22(3):766–771

    PubMed  Google Scholar 

  84. Broer SL, Mol BW, Hendriks D, Broekmans FJ (2009) The role of antimullerian hormone in prediction of outcome after IVF: comparison with the antral follicle count. Fertil Steril 91(3):705–714

    CAS  PubMed  Google Scholar 

  85. Nelson SM, Yates RW, Lyall H, Jamieson M, Traynor I, Gaudoin M et al (2009) Anti-Mullerian hormone-based approach to controlled ovarian stimulation for assisted conception. Hum Reprod 24(4):867–875

    CAS  PubMed  Google Scholar 

  86. Lee T-H, Liu C-H, Huang C-C, Wu Y-L, Shih Y-T, Ho H-N et al (2008) Serum anti-mullerian hormone and estradiol levels as predictors of ovarian hyperstimulation syndrome in assisted reproduction technology cycles. Hum Reprod 23(1):160–167

    CAS  PubMed  Google Scholar 

  87. La Marca A, Sighinolfi G, Radi D, Argento C, Baraldi E, Artenisio AC et al (2010) Anti-Müllerian hormone (AMH) as a predictive marker in assisted reproductive technology (ART). Hum Reprod Update 16(2):113–130

    PubMed  Google Scholar 

  88. Gnoth C, Schuring AN, Friol K, Tigges J, Mallmann P, Godehardt E (2008) Relevance of anti-Mullerian hormone measurement in a routine IVF program. Hum Reprod 23(6):1359–1365

    CAS  PubMed  Google Scholar 

  89. Muttukrishna S, Suharjono H, McGarrigle H, Sathanandan M (2004) Inhibin B and anti-Mullerian hormone: markers of ovarian response in IVF/ICSI patients? BJOG 111(11):1248–1253

    CAS  PubMed  Google Scholar 

  90. Groome NP, Illingworth PJ, O’Brien M, Cooke I, Ganesan TS, Baird DT et al (1994) Detection of dimeric inhibin throughout the human menstrual cycle by two-site enzyme immunoassay. Clin Endocrinol 40(6):717–723

    CAS  Google Scholar 

  91. Hofmann GE, Danforth DR, Seifer DB (1998) Inhibin-B: the physiologic basis of the clomiphene citrate challenge test for ovarian reserve screening. Fertil Steril 69(3):474–477

    CAS  PubMed  Google Scholar 

  92. Chang M-Y, Chiang C-H, Hsieh T-T, Soong Y-K, Hsu K-H (1998) Use of the antral follicle count to predict the outcome of assisted reproductive technologies. Fertil Steril 69(3):505–510

    CAS  PubMed  Google Scholar 

  93. Bancsi LF, Broekmans FJ, Eijkemans MJ, de Jong FH, Habbema JD, te Velde ER (2002) Predictors of poor ovarian response in in vitro fertilization: a prospective study comparing basal markers of ovarian reserve. Fertil Steril 77(2):328–336

    PubMed  Google Scholar 

  94. Wallace WH, Kelsey TW (2004) Ovarian reserve and reproductive age may be determined from measurement of ovarian volume by transvaginal sonography. Hum Reprod 19(7):1612–1617

    PubMed  Google Scholar 

  95. Lass A, Skull J, McVeigh E, Margara R, Winston RM (1997) Measurement of ovarian volume by transvaginal sonography before ovulation induction with human menopausal gonadotrophin for in-vitro fertilization can predict poor response. Hum Reprod 12(2):294–297

    CAS  PubMed  Google Scholar 

  96. Hendriks DJ, Kwee J, Mol BW, te Velde ER, Broekmans FJ (2007) Ultrasonography as a tool for the prediction of outcome in IVF patients: a comparative meta-analysis of ovarian volume and antral follicle count. Fertil Steril 87(4):764–775

    PubMed  Google Scholar 

  97. Engmann L, Sladkevicius P, Agrawal R, Bekir J, Campbell S, Tan SL (1999) The pattern of changes in ovarian stromal and uterine artery blood flow velocities during in vitro fertilization treatment and its relationship with outcome of the cycle. Ultrasound Obstet Gynecol 13(1):26–33

    CAS  PubMed  Google Scholar 

  98. Engmann L, Sladkevicius P, Agrawal R, Bekir JS, Campbell S, Tan SL (1999) Value of ovarian stromal blood flow velocity measurement after pituitary suppression in the prediction of ovarian responsiveness and outcome of in vitro fertilization treatment. Fertil Steril 71(1):22–29

    CAS  PubMed  Google Scholar 

  99. Csemiczky G, Harlin J, Fried G (2002) Predictive power of clomiphene citrate challenge test for failure of in vitro fertilization treatment. Acta Obstet Gynecol Scand 81(10):954–961

    PubMed  Google Scholar 

  100. Yanushpolsky EH, Hurwitz S, Tikh E, Racowsky C (2003) Predictive usefulness of cycle day 10 follicle-stimulating hormone level in a clomiphene citrate challenge test for in vitro fertilization outcome in women younger than 40 years of age. Fertil Steril 80(1):111–115

    PubMed  Google Scholar 

  101. Jain T, Soules MR, Collins JA (2004) Comparison of basal follicle-stimulating hormone versus the clomiphene citrate challenge test for ovarian reserve screening. Fertil Steril 82(1):180–185

    CAS  PubMed  Google Scholar 

  102. Hendriks DJ, Mol B-WJ, Bancsi LFJMM, te Velde ER, Broekmans FJM (2006) The clomiphene citrate challenge test for the prediction of poor ovarian response and nonpregnancy in patients undergoing in vitro fertilization: a systematic review. Fertil Steril 86(4):807–818

    CAS  PubMed  Google Scholar 

  103. Hendriks DJ, Broekmans FJ, Bancsi LFJMM, Looman CWN, de Jong FH, te Velde ER (2005) Single and repeated GnRH agonist stimulation tests compared with basal markers of ovarian reserve in the prediction of outcome in IVF. J Assist Reprod Genet 22(2):65–74

    CAS  PubMed Central  PubMed  Google Scholar 

  104. Ranieri DM, Quinn F, Makhlouf A, Khadum I, Ghutmi W, McGarrigle H et al (1998) Simultaneous evaluation of basal follicle-stimulating hormone and 17[beta]-estradiol response to gonadotropin-releasing hormone analogue stimulation: an improved predictor of ovarian reserve. Fertil Steril 70(2):227–233

    CAS  PubMed  Google Scholar 

  105. Medicine PCotASfR (2008) Myomas and reproductive function. Fertil Steril 90(Suppl 5):125

    Google Scholar 

  106. Klatsky PC, Tran ND, Caughey AB, Fujimoto VY (2008) Fibroids and reproductive outcomes: a systematic literature review from conception to delivery. Am J Obstet Gynecol 198(4):357–366

    PubMed  Google Scholar 

  107. Pritts EA, Parker WH, Olive DL (2009) Fibroids and infertility: an updated systematic review of the evidence. Fertil Steril 91(4):1215–1223

    PubMed  Google Scholar 

  108. Karayalcin R, Ozcan S, Moraloglu O, Ozyer S, Mollamahmutoglu L, BatIoglu S (2010) Results of 2500 office-based diagnostic hysteroscopies before IVF. Reprod Biomed Online 20(5):689–693

    PubMed  Google Scholar 

  109. The ESHRE Capri Workshop Group (2000) Optimal use of infertility diagnostic tests and treatments. Hum Reprod 15(3):723–732

    Google Scholar 

  110. Mansour R, Aboulghar M, Serour G (1990) Dummy embryo transfer: a technique that minimizes the problems of embryo transfer and improves the pregnancy rate in human in vitro fertilization. Fertil Steril 54(4):678–681

    CAS  PubMed  Google Scholar 

  111. Katariya KO, Bates GW, Robinson RD, Arthur NJ, Propst AM (2007) Does the timing of mock embryo transfer affect in vitro fertilization implantation and pregnancy rates? Fertil Steril 88(5):1462–1464

    PubMed  Google Scholar 

  112. Shamonki MI, Schattman GL, Spandorfer SD, Chung PH, Rosenwaks Z (2005) Ultrasound-guided trial transfer may be beneficial in preparation for an IVF cycle. Hum Reprod 20(10):2844–2849

    PubMed  Google Scholar 

  113. Groutz A, Lessing JB, Wolf Y, Yovel I, Azem F, Amit A (1997) Cervical dilatation during ovum pick-up in patients with cervical stenosis: effect on pregnancy outcome in an in vitro fertilization-embryo transfer program. Fertil Steril 67(5):909–911

    CAS  PubMed  Google Scholar 

  114. Abusheikha N, Lass A, Akagbosu F, Brinsden P (1999) How useful is cervical dilatation in patients with cervical stenosis who are participating in an in vitro fertilization-embryo transfer program? the bourn hall experience. Fertil Steril 72(4):610–612

    CAS  PubMed  Google Scholar 

  115. Glatstein IZ, Pang SC, McShane PM (1997) Successful pregnancies with the use of laminaria tents before embryo transfer for refractory cervical stenosis. Fertil Steril 67(6):1172–1174

    CAS  PubMed  Google Scholar 

  116. Yanushpolsky EH, Ginsburg ES, Fox JH, Stewart EA (2000) Transcervical placement of a Malecot catheter after hysteroscopic evaluation provides for easier entry into the endometrial cavity for women with histories of difficult intrauterine inseminations and/or embryo transfers: a prospective case series. Fertil Steril 73(2):402–405

    CAS  PubMed  Google Scholar 

  117. Feldman B, Seidman DS, Levron J, Bider D, Shulman A, Shine S et al (2001) In vitro fertilization following natural cycles in poor responders. Gynecol Endocrinol 15(5):328–334

    CAS  PubMed  Google Scholar 

  118. Wortham JWJ, Veeck LL, Witmyer J, Sandow BA, Jones HWJ (1983) Vital initiation of pregnancy (VIP) using human menopausal gonadotropin and human chorionic gonadotropin ovulation induction: phase II–1981. Fertil Steril 40(2):170–177

    PubMed  Google Scholar 

  119. Laufer N, DeCherney AH, Haseltine FP, Polan ML, Mezer HC, Dlugi AM et al (1983) The use of high-dose human menopausal gonadotropin in an in vitro fertilization program. Fertil Steril 40(6):734–741

    CAS  PubMed  Google Scholar 

  120. Macklon NS, Stouffer RL, Giudice LC, Fauser BCJM (2006) The science behind 25 years of ovarian stimulation for in vitro fertilization. Endocr Rev 27(2):170–207

    PubMed  Google Scholar 

  121. van Loendersloot LL, van Wely M, Limpens J, Bossuyt PMM, Repping S, van der Veen F (2010) Predictive factors in in vitro fertilization (IVF): a systematic review and meta-analysis. Hum Reprod Update 16(6):577–589

    PubMed  Google Scholar 

  122. Barbieri RL, Hornstein MD (1999) Assisted reproduction-in vitro fertilization success is improved by ovarian stimulation with exogenous gonadotropins and pituitary suppression with gonadotropin-releasing hormone analogues. Endocr Rev 20(3):249–252

    CAS  PubMed  Google Scholar 

  123. Klingmüller D, Schepke M, Enzweiler C, Bidlingmaier F (1993) Hormonal responses to the new potent GnRH antagonist Cetrorelix. Acta Endocrinol (Copenh) 128(1):15–18

    Google Scholar 

  124. Tarlatzis BC, Fauser BC, Kolibianakis EM, Diedrich K, Devroey P (2006) GnRH antagonists in ovarian stimulation for IVF. Hum Reprod Update 12(4):333–340

    CAS  PubMed  Google Scholar 

  125. Devroey P, Aboulghar M, Garcia-Velasco J, Griesinger G, Humaidan P, Kolibianakis E et al (2009) Improving the patient’s experience of IVF/ICSI: a proposal for an ovarian stimulation protocol with GnRH antagonist co-treatment. Hum Reprod 24(4):764–774

    CAS  PubMed  Google Scholar 

  126. Olivennes F, Alvarez S, Bouchard P, Fanchin R, Salat-Baroux J, Frydman R (1998) The use of a GnRH antagonist (Cetrorelix) in a single dose protocol in IVF-embryo transfer: a dose finding study of 3 versus 2 mg. Hum Reprod 13(9):2411–2414

    CAS  PubMed  Google Scholar 

  127. Olivennes F, Belaisch-Allart J, Emperaire J-C, Dechaud H, Alvarez S, Moreau L et al (2000) Prospective, randomized, controlled study of in vitro fertilization-embryo transfer with a single dose of a luteinizing hormone-releasing hormone (LH-RH) antagonist (cetrorelix) or a depot formula of an LH-RH agonist (triptorelin). Fertil Steril 73(2):314–320

    CAS  PubMed  Google Scholar 

  128. Al-Inany H, Aboulghar MA, Mansour RT, Serour GI (2005) Optimizing GnRH antagonist administration: meta-analysis of fixed versus flexible protocol. Reprod Biomed Online 10(5):567–570

    CAS  PubMed  Google Scholar 

  129. Damario MA, Barmat L, Liu HC, Davis OK, Rosenwaks Z (1997) Dual suppression with oral contraceptives and gonadotrophin releasing-hormone agonists improves in-vitro fertilization outcome in high responder patients. Hum Reprod 12(11):2359–2365

    CAS  PubMed  Google Scholar 

  130. Maxwell KN, Cholst IN, Rosenwaks Z (2008) The incidence of both serious and minor complications in young women undergoing oocyte donation. Fertil Steril 90(6):2165–2171

    PubMed  Google Scholar 

  131. Al-Inany HG, Abou-Setta AM, Aboulghar M (2006) Gonadotrophin-releasing hormone antagonists for assisted conception. Cochrane Database Syst Rev 3:CD001750

    PubMed  Google Scholar 

  132. Al-Inany HG, Abou-Setta AM, Aboulghar M (2007) Gonadotrophin-releasing hormone antagonists for assisted conception: a Cochrane review. Reprod Biomed Online 14(5):640–649

    CAS  PubMed  Google Scholar 

  133. Youssef MA, Van der Veen F, Al-Inany HG, Griesinger G, Mochtar MH, Aboulfoutouh I et al (2011) Gonadotropin-releasing hormone agonist versus HCG for oocyte triggering in antagonist assisted reproductive technology cycles. Cochrane Database Syst Rev 19(1):CD008046

    Google Scholar 

  134. Al-Inany HG, Youssef MA, Aboulghar M, Broekmans F, Sterrenburg M, Smit J et al (2011) Gonadotrophin-releasing hormone antagonists for assisted reproductive technology. Cochrane Database Syst Rev 5:CD001750

    PubMed  Google Scholar 

  135. Emperaire JC, Parneix I, Ruffie A (2004) Luteal phase defects following agonist-triggered ovulation: a patient-dependent response. Reprod Biomed Online 9(1):22–27

    CAS  PubMed  Google Scholar 

  136. Humaidan P, Ejdrup Bredkjær H, Bungum L, Bungum M, Grøndahl ML, Westergaard L et al (2005) GnRH agonist (buserelin) or hCG for ovulation induction in GnRH antagonist IVF/ICSI cycles: a prospective randomized study. Hum Reprod 20(5):1213–1220

    CAS  PubMed  Google Scholar 

  137. Bodri D, Sunkara SK, Coomarasamy A (2011) Gonadotropin-releasing hormone agonists versus antagonists for controlled ovarian hyperstimulation in oocyte donors: a systematic review and meta-analysis. Fertil Steril 95(1):164–169

    CAS  PubMed  Google Scholar 

  138. Keay SD, Liversedge NH, Mathur RS, Jenkins JM (1997) Assisted conception following poor ovarian response to gonadotrophin stimulation. Br J Obstet Gynaecol 104(5):521–527

    CAS  PubMed  Google Scholar 

  139. Garcia JE, Jones GS, Acosta AA, Wright GJ (1983) Human menopausal gonadotropin/human chorionic gonadotropin follicular maturation for oocyte aspiration: phase I, 1981. Fertil Steril 39(2):167–173

    CAS  PubMed  Google Scholar 

  140. Brzyski RG, Muasher SJ, Droesch K, Simonetti S, Jones GS, Rosenwaks Z (1988) Follicular atresia associated with concurrent initiation of gonadotropin-releasing hormone agonist and follicle-stimulating hormone for oocyte recruitment. Fertil Steril 50(6):917–921

    CAS  PubMed  Google Scholar 

  141. Raga F, Bonilla-Musoles F, Casañ EM, Bonilla F (1999) Recombinant follicle stimulating hormone stimulation in poor responders with normal basal concentrations of follicle stimulating hormone and oestradiol: improved reproductive outcome. Hum Reprod 14(6):1431–1434

    CAS  PubMed  Google Scholar 

  142. Schoolcraft W, Schlenker T, Gee M, Stevens J, Wagley L (1997) Improved controlled ovarian hyperstimulation in poor responder in vitro fertilization patients with a microdose follicle-stimulating hormone flare, growth hormone protocol. Fertil Steril 67(1):93–97

    CAS  PubMed  Google Scholar 

  143. Karande V, Morris R, Rinehart J, Miller C, Rao R, Gleicher N (1997) Limited success using the “flare” protocol in poor responders in cycles with low basal follicle-stimulating hormone levels during in vitro fertilization. Fertil Steril 67(5):900–903

    CAS  PubMed  Google Scholar 

  144. Droesch K, Muasher SJ, Brzyski RG, Jones GS, Simonetti S, Liu HC et al (1989) Value of suppression with a gonadotropin-releasing hormone agonist prior to gonadotropin stimulation for in vitro fertilization. Fertil Steril 51(2):292–297

    CAS  PubMed  Google Scholar 

  145. Feldberg D, Farhi J, Ashkenazi J, Dicker D, Shalev J, Ben-Rafael Z (1994) Minidose gonadotropin-releasing hormone agonist is the treatment of choice in poor responders with high follicle-stimulating hormone levels. Fertil Steril 62(2):343–346

    CAS  PubMed  Google Scholar 

  146. Faber BM, Mayer J, Cox B, Jones D, Toner JP, Oehninger S et al (1998) Cessation of gonadotropin-releasing hormone agonist therapy combined with high-dose gonadotropin stimulation yields favorable pregnancy results in low responders. Fertil Steril 69(5):826–830

    CAS  PubMed  Google Scholar 

  147. Toth TL, Awwad JT, Veeck LL, Jones HWJ, Muasher SJ (1996) Suppression and flare regimens of gonadotropin-releasing hormone agonist. Use in women with different basal gonadotropin values in an in vitro fertilization program. J Reprod Med 41(5):321–326

    CAS  PubMed  Google Scholar 

  148. Shaker AG, Fleming R, Jamieson ME, Yates RW, Coutts JR (1992) Absence of effect of adjuvant growth hormone therapy on follicular responses to exogenous gonadotropins in women: normal and poor responders. Fertil Steril 58(5):919–923

    CAS  PubMed  Google Scholar 

  149. Surrey ES, Bower J, Hill DM, Ramsey J, Surrey MW (1998) Clinical and endocrine effects of a microdose GnRH agonist flare regimen administered to poor responders who are undergoing in vitro fertilization. Fertil Steril 69(3):419–424

    CAS  PubMed  Google Scholar 

  150. Ferraretti AP, La Marca A, Fauser BCJM, Tarlatzis B, Nargund G, Gianaroli L et al (2011) ESHRE consensus on the definition of ‘poor response’ to ovarian stimulation for in vitro fertilization: the Bologna criteria. Hum Reprod 26(7):1616–1624

    CAS  PubMed  Google Scholar 

  151. Santoro N, Isaac B, Neal-Perry G, Adel T, Weingart L, Nussbaum A et al (2003) Impaired folliculogenesis and ovulation in older reproductive aged women. J Clin Endocrinol Metab 88(11):5502–5509

    CAS  PubMed  Google Scholar 

  152. Klein N, Battaglia D, Fujimoto V, Davis G, Bremner W, Soules M (1996) Reproductive aging: accelerated ovarian follicular development associated with a monotropic follicle-stimulating hormone rise in normal older women. J Clin Endocrinol Metab 81(3):1038–1045

    CAS  PubMed  Google Scholar 

  153. Klein NA, Harper AJ, Houmard BS, Sluss PM, Soules MR (2002) Is the short follicular phase in older women secondary to advanced or accelerated dominant follicle development? J Clin Endocrinol Metab 87(12):5746–5750

    CAS  PubMed  Google Scholar 

  154. Fanchin R, Cunha-Filho JS, Schonäuer LM, Kadoch IJ, Cohen-Bacri P, Frydman R (2003) Coordination of early antral follicles by luteal estradiol administration provides a basis for alternative controlled ovarian hyperstimulation regimens. Fertil Steril 79(2):316–321

    PubMed  Google Scholar 

  155. Fanchin R, Castelo Branco A, Kadoch IJ, Hosny G, Bagirova M, Frydman R (2004) Premenstrual administration of gonadotropin-releasing hormone antagonist coordinates early antral follicle sizes and sets up the basis for an innovative concept of controlled ovarian hyperstimulation. Fertil Steril 81(6):1554–1559

    CAS  PubMed  Google Scholar 

  156. Dragisic KG, Davis OK, Fasouliotis SJ, Rosenwaks Z (2005) Use of a luteal estradiol patch and a gonadotropin-releasing hormone antagonist suppression protocol before gonadotropin stimulation for in vitro fertilization in poor responders. Fertil Steril 84(4):1023–1026

    CAS  PubMed  Google Scholar 

  157. Elassar A, Mann JS, Engmann L, Nulsen J, Benadiva C (2011) Luteal phase estradiol versus luteal phase estradiol and antagonist protocol for controlled ovarian stimulation before in vitro fertilization in poor responders. Fertil Steril 95(1):324–326

    CAS  PubMed  Google Scholar 

  158. Garcia J, Padilla S, Bargati J, Baramki T (1990) Follicular phase gonadotropin-releasing hormone agonist and human gonadotropins: a better alternative for in vitro fertilization. Fertil Steril 53:302–305

    CAS  PubMed  Google Scholar 

  159. Scott R, Navot D (1994) Enhancement of ovarian responsiveness with microdoses of gonadotropin-releasing hormone agonist during ovulation induction for in vitro fertilization. Fertil Steril 61(5):880–885

    CAS  PubMed  Google Scholar 

  160. Manzi D, Thorton K, Scott L, Nulsen J (1994) The value of increasing the dose of human menopausal gonadotropins in women who initially demonstrate a poor response. Fertil Steril 62:251–256

    CAS  PubMed  Google Scholar 

  161. Spandorfer S, Navarro J, Kump LM, Liu H-C, Davis OK, Rosenwaks Z (2001) “Co-flare” stimulation in the poor responder patient: predictive value of the flare response. J Assist Reprod Genetics 18(12):629–633

    CAS  Google Scholar 

  162. Huang JYJ, Singer T, Williams Z, Abdallah R, Davis O, Rosenwaks Z (2010) Combining luteal estradiol patch and GnRH antagonist suppression with co-flare and microdose flare stimulation for IVF in poor responders. Fertil Steril 94(Suppl 1):S164–S165

    Google Scholar 

  163. Benadiva CA, Davis O, Kligman I, Liu HC, Rosenwaks Z (1995) Clomiphene citrate and hMG: an alternative stimulation protocol for selected failed in vitro fertilization patients. J Assist Reprod Genet 12(1):8–12

    CAS  PubMed  Google Scholar 

  164. D’Amato G, Caroppo E, Pasquadibisceglie A, Carone D, Vitti A, Vizziello GM (2004) A novel protocol of ovulation induction with delayed gonadotropin-releasing hormone antagonist administration combined with high-dose recombinant follicle-stimulating hormone and clomiphene citrate for poor responders and women over 35 years. Fertil Steril 81(6):1572–1577

    PubMed  Google Scholar 

  165. Schoolcraft WB, Surrey ES, Minjarez DA, Stevens JM, Gardner DK (2008) Management of poor responders: can outcomes be improved with a novel gonadotropin-releasing hormone antagonist/letrozole protocol? Fertil Steril 89(1):151–156

    CAS  PubMed  Google Scholar 

  166. Mitwally MFM, Casper RF (2002) Aromatase inhibition improves ovarian response to follicle-stimulating hormone in poor responders. Fertil Steril 77(4):776–780

    PubMed  Google Scholar 

  167. Pelinck MJ, Vogel NEA, Hoek A, Arts EGJM, Simons AHM, Heineman MJ (2005) Minimal stimulation IVF with late follicular phase administration of the GnRH antagonist cetrorelix and concomitant substitution with recombinant FSH: a pilot study. Hum Reprod 20(3):642–648

    CAS  PubMed  Google Scholar 

  168. Huang JYJ, Singer T, Abdallah R, Rauch E, Rosenwaks Z, Spandorfer S (2010) Comparison of natural cycles versus modified natural cycles in poor responders undergoing IVF. Fertil Steril 94(4 Suppl 1):S248–S249

    Google Scholar 

  169. Kolibianakis E, Zikopoulos K, Camus M, Tournaye H, Van Steirteghem A, Devroey P (2004) Modified natural cycle for IVF does not offer a realistic chance of parenthood in poor responders with high day 3 FSH levels, as a last resort prior to oocyte donation. Hum Reprod 19(11):2545–2549

    PubMed  Google Scholar 

  170. Morgia F, Sbracia M, Schimberni M, Giallonardo A, Piscitelli C, Giannini P et al (2004) A controlled trial of natural cycle versus microdose gonadotropin-releasing hormone analog flare cycles in poor responders undergoing in vitro fertilization. Fertil Steril 81(6):1542–1547

    CAS  PubMed  Google Scholar 

  171. Elizur SE, Aslan D, Shulman A, Weisz B, Bider D, Dor J (2005) Modified natural cycle using GnRH antagonist can be an optional treatment in poor responders undergoing IVF. J Assist Reprod Genet 22(2):75–79

    PubMed Central  PubMed  Google Scholar 

  172. Berkkanoglu M, Ozgur K (2010) What is the optimum maximal gonadotropin dosage used in microdose flare-up cycles in poor responders? Fertil Steril 94(2):662–665

    CAS  PubMed  Google Scholar 

  173. Huang JYJ, Singer T, Abdallah R, Williams Z, Davis O, Rosenwaks Z (2010) A thickened endometrial stripe on day 3 of leuprolide acetate down-regulated IVF cycles is associated with reduced clinical pregnancy and live birth rates. Fertil Steril 94(4 Suppl 1):S51–S52

    Google Scholar 

  174. Forman RG, Robinson J, Yudkin P, Egan D, Reynolds K, Barlow DH (1991) What is the true follicular diameter: an assessment of the reproducibility of transvaginal ultrasound monitoring in stimulated cycles. Fertil Steril 56(5):989–992

    CAS  PubMed  Google Scholar 

  175. Ata B, Tulandi T (2011) Ultrasound automated volume calculation in reproduction and in pregnancy. Fertil Steril 95(7):2163–2170

    PubMed  Google Scholar 

  176. Salama S, Arbo E, Lamazou F, Levailllant JM, Frydman R, Fanchin R (2010) Reproducibility and reliability of automated volumetric measurement of single preovulatory follicles using SonoAVC. Fertil Steril 93(6):2069–2073

    PubMed  Google Scholar 

  177. Lamazou F, Arbo E, Salama S, Grynberg M, Frydman R, Fanchin R (2010) Reliability of automated volumetric measurement of multiple growing follicles in controlled ovarian hyperstimulation. Fertil Steril 94(6):2172–2176

    PubMed  Google Scholar 

  178. Raine-Fenning N, Jayaprakasan K, Chamberlain S, Devlin L, Priddle H, Johnson I (2009) Automated measurements of follicle diameter: a chance to standardize? Fertil Steril 91(4 Suppl 1):1469–1472

    PubMed  Google Scholar 

  179. van Santbrink EJ, Hop WC, van Dessel TJ, de Jong FH, Fauser BC (1995) Decremental follicle-stimulating hormone and dominant follicle development during the normal menstrual cycle. Fertil Steril 64(1):37–43

    PubMed  Google Scholar 

  180. Fauser BC, Donderwinkel P, Schoot DC (1993) The step-down principle in gonadotropin treatment and the role of GnRH analogues. Baillieres Clin Obstet Gynaecol 7(2):309–330

    CAS  PubMed  Google Scholar 

  181. Cedrin-Durnerin I, Bständig B, Hervé F, Wolf J-P, Uzan M, Hugues J-N (2000) A comparative study of high fixed-dose and decremental-dose regimens of gonadotropins in a minidose gonadotropin-releasing hormone agonist flare protocol for poor responders. Fertil Steril 73(5):1055–1056

    CAS  PubMed  Google Scholar 

  182. Abdallah R, Kligman I, Davis O, Rosenwaks Z (2010) Withholding gonadotropins until human chorionic gonadotropin administration. Semin Reprod Med 28(06):486,92

    Google Scholar 

  183. Nardo LG, Cheema P, Gelbaya TA, Horne G, Fitzgerald CT, Pease EHE et al (2006) The optimal length of ‘coasting protocol’ in women at risk of ovarian hyperstimulation syndrome undergoing in vitro fertilization. Hum Fertil 9(3):175–180

    Google Scholar 

  184. Kol S (2004) Luteolysis induced by a gonadotropin-releasing hormone agonist is the key to prevention of ovarian hyperstimulation syndrome. Fertil Steril 81(1):1–5

    CAS  PubMed  Google Scholar 

  185. Damewood MD, Shen W, Zacur HA, Schlaff WD, Rock JA, Wallach EE (1989) Disappearance of exogenously administered human chorionic gonadotropin. Fertil Steril 52(3):398–400

    CAS  PubMed  Google Scholar 

  186. Humaidan P, Ejdrup Bredkjær H, Westergaard LG, Yding Andersen C (2010) 1,500 IU human chorionic gonadotropin administered at oocyte retrieval rescues the luteal phase when gonadotropin-releasing hormone agonist is used for ovulation induction: a prospective, randomized, controlled study. Fertil Steril 93(3):847–854

    CAS  PubMed  Google Scholar 

  187. Shapiro BS, Daneshmand ST, Garner FC, Aguirre M, Hudson C (2011) Comparison of “triggers” using leuprolide acetate alone or in combination with low-dose human chorionic gonadotropin. Fertil Steril 95(8):2715–2717

    CAS  PubMed  Google Scholar 

  188. Lenz S, Lauritsen JG (1982) Ultrasonically guided percutaneous aspiration of human follicles under local anesthesia: a new method of collecting oocytes for in vitro fertilization. Fertil Steril 38(6):673–677

    CAS  PubMed  Google Scholar 

  189. Schulman JD, Dorfmann A, Jones S, Joyce B, Hanser J (1985) Outpatient in vitro fertilization using transvaginal oocyte retrieval and local anesthesia. N Engl J Med 312(25):1639

    CAS  PubMed  Google Scholar 

  190. Flood JT, Muasher SJ, Simonetti S, Kreiner D, Acosta AA, Rosenwaks Z (1989) Comparison between laparoscopically and ultrasonographically guided transvaginal follicular aspiration methods in an in vitro fertilization program in the same patients using the same stimulation protocol. J In Vitro Fert Embryo Transf 6(3):180–185

    CAS  PubMed  Google Scholar 

  191. Trout SW, Vallerand AH, Kemmann E (1998) Conscious sedation for in vitro fertilization. Fertil Steril 69(5):799–808

    CAS  PubMed  Google Scholar 

  192. Ditkoff EC, Plumb J, Selick A, Sauer MV (1997) Anesthesia practices in the United States common to in vitro fertilisation (IVF) centers. J Assist Reprod Genet 14:145–147

    CAS  PubMed Central  PubMed  Google Scholar 

  193. Kwan I, Bhattacharya S, Knox F, McNeil A (2006) Conscious sedation and analgesia for oocyte retrieval during IVF procedures: a Cochrane review. Hum Reprod 21(7):1672–1679

    PubMed  Google Scholar 

  194. Weinreb EB, Cholst IN, Ledger WJ, Danis RB, Rosenwaks Z (2010) Should all oocyte donors receive prophylactic antibiotics for retrieval? Fertil Steril 94(7):2935–2937

    PubMed  Google Scholar 

  195. El Hussein E, Balen AH, Tan S-L (1992) A prospective study comparing the outcome of oocytes retrieved in the aspirate with those retrieved in the flush during transvaginal ultrasound directed oocyte recovery for in-vitro fertilization. BJOG 99(10):841–844

    Google Scholar 

  196. Wongtra-Ngan S, Vutyavanich T, Brown J (2010) Follicular flushing during oocyte retrieval in assisted reproductive techniques. Cochrane Database Syst Rev 9:CD004634

    PubMed  Google Scholar 

  197. Hill MJ, Levens ED (2010) Is there a benefit in follicular flushing in assisted reproductive technology? Curr Opin Obstet Gynecol 22(3):208–212

    PubMed  Google Scholar 

  198. Van Der Ven HH, Al-Hasani S, Diedrich K, Hamerich U, Lehmann F, Krebs D (1985) Polyspermy in in vitro fertilization of human oocytes: frequency and possible causes. Ann N Y Acad Sci 442(1):88–95

    PubMed  Google Scholar 

  199. Kang HJ, Rosenwaks Z (2008) Triploidy: the breakdown of monogamy between sperm and egg. Int J Dev Biol 52(5–6):449–454

    PubMed  Google Scholar 

  200. Palermo G, Joris H, Devroey P, Van Steirteghem AC (1992) Pregnancies after intracytoplasmic injection of single spermatozoon into an oocyte. Lancet 340(8810):17–18

    CAS  PubMed  Google Scholar 

  201. The Practice Committee of the American Society for Reproductive Medicine (2008) Intracytoplasmic sperm injection (ICSI). Fertil Steril 90(5 Suppl 1):S187

    Google Scholar 

  202. Vawda AI, Gunby J, Younglai EV (1996) Andrology: semen parameters as predictors of in-vitro fertilization: the importance of strict criteria sperm morphology. Hum Reprod 11(7):1445–1450

    CAS  PubMed  Google Scholar 

  203. Lanzendorf SE, Maloney MK, Veeck LL, Slusser J, Hodgen GD, Rosenwaks Z (1988) A preclinical evaluation of pronuclear formation by microinjection of human spermatozoa into human oocytes. Fertil Steril 49(5):835–842

    CAS  PubMed  Google Scholar 

  204. Devroey P, Liu J, Nagy Z, Tournaye H, Silber SJ, Van Steirteghem AC (1994) Normal fertilization of human oocytes after testicular sperm extraction and intracytoplasmic sperm injection. Fertil Steril 62(3):639–641

    CAS  PubMed  Google Scholar 

  205. Devroey P, Liu J, Nagy Z, Goossens A, Tournaye H, Camus M et al (1995) Pregnancies after testicular sperm extraction and intracytoplasmic sperm injection in non-obstructive azoospermia. Hum Reprod 10(6):1457–1460

    CAS  PubMed  Google Scholar 

  206. Denschlag D, Tempfer C, Kunze M, Wolff G, Keck C (2004) Assisted reproductive techniques in patients with Klinefelter syndrome: a critical review. Fertil Steril 82(4):775–779

    PubMed  Google Scholar 

  207. Mansour RT, Fahmy IM, Taha AK, Tawab NA, Serour GI, Aboulghar MA (2003) Intracytoplasmic spermatid injection can result in the delivery of normal offspring. J Androl 24(5):757–764

    PubMed  Google Scholar 

  208. Marcus-Braun N, Braun G, Potashnik G, Har-vardi I (2004) Effect of cryopreservation on quality and fertilization capacity of human sperm. Eur J Obstet Gynecol Reprod Biol 116(1):63–66

    CAS  PubMed  Google Scholar 

  209. Hourvitz A, Goldschlag DE, Davis OK, Gosden LV, Palermo GD, Rosenwaks Z (2008) Intracytoplasmic sperm injection (ICSI) using cryopreserved sperm from men with malignant neoplasm yields high pregnancy rates. Fertil Steril 90(3):557–563

    PubMed  Google Scholar 

  210. Witkin SS, Viti D, David SS, Stangel J, Rosenwaks Z (1992) Relation between antisperm antibodies and the rate of fertilization of human oocytes in vitro. J Assist Reprod Genet 9(1):9–13

    CAS  PubMed  Google Scholar 

  211. Chian R-C, Huang JYJ, Gilbert L, Son W-Y, Holzer H, Cui SJ et al (2009) Obstetric outcomes following vitrification of in vitro and in vivo matured oocytes. Fertil Steril 91(6):2391–2398

    PubMed  Google Scholar 

  212. Hardarson T, Lundin K, Hamberger L (2000) The position of the metaphase II spindle cannot be predicted by the location of the first polar body in the human oocyte. Hum Reprod 15(6):1372–1376

    CAS  PubMed  Google Scholar 

  213. Wang W-H, Meng L, Hackett RJ, Odenbourg R, Keefe DL (2001) The spindle observation and its relationship with fertilization after intracytoplasmic sperm injection in living human oocytes. Fertil Steril 75(2):348–353

    CAS  PubMed  Google Scholar 

  214. Rienzi L, Ubaldi F, Martinez F, Iacobelli M, Minasi MG, Ferrero S et al (2003) Relationship between meiotic spindle location with regard to the polar body position and oocyte developmental potential after ICSI. Hum Reprod 18(6):1289–1293

    CAS  PubMed  Google Scholar 

  215. Moon JH, Hyun CS, Lee SW, Son WY, Yoon SH, Lim JH (2003) Visualization of the metaphase II meiotic spindle in living human oocytes using the Polscope enables the prediction of embryonic developmental competence after ICSI. Hum Reprod 18(4):817–820

    CAS  PubMed  Google Scholar 

  216. Gardner DK, Lane M, Calderon I, Leeton J (1996) Environment of the preimplantation human embryo in vivo: metabolite analysis of oviduct and uterine fluids and metabolism of cumulus cells. Fertil Steril 65(2):349–353

    CAS  PubMed  Google Scholar 

  217. Gardner DK (1998) Changes in requirements and utilization of nutrients during mammalian preimplantation embryo development and their significance in embryo culture. Theriogenology 49(1):83–102

    CAS  PubMed  Google Scholar 

  218. Lane M, Gardner DK (2007) Embryo culture medium: which is the best? Best Pract Res Clin Obstet Gynaecol 21(1):83–100

    PubMed  Google Scholar 

  219. Blake D, Svalander P, Jin M, Silversand C, Hamberger L (2002) Protein supplementation of human IVF culture media. J Assist Reprod Genet 19(3):137–143

    PubMed Central  PubMed  Google Scholar 

  220. Agarwal A, Gupta S, Sharma R (2005) Oxidative stress and its implications in female infertility: a clinician’s perspective. Reprod Biomed Online 11(5):641–650

    CAS  PubMed  Google Scholar 

  221. Blake DA, Farquhar CM, Johnson N, Proctor M (2007) Cleavage stage versus blastocyst stage embryo transfer in assisted conception. Cochrane Database Syst Rev 4:CD002118

    PubMed  Google Scholar 

  222. Levitas E, Lunenfeld E, Har-Vardi I, Albotiano S, Sonin Y, Hackmon-Ram R et al (2004) Blastocyst-stage embryo transfer in patients who failed to conceive in three or more day 2–3 embryo transfer cycles: a prospective, randomized study. Fertil Steril 81(3):567–571

    PubMed  Google Scholar 

  223. Ménézo YJR, Chouteau J, Torelló MJ, Girard A, Veiga A (1999) Birth weight and sex ratio after transfer at the blastocyst stage in humans. Fertil Steril 72(2):221–224

    PubMed  Google Scholar 

  224. DeBaun MR, Niemitz EL, Feinberg AP (2003) Association of in vitro fertilization with Beckwith-Wiedemann syndrome and epigenetic alterations of LIT1 and H19. Am J Hum Genet 72(1):156–160

    CAS  PubMed Central  PubMed  Google Scholar 

  225. Maher ER, Brueton LA, Bowdin SC, Luharia A, Cooper W, Cole TR et al (2003) Beckwith-Wiedemann syndrome and assisted reproduction technology (ART). J Med Genet 40(1):62–64

    CAS  PubMed Central  PubMed  Google Scholar 

  226. Schiewe MC, Hazeleger NL, Sclimenti C, Balmaceda JP (1995) Physiological characterization of blastocyst hatching mechanisms by use of a mouse antihatching model. Fertil Steril 62(2):288–294

    Google Scholar 

  227. O’Sullivan CM, Ungarian JLR, Singh K, Liu S, Hance J, Rancourt DE (2004) Uterine secretion of ISP1 & 2 tryptases is regulated by progesterone and estrogen during pregnancy and the endometrial cycle. Mol Reprod Dev 69(3):252–259

    PubMed  Google Scholar 

  228. Cohen J, Elsner C, Kort H, Malter H, Massey J, Mayer MP et al (1990) Impairment of the hatching process following IVF in the human and improvement of implantation by assisting hatching using micromanipulation. Hum Reprod 5(1):7–13

    CAS  PubMed  Google Scholar 

  229. Cohen J, Alikani M, Trowbridge J, Rosenwaks Z (1992) Implantation enhancement by selective assisted hatching using zona drilling of human embryos with poor prognosis. Hum Reprod 7(5):685–691

    CAS  PubMed  Google Scholar 

  230. Nakayama T, Fujiwara H, Yamada S, Tastumi K, Honda T, Fujii S (1999) Clinical application of a new assisted hatching method using a piezo-micromanipulator for morphologically low-quality embryos in poor-prognosis infertile patients. Fertil Steril 71(6):1014–1018

    CAS  PubMed  Google Scholar 

  231. Cohen J (1991) Assisted hatching of human embryos. J In Vitro Fert Embryo Transf 8(4):179–190

    CAS  PubMed  Google Scholar 

  232. Cohen J, Malter H, Fehilly C, Wright G, Elsner C, Kort H et al (1988) Implantation of embryos after partial opening of oocyte zona pellucida to facilitate sperm penetration. Lancet 2(8603):162

    CAS  PubMed  Google Scholar 

  233. The Practice Committee of the American Society for Reproductive Medicine (2006) The role of assisted hatching in in vitro fertilization: a review of the literature. A committee opinion. Fertil Steril 86(5 Suppl 1):S124–S126

    Google Scholar 

  234. Das S, Blake D, Farquhar C, Seif MM (2009) Assisted hatching on assisted conception (IVF and ICSI). Cochrane Database Syst Rev 15(2):CD001894

    Google Scholar 

  235. Ng EHY, Naveed F, Lau EYL, Yeung WSB, Chan CCW, Tang OS et al (2005) A randomized double-blind controlled study of the efficacy of laser-assisted hatching on implantation and pregnancy rates of frozen–thawed embryo transfer at the cleavage stage. Hum Reprod 20(4):979–985

    PubMed  Google Scholar 

  236. Al-Nuaim LA, Jenkins JM (2002) Assisted hatching in assisted reproduction. BJOG 109(8):856–862

    PubMed  Google Scholar 

  237. Hershlag A, Paine T, Cooper GW, Scholl GM, Rawlinson K, Kvapil G (1999) Monozygotic twinning associated with mechanical assisted hatching. Fertil Steril 71(1):144–146

    CAS  PubMed  Google Scholar 

  238. Schieve LA, Meikle SF, Peterson HB, Jeng G, Burnett NM, Wilcox LS (2000) Does assisted hatching pose a risk for monozygotic twinning in pregnancies conceived through in vitro fertilization? Fertil Steril 74(2):288–294

    CAS  PubMed  Google Scholar 

  239. Cohen J, Malter H, Wright G, Kort H, Massey J, Mitchell D (1989) Partial zona dissection of human oocytes when failure of zona pellucida penetration is anticipated. Hum Reprod 4(4):435–442

    CAS  PubMed  Google Scholar 

  240. Spandorfer SD, Barmat LI, Navarro J, Liu H-C, Veeck L, Rosenwaks Z (2002) Importance of the biospy date in autologous endometrial cocultures for patients with multiple implantation failures. Fertil Steril 77(6):1209–1213

    PubMed  Google Scholar 

  241. Spandorfer SD, Barmat LI, Liu HC, Mele C, Veeck L, Rosenwaks Z (1998) Granulocyte macrophage-colony stimulating factor production by autologous endometrial co-culture is associated with outcome for in vitro fertilization patients with a history of multiple implantation failures. Am J Reprod Immunol 40(5):377–381

    CAS  PubMed  Google Scholar 

  242. Spandorfer SD, Clarke R, Bovis L, Liu H-C, Neuer A, Witkin SS et al (2000) Interleukin-1 levels in the supernatant of conditioned media of embryos grown in autologous endometrial coculture: correlation with embryonic development and outcome for patients with a history of multiple implantation failures after IVF. Am J Reprod Immunol 43(1):6–11

    CAS  PubMed  Google Scholar 

  243. Spandorfer SD, Navarro J, Levy D, Black AR, Liu HC, Veeck L et al (2001) Autologous endometrial coculture in patients with in vitro-fertilization (IVF) failure: correlations of outcome with leukemia inhibiting factor production. Am J Reprod Immunol 46:375–380

    CAS  PubMed  Google Scholar 

  244. Barmat LI, Worrilow KC, Paynton BV (1997) Growth factor expression by human oviduct and buffalo rat liver coculture cells. Fertil Steril 67(4):775–779

    CAS  PubMed  Google Scholar 

  245. Loutradis D, John D, Kiessling AA (1987) Hypoxanthine causes a 2-cell block in random-bred mouse embryos. Biol Reprod 37(2):311–316

    CAS  PubMed  Google Scholar 

  246. Fukui Y, McGowan LT, James RW, Pugh PA, Tervit HR (1991) Factors affecting the in-vitro development to blastocysts of bovine oocytes matured and fertilized in vitro. J Reprod Fertil 92(1):125–131

    CAS  PubMed  Google Scholar 

  247. Barmat LI, Liu H-C, Spandorfer SD, Kowalik A, Mele C, Xu K et al (1999) Autologous endometrial co-culture in patients with repeated failures of implantation after in vitro fertilization-embryo transfer. J Assist Reprod Genet 16(3):121–127

    CAS  PubMed Central  PubMed  Google Scholar 

  248. Spandorfer SD, Barmat L, Navarro J, Burmeister L, Veeck L, Clarke R et al (2002) Autologous endometrial coculture in patients with a previous history of poor quality embryos. J Assist Reprod Genet 19(7):309–312

    PubMed Central  PubMed  Google Scholar 

  249. Spandorfer SD, Pascal P, Parks J, Clark R, Veeck L, Davis OK et al (2004) Autologous endometrial coculture in patients with IVF failure: outcome of the first 1,030 cases. J Reprod Med 49(6):463–467

    PubMed  Google Scholar 

  250. Spandorfer S, Soslow R, Clark R, Fasouliotis S, Davis O, Rosenwaks Z (2006) Histologic characteristics of the endometrium predicts success when utilizing autologous endometrial coculture in patients with IVF failure. J Assist Reprod Genet 23(4):185–189

    CAS  PubMed Central  PubMed  Google Scholar 

  251. Barmat LI, Liu H-C, Spandorfer SD, Xu K, Veeck L, Damario MA et al (1998) Human preembryo development on autologous endometrial coculture versus conventional medium. Fertil Steril 70(6):1109–1113

    CAS  PubMed  Google Scholar 

  252. Kattal N, Cohen J, Barmat LI (2008) Role of coculture in human in vitro fertilization: a meta-analysis. Fertil Steril 90(4):1069–1076

    PubMed  Google Scholar 

  253. Derks RS, Farquhar C, Mol BW, Buckingham K, Heineman MJ (2009) Techniques for preparation prior to embryo transfer. Cochrane Database Syst Rev 4:CD007682

    PubMed  Google Scholar 

  254. Abou-Setta AM, Al-Inany HG, Mansour RT, Serour GI, Aboulghar MA (2005) Soft versus firm embryo transfer catheters for assisted reproduction: a systematic review and meta-analysis. Hum Reprod 20(11):3114–3121

    PubMed  Google Scholar 

  255. Buckett WM (2006) A review and meta-analysis of prospective trials comparing different catheters used for embryo transfer. Fertil Steril 85(3):728–734

    PubMed  Google Scholar 

  256. Saldeen P, Abou-Setta AM, Bergh T, Sundström P, Holte J (2008) A prospective randomized controlled trial comparing two embryo transfer catheters in an ART program. Fertil Steril 90(3):599–603

    PubMed  Google Scholar 

  257. Lewin A, Schenker J, Avrech O, Shapira S, Safran A, Friedler S (1997) The role of uterine straightening by passive bladder distension before embryo transfer in IVF cycles. J Assist Reprod Genet 14(1):32–34

    CAS  PubMed Central  PubMed  Google Scholar 

  258. Abou-Setta AM (2007) Effect of passive uterine straightening during embryo transfer: a systematic review and meta-analysis. Acta Obstet Gynecol Scand 86(5):516–522

    PubMed  Google Scholar 

  259. Fanchin R, Harmas A, Benaoudia F, Lundkvist U, Olivennes F, Frydman R (1998) Microbial flora of the cervix assessed at the time of embryo transfer adversely affects in vitro fertilization outcome. Fertil Steril 70(5):866–870

    CAS  PubMed  Google Scholar 

  260. Miller K, Frattarelli J (2007) The pre-cycle blind mock embryo transfer is an inaccurate predictor of anticipated embryo transfer depth. J Assist Reprod Genet 24(2):77–82

    PubMed Central  PubMed  Google Scholar 

  261. Henne MB, Milki AA (2004) Uterine position at real embryo transfer compared with mock embryo transfer. Hum Reprod 19(3):570–572

    CAS  PubMed  Google Scholar 

  262. Yang W-J, Lee RK-K, Su J-T, Lin M-H, Hwu Y-M (2007) Uterine position change between mock and real embryo transfers. Taiwan J Obstet Gynecol 46(2):162–165

    PubMed  Google Scholar 

  263. Strickler RC, Christianson C, Crane JP, Curato A, Knight AB, Yang V (1985) Ultrasound guidance for human embryo transfer. Fertil Steril 43(1):54–61

    CAS  PubMed  Google Scholar 

  264. Matorras R, Urquijo E, Mendoza R, Corcóstegui B, Expósito A, Rodríguez-Escudero FJ (2002) Ultrasound-guided embryo transfer improves pregnancy rates and increases the frequency of easy transfers. Hum Reprod 17(7):1762–1766

    CAS  PubMed  Google Scholar 

  265. Brown J, Buckingham K, Abou-Setta AM, Buckett W (2010) Ultrasound versus ‘clinical touch’ for catheter guidance during embryo transfer in women. Cochrane Database Syst Rev 20(1):CD006107

    Google Scholar 

  266. Sallam HN, Agameya AF, Rahman AF, Ezzeldin F, Sallam AN (2002) Ultrasound measurement of the uterocervical angle before embryo transfer: a prospective controlled study. Hum Reprod 17(7):1767–1772

    CAS  PubMed  Google Scholar 

  267. Nabi A, Awonuga A, Birch H, Barlow S, Stewart B (1997) Multiple attempts at embryo transfer: does this affect in-vitro fertilization treatment outcome? Hum Reprod 12(6):1188–1190

    CAS  PubMed  Google Scholar 

  268. Yovich JL, Turner SR, Murphy AJ (1985) Embryo transfer technique as a cause of ectopic pregnancies in in vitro fertilization. Fertil Steril 44(3):318–321

    CAS  PubMed  Google Scholar 

  269. Waterstone J, Curson R, Parsons J (1991) Embryo transfer to low uterine cavity. Lancet 337(8754):1413

    CAS  PubMed  Google Scholar 

  270. Bennett S, Waterstone J, Parsons J, Creighton S (1993) Two cases of cervical pregnancy following in vitro fertilization and embryo transfer to the lower uterine cavity. J Assist Reprod Genet 10(1):100–103

    CAS  PubMed  Google Scholar 

  271. Martínez F, Coroleu B, Parriego M, Carreras O, Belil I, Parera N et al (2001) Ultrasound-guided embryo transfer: immediate withdrawal of the catheter versus a 30 second wait. Hum Reprod 16(5):871–874

    PubMed  Google Scholar 

  272. Salamonsen L, Shuster S, Stern R (2001) Distribution of hyaluronan in human endometrium across the menstrual cycle. Cell Tissue Res 306(2):335–340

    CAS  PubMed  Google Scholar 

  273. Carson DD, Dutt A, Tang J-P (1987) Glycoconjugate synthesis during early pregnancy: hyaluronate synthesis and function. Dev Biol 120(1):228–235

    CAS  PubMed  Google Scholar 

  274. Simon A, Safran A, Revel A, Aizenman E, Reubinoff B, Porat-Katz A et al (2003) Hyaluronic acid can successfully replace albumin as the sole macromolecule in a human embryo transfer medium. Fertil Steril 79(6):1434–1438

    PubMed  Google Scholar 

  275. Urman B, Yakin K, Ata B, Isiklar A, Balaban B (2008) Effect of hyaluronan-enriched transfer medium on implantation and pregnancy rates after day 3 and day 5 embryo transfers: a prospective randomized study. Fertil Steril 90(3):604–612

    PubMed  Google Scholar 

  276. Friedler S, Schachter M, Strassburger D, Esther K, El Ron R, Raziel A (2007) A randomized clinical trial comparing recombinant hyaluronan/recombinant albumin versus human tubal fluid for cleavage stage embryo transfer in patients with multiple IVF-embryo transfer failure. Hum Reprod 22(9):2444–2448

    CAS  PubMed  Google Scholar 

  277. Bontekoe S, Blake D, Heineman MJ, Williams EC, Johnson N (2010) Adherence compounds in embryo transfer media for assisted reproductive technologies. Cochrane Database Syst Rev 7:CD007421

    PubMed  Google Scholar 

  278. Valojerdi M, Karimian L, Yazdi P, Gilani MA, Madani T, Baghestani A (2006) Efficacy of a human embryo transfer medium: a prospective, randomized clinical trial study. J Assist Reprod Genet 23(5):207–212

    PubMed Central  PubMed  Google Scholar 

  279. Loutradi KE, Prassas I, Bili E, Sanopoulou T, Bontis I, Tarlatzis BC (2007) Evaluation of a transfer medium containing high concentration of hyaluronan in human in vitro fertilization. Fertil Steril 87(1):48–52

    CAS  PubMed  Google Scholar 

  280. Li B, Zhou H, Li W (2011) Bed rest after embryo transfer. Eur J Obstet Gynecol Reprod Biol 155(2):125–128

    PubMed  Google Scholar 

  281. Yao Z, Vansteelandt S, Van der Elst J, Coetsier T, Dhont M, De Sutter P (2009) The efficacy of the embryo transfer catheter in IVF and ICSI is operator-dependent: a randomized clinical trial. Hum Reprod 24(4):880–887

    PubMed  Google Scholar 

  282. Jones GS (1991) Luteal phase defect: a review of pathophysiology. Curr Opin Obstet Gynecol 3(5):641–648

    CAS  PubMed  Google Scholar 

  283. Milgrom E, Thi L, Atger M, Baulieu EE (1973) Mechanisms regulating the concentration and the conformation of progesterone receptor(s) in the uterus. J Biol Chem 248(18):6366–6374

    CAS  PubMed  Google Scholar 

  284. Clarke CL, Sutherland RL (1990) Progestin regulation of cellular proliferation. Endocr Rev 11(2):266–301

    CAS  PubMed  Google Scholar 

  285. Csapo AI, Pulkkinen MO, Ruttner B, Sauvage JP, Wiest WG (1972) The significance of the human corpus luteum in pregnancy maintenance. I. Preliminary studies. Am J Obstet Gynecol 112(8):1061–1067

    CAS  PubMed  Google Scholar 

  286. Rosenwaks Z, Navot D, Veeck L, Liu HC, Steingold K, Kreiner D et al (1988) Oocyte donation. The Norfolk program. Ann N Y Acad Sci 541:728–741

    CAS  PubMed  Google Scholar 

  287. Smitz J, Devroey P, Camus M, Deschacht J, Khan I, Staessen C et al (1988) The luteal phase and early pregnancy after combined GnRH-agonist/HMG treatment for superovulation in IVF or GIFT. Hum Reprod 3(5):585–590

    CAS  PubMed  Google Scholar 

  288. Garcia J, Jones C, Acosta A, Wright G (1981) Corpus luteum function after follicle aspiration for oocyte retrieval. Fertil Steril 36:565–572

    CAS  PubMed  Google Scholar 

  289. Frydman R, Testart J, Giacomini P, Imbert MC, Martin E, Nahoul K (1982) Hormonal and histological study of the luteal phase in women following aspiration of the preovulatory follicle. Fertil Steril 38:312–317

    CAS  PubMed  Google Scholar 

  290. Fauser BCJM, Devroey P (2003) Reproductive biology and IVF: ovarian stimulation and luteal phase consequences. Trends Endocrinol Metab 14(5):236–242

    CAS  PubMed  Google Scholar 

  291. Miyake A, Aono T, Kinugasa T, Tanizawa O, Kurachi K (1979) Suppression of serum levels of luteinzing hormone by short- and long-loop negative feedback in ovariectomized women. J Endocrinol 80(3):353–356

    CAS  PubMed  Google Scholar 

  292. Broekmans FJ, Bernardus RE, Berkhout G, Schoemaker J (1992) Pituitary and ovarian suppression after early follicular and mid-luteal administration of a LHRH agonist in a depot formulation: decapeptyl CR. Gynecol Endocrinol 6(3):153–161

    CAS  PubMed  Google Scholar 

  293. Smitz J, Erard P, Camus M, Devroey P, Tournaye H, Wisanto A et al (1992) Pituitary gonadotrophin secretory capacity during the luteal phase in superovulation using GnRH-agonists and HMG in a desensitization or flare-up protocol. Hum Reprod 7(9):1225–1229

    CAS  PubMed  Google Scholar 

  294. Beckers NGM, Macklon NS, Eijkemans MJ, Ludwig M, Felberbaum RE, Diedrich K et al (2003) Nonsupplemented luteal phase characteristics after the administration of recombinant human chorionic gonadotropin, recombinant luteinizing hormone, or gonadotropin-releasing hormone (GnRH) agonist to induce final oocyte maturation in in vitro fertilization patients after ovarian stimulation with recombinant follicle-stimulating hormone and GnRH antagonist cotreatment. J Clin Endocrinol Metab 88(9):4186–4192

    CAS  PubMed  Google Scholar 

  295. Tavaniotou A, Devroey P (2006) Luteal hormonal profile of oocyte donors stimulated with a GnRH antagonist compared with natural cycles. Reprod Biomed Online 13(3):326–330

    CAS  PubMed  Google Scholar 

  296. Mochtar MH, Van Wely M, Van der Veen F (2006) Timing luteal phase support in GnRH agonist down-regulated IVF/embryo transfer cycles. Hum Reprod 21(4):905–908

    CAS  PubMed  Google Scholar 

  297. Pritts EA, Atwood AK (2002) Luteal phase support in infertility treatment: a meta-analysis of the randomized trials. Hum Reprod 17(9):2287–2299

    CAS  PubMed  Google Scholar 

  298. Daya S, Gunby J (2004) Luteal phase support in assisted reproduction cycles. Cochrane Database Syst Rev 3:CD004830

    PubMed  Google Scholar 

  299. Tavaniotou A, Smitz J, Bourgain C, Devroey P (2000) Comparison between different routes of progesterone administration as luteal phase support in infertility treatments. Hum Reprod Update 6(2):139–148

    CAS  PubMed  Google Scholar 

  300. Polyzos NP, Messini CI, Papanikolaou EG, Mauri D, Tzioras S, Badawy A et al (2010) Vaginal progesterone gel for luteal phase support in IVF/ICSI cycles: a meta-analysis. Fertil Steril 94(6):2083–2087

    CAS  PubMed  Google Scholar 

  301. Miles RA, Paulson RJ, Lobo RA, Press MF, Dahmoush L, Sauer M (1994) Pharmacokinetics and endometrial tissue levels of progesterone after administration by intramuscular and vaginal routes: a comparative study. Fertil Steril 62(3):485–490

    CAS  PubMed  Google Scholar 

  302. Friedler S, Raziel A, Schachter M, Strassburger D, Bukovsky I, Ron-El R (1999) Luteal support with micronized progesterone following in-vitro fertilization using a down-regulation protocol with gonadotrophin-releasing hormone agonist: a comparative study between vaginal and oral administration. Hum Reprod 14(8):1944–1948

    CAS  PubMed  Google Scholar 

  303. Licciardi FL, Kwiatkowski A, Noyes NL, Berkeley AS, Krey LL, Grifo JA (1999) Oral versus intramuscular progesterone for in vitro fertilization: a prospective randomized study. Fertil Steril 71(4):614–618

    CAS  PubMed  Google Scholar 

  304. Perino M, Brigandì FG, Abate FG, Costabile L, Balzano E, Abate A (1997) Intramuscular versus vaginal progesterone in assisted reproduction: a comparative study. Clin Exp Obstet Gynecol 24(4):228–231

    CAS  PubMed  Google Scholar 

  305. Propst AM, Hill JA, Ginsburg ES, Hurwitz S, Politch J, Yanushpolsky EH (2001) A randomized study comparing Crinone 8 % and intramuscular progesterone supplementation in in vitro fertilization-embryo transfer cycles. Fertil Steril 76(6):1144–1149

    CAS  PubMed  Google Scholar 

  306. Daya S, Gunby JL (2008) Luteal phase support in assisted reproduction cycles. Cochrane Database Syst Rev 3:CD004830

    PubMed  Google Scholar 

  307. Levine H (2000) Luteal support in IVF using the novel vaginal progesterone gel crinone 8 %: results of an open-label trial in 1184 women from 16 U.S. centers. Fertil Steril 74(4):836–837

    CAS  PubMed  Google Scholar 

  308. Zarutskie PW, Phillips JA (2009) A meta-analysis of the route of administration of luteal phase support in assisted reproductive technology: vaginal versus intramuscular progesterone. Fertil Steril 92(1):163–169

    CAS  PubMed  Google Scholar 

  309. Hutchinson-Williams KA, Lunenfeld B, Diamond MP, Lavy G, Boyers SP, DeCherney AH (1989) Human chorionic gonadotropin, estradiol, and progesterone profiles in conception and nonconception cycles in an in vitro fertilization program. Fertil Steril 52(3):441–445

    CAS  PubMed  Google Scholar 

  310. Liu HC, Davis O, Berkeley A, Graf M, Rosenwaks Z (1991) Late luteal estradiol patterns are a better prognosticator of pregnancy outcome than serial beta-human chorionic gonadotropin concentrations. Fertil Steril 56(3):421–426

    CAS  PubMed  Google Scholar 

  311. Smitz J, Bourgain C, Van Waesberghe L, Camus M, Devroey P, Van Steirteghem AC (1993) A prospective randomized study on oestradiol valerate supplementation in addition to intravaginal micronized progesterone in buserelin and HMG induced superovulation. Hum Reprod 8(1):40–45

    CAS  PubMed  Google Scholar 

  312. Lewin A, Benshushan A, Mezker E, Yanai N, Schenker JG, Goshen R (1994) The role of estrogen support during the luteal phase of in vitro fertilization-embryo transplant cycles: a comparative study between progesterone alone and estrogen and progesterone support. Fertil Steril 62(1):121–125

    CAS  PubMed  Google Scholar 

  313. Farhi J, Weissman A, Steinfeld Z, Shorer M, Nahum H, Levran D (2000) Estradiol supplementation during the luteal phase may improve the pregnancy rate in patients undergoing in vitro fertilization-embryo transfer cycles. Fertil Steril 73(4):761–766

    CAS  PubMed  Google Scholar 

  314. Gorkemli H, Ak D, Akyurek C, Aktan M, Duman S (2004) Comparison of pregnancy outcomes of progesterone or progesterone + estradiol for luteal phase support in ICSI-ET cycles. Gynecol Obstet Invest 58(3):140–144

    CAS  PubMed  Google Scholar 

  315. Lukaszuk K, Liss J, Lukaszuk M, Maj B (2005) Optimization of estradiol supplementation during the luteal phase improves the pregnancy rate in women undergoing in vitro fertilization-embryo transfer cycles. Fertil Steril 83(5):1372–1376

    CAS  PubMed  Google Scholar 

  316. Fatemi HM, Kolibianakis EM, Camus M, Tournaye H, Donoso P, Papanikolaou E et al (2006) Addition of estradiol to progesterone for luteal supplementation in patients stimulated with GnRH antagonist/rFSH for IVF: a randomized controlled trial. Hum Reprod 21(10):2628–2632

    CAS  PubMed  Google Scholar 

  317. Ceyhan ST, Basaran M, Kemal Duru N, Yilmaz A, Göktolga Ü, Baser I (2008) Use of luteal estrogen supplementation in normal responder patients treated with fixed multidose GnRH antagonist: a prospective randomized controlled study. Fertil Steril 89(6):1827–1830

    CAS  PubMed  Google Scholar 

  318. Engmann L, DiLuigi A, Schmidt D, Benadiva C, Maier D, Nulsen J (2008) The effect of luteal phase vaginal estradiol supplementation on the success of in vitro fertilization treatment: a prospective randomized study. Fertil Steril 89(3):554–561

    CAS  PubMed  Google Scholar 

  319. Serna J, Cholquevilque JL, Cela V, Martínez-Salazar J, Requena A, Garcia-Velasco JA (2008) Estradiol supplementation during the luteal phase of IVF-ICSI patients: a randomized, controlled trial. Fertil Steril 90(6):2190–2195

    PubMed  Google Scholar 

  320. Gelbaya TA, Kyrgiou M, Tsoumpou I, Nardo LG (2008) The use of estradiol for luteal phase support in in vitro fertilization/intracytoplasmic sperm injection cycles: a systematic review and meta-analysis. Fertil Steril 90(6):2116–2125

    PubMed  Google Scholar 

  321. Kolibianakis EM, Venetis CA, Papanikolaou EG, Diedrich K, Tarlatzis BC, Griesinger G (2008) Estrogen addition to progesterone for luteal phase support in cycles stimulated with GnRH analogues and gonadotrophins for IVF: a systematic review and meta-analysis. Hum Reprod 23(6):1346–1354

    CAS  PubMed  Google Scholar 

  322. Jee BC, Suh CS, Kim SH, Kim YB, Moon SY (2010) Effects of estradiol supplementation during the luteal phase of in vitro fertilization cycles: a meta-analysis. Fertil Steril 93(2):428–436

    CAS  PubMed  Google Scholar 

  323. Hutchinson-Williams KA, DeCherney AH, Lavy G, Diamond MP, Naftolin F, Lunenfeld B (1990) Luteal rescue in in vitro fertilization-embryo transfer. Fertil Steril 53(3):495–501

    CAS  PubMed  Google Scholar 

  324. Herman A, Raziel A, Strassburger D, Soffer Y, Bukovsky I, Ron-El R (1996) The benefits of mid-luteal addition of human chorionic gonadotrophin in in-vitro fertilization using a down-regulation protocol and luteal support with progesterone. Hum Reprod 11(7):1552–1557

    CAS  PubMed  Google Scholar 

  325. Peñarrubia J, Balasch J, Fábregues F, Creus M, Casamitjana R, Ballescá JL et al (1998) Human chorionic gonadotrophin luteal support overcomes luteal phase inadequacy after gonadotrophin-releasing hormone agonist-induced ovulation in gonadotrophin-stimulated cycles. Hum Reprod 13(12):3315–3318

    PubMed  Google Scholar 

  326. Aboulghar MA, Amin YM, Al-Inany HG, Aboulghar MM, Mourad LM, Serour GI et al (2008) Prospective randomized study comparing luteal phase support for ICSI patients up to the first ultrasound compared with an additional three weeks. Hum Reprod 23(4):857–862

    PubMed  Google Scholar 

  327. Tryde Schmidt KL, Ziebe S, Popovic B, Lindhard A, Loft A, Andersen AN (2001) Progesterone supplementation during early gestation after in vitro fertilization has no effect on the delivery rate. Fertil Steril 75(2):337–341

    Google Scholar 

  328. Nyboe Andersen A, Popovic-Todorovic B, Schmidt KT, Loft A, Lindhard A, Højgaard A et al (2002) Progesterone supplementation during early gestations after IVF or ICSI has no effect on the delivery rates: a randomized controlled trial. Hum Reprod 17(2):357–361

    CAS  PubMed  Google Scholar 

  329. Aragona C, Mohamed MA, Espinola MSB, Linari A, Pecorini F, Micara G et al (2011) Clinical complications after transvaginal oocyte retrieval in 7,098 IVF cycles. Fertil Steril 95(1):293–294

    PubMed  Google Scholar 

  330. Roest J, Mous H, Zeilmaker G, Verhoeff A (1996) The incidence of major clinical complications in a Dutch transport IVF programme. Hum Reprod Update 2(4):345–353

    CAS  PubMed  Google Scholar 

  331. Henriksson P, Westerlund E, Wallén H, Brandt L, Hovatta O, Ekbom A (2013) Incidence of pulmonary and venous thromboembolism in pregnancies after in vitro fertilisation: cross sectional study. BMJ 346:e8632

    PubMed Central  PubMed  Google Scholar 

  332. MacDougall MJ, Tan SL, Balen A, Jacobs HS (1993) A controlled study comparing patients with and without polycystic ovaries undergoing in-vitro fertilization. Hum Reprod 8(2):233–237

    CAS  PubMed  Google Scholar 

  333. Chen D, Burmeister L, Goldschlag D, Rosenwaks Z (2003) Ovarian hyperstimulation syndrome: strategies for prevention. Reprod Biomed Online 7(1):43–49

    PubMed  Google Scholar 

  334. Golan A, Ron-El R, Herman A, Soffer Y, Wainraub Z, Caspi E (1989) Ovarian hyperstimulation syndrome: an update review. Obstet Gynecol Surv 44:430–440

    CAS  PubMed  Google Scholar 

  335. Navot D, Bergh PA, Laufer N (1992) Ovarian hyperstimulation syndrome in novel reproductive technologies: prevention and treatment. Fertil Steril 58(2):249–261

    CAS  PubMed  Google Scholar 

  336. Cluroe AD, Synek BJ (1995) A fatal case of ovarian hyperstimulation syndrome with cerebral infarction. Pathology 27(4):344–346

    CAS  PubMed  Google Scholar 

  337. Akdemir R, Uyan C, Emiroglu Y (2002) Acute myocardial infarction secondary thrombosis associated with ovarial hyperstimulation syndrome. Int J Cardiol 83(2):187–189

    PubMed  Google Scholar 

  338. Salihu HM, Aliyu MH, Rouse DJ, Kirby RS, Alexander GR (2003) Potentially preventable excess mortality among higher-order multiples. Obstet Gynaecol 102(4):679–684

    Google Scholar 

  339. The Practice Committee of the American Society for Reproductive Medicine, The Practice Committee of the Society for Assisted Reproductive Technology (2009) Guidelines on number of embryos transferred. Fertil Steril 92(5):1518–1519

    Google Scholar 

  340. Milki AA, Jun SH, Hinckley MD, Behr B, Giudice LC, Westphal LM (2003) Incidence of monozygotic twinning with blastocyst transfer compared to cleavage-stage transfer. Fertil Steril 79(3):503–506

    PubMed  Google Scholar 

  341. Knopman J, Krey LC, Lee J, Fino ME, Novetsky Akiva P, Noyes N (2010) Monozygotic twinning: an eight-year experience at a large IVF center. Fertil Steril 94(2):502–510

    PubMed  Google Scholar 

  342. Azem F, Yaron Y, Botchan A, Amit A, Yovel I, David MP et al (1993) Ectopic pregnancy after in vitro fertilization-embryo transfer (IVF-ET): the possible role of the ET technique. J Assist Reprod Genet 10(4):302–304

    CAS  PubMed  Google Scholar 

  343. Chow WH, Daling JR, Cates W Jr, Greenberg RS (1987) Epidemiology of ectopic pregnancy. Epidemiol Rev 9(1):70–94

    CAS  PubMed  Google Scholar 

  344. Reece EA, Petrie RH, Sirmans MF, Finster M, Todd WD (1983) Combined intrauterine and extrauterine gestations: a review. Am J Obstet Gynecol 146(3):323–330

    CAS  PubMed  Google Scholar 

  345. Marcus SF, Macnamee M, Brinsden P (1995) Pregnancy: heterotopic pregnancies after in-vitro fertilization and embryo transfer. Hum Reprod 10(5):1232–1236

    CAS  PubMed  Google Scholar 

  346. Rizk B, Tan SL, Morcos S, Riddle A, Brinsden P, Mason BA et al (1991) Heterotopic pregnancies after in vitro fertilization and embryo transfer. Am J Obstet Gynecol 164(1 Pt 1):161–164

    CAS  PubMed  Google Scholar 

  347. ESHRE Guidelines & Legal. ART fact sheet (2010). http://www.eshre.eu/ESHRE/English/Guidelines-Legal/ART-fact-sheet/page.aspx/1061

  348. Ochsenkühn R, Strowitzki T, Gurtner M, Strauss A, Schulze A, Hepp H et al (2003) Pregnancy complications, obstetric risks, and neonatal outcome in singleton and twin pregnancies after GIFT and IVF. Arch Gynecol Obstet 268(4):256–261

    PubMed  Google Scholar 

  349. Jackson RA, Gibson KA, Wu YW, Croughan MS (2004) Perinatal outcomes in singletons following in vitro fertilization: a meta-analysis. Obstet Gynecol 103(2):551–563

    PubMed  Google Scholar 

  350. Katalinic A, Rösch C, Ludwig M (2004) Pregnancy course and outcome after intracytoplasmic sperm injection: a controlled, prospective cohort study. Fertil Steril 81(6):1604–1616

    PubMed  Google Scholar 

  351. Allen VM, Wilson RD, Cheung A, Genetics Committee of the Society of Obstetricians and Gynaecologists of Canada (SOGC), Reproductive Endocrinology Infertility Committee of the Society of Obstetricians and Gynaecologists of Canada (SOGC) (2006) Pregnancy outcomes after assisted reproductive technology. J Obstet Gynaecol Can 28(3):220–250

    PubMed  Google Scholar 

  352. Thomson F, Shanbhag S, Templeton A, Bhattacharya S (2005) Obstetric outcome in women with subfertility. BJOG 112(5):632–637

    PubMed  Google Scholar 

  353. Helmerhorst FM, Perquin DAM, Donker D, Keirse MJNC (2004) Perinatal outcome of singletons and twins after assisted conception: a systematic review of controlled studies. BMJ 328(7434):261

    PubMed Central  PubMed  Google Scholar 

  354. Schieve LA, Ferre C, Peterson HB (2004) Perinatal outcome among singleton infants conceived through assisted reproductive technology in the United States. Obstet Gynaecol 103(6):1144–1153

    Google Scholar 

  355. Lie RT, Lyngstadass A, Orstavik KH, Bakketeig LS, Jacobsen G, Tanbo T (2005) Birth defects in children conceived by ICSI compared with children conceived by other IVF-methods; a meta-analysis. Int J Epidemiol 34(3):696–701

    PubMed  Google Scholar 

  356. Wennerholm U-B, Bergh C, Hamberger L, Lundin K, Nilsson L, Wikland M et al (2000) Incidence of congenital malformations in children born after ICSI. Hum Reprod 15(4):944–948

    CAS  PubMed  Google Scholar 

  357. Bonduelle M, Wilikens A, Buysse A, Van Assche E, Wisanto A, Devroey P et al (1996) Prospective follow-up study of 877 children born after intracytoplasmic sperm injection (ICSI), with ejaculated epididymal and testicular spermatozoa and after replacement of cryopreserved embryos obtained after ICSI. Hum Reprod 11(Suppl 4):131–155

    PubMed  Google Scholar 

  358. Van Steirteghem A (1998) Outcome of assisted reproductive technology. N Engl J Med 338(3):194–195

    PubMed  Google Scholar 

  359. Knoester M, Helmerhorst FM, Vandenbroucke JP, van der Westerlaken LAJ, Walther FJ, Veen S (2008) Perinatal outcome, health, growth, and medical care utilization of 5- to 8-year-old intracytoplasmic sperm injection singletons. Fertil Steril 89(5):1133–1146

    PubMed  Google Scholar 

  360. Hansen M, Kurinczuk JJ, Bower C, Webb S (2002) The risk of major birth defects after intracytoplasmic sperm injection and in vitro fertilization. N Engl J Med 346(10):725–730

    PubMed  Google Scholar 

  361. Ericson A, Kallen B (2001) Congenital malformations in infants born after IVF: a population-based study. Hum Reprod 16(3):504–509

    CAS  PubMed  Google Scholar 

  362. Sutcliffe AG, Peters CJ, Bowdin S, Temple K, Reardon W, Wilson L et al (2006) Assisted reproductive therapies and imprinting disorders–a preliminary British survey. Hum Reprod 21(4):1009–1011

    CAS  PubMed  Google Scholar 

  363. Gicquel C, Gaston V, Mandelbaum J, Siffroi J-P, Flahault A, Le Bouc Y (2003) In vitro fertilization may increase the risk of Beckwith-Wiedemann Syndrome related to the abnormal imprinting of the KCNQ1OT gene. Am J Hum Genet 72(5):1338–1341

    CAS  PubMed Central  PubMed  Google Scholar 

  364. Cox GF, Bürger J, Lip V, Mau UA, Sperling K, Wu B-L et al (2002) Intracytoplasmic sperm injection may increase the risk of imprinting defects. Am J Hum Genet 71(1):162–164

    CAS  PubMed Central  PubMed  Google Scholar 

  365. Ørstavik KH, Eiklid K, van der Hagen CB, Spetalen S, Kierulf K, Skjeldal O et al (2003) Another case of imprinting defect in a girl with Angelman syndrome who was conceived by intracytoplasmic sperm injection. Am J Hum Genet 72(1):218–219

    PubMed Central  PubMed  Google Scholar 

  366. Place I, Englert Y (2003) A prospective longitudinal study of the physical, psychomotor, and intellectual development of singleton children up to 5 years who were conceived by intracytoplasmic sperm injection compared with children conceived spontaneously and by in vitro fertilization. Fertil Steril 80(6):1388–1397

    PubMed  Google Scholar 

  367. Bonduelle M, Ponjaert I, Steirteghem AV, Derde M-P, Devroey P, Liebaers I (2003) Developmental outcome at 2 years of age for children born after ICSI compared with children born after IVF. Hum Reprod 18(2):342–350

    CAS  PubMed  Google Scholar 

  368. Ponjaert-Kristoffersen I, Tjus T, Nekkebroeck J, Squires J, Verte D, Heimann M et al (2004) Psychological follow-up study of 5-year-old ICSI children. Hum Reprod 19(12):2791–2797

    CAS  PubMed  Google Scholar 

  369. Bonduelle M, Wennerholm U-B, Loft A, Tarlatzis BC, Peters C, Henriet S et al (2005) A multi-centre cohort study of the physical health of 5-year-old children conceived after intracytoplasmic sperm injection, in vitro fertilization and natural conception. Hum Reprod 20(2):413–419

    CAS  PubMed  Google Scholar 

  370. Bonduelle M, Bergh C, Niklasson A, Palermo GD, Wennerholm U-B (2004) Medical follow-up study of 5-year-old ICSI children. Reprod BioMed Online 9(1):91–101

    PubMed  Google Scholar 

  371. Munne S, Weier HU, Stein J, Grifo J, Cohen J (1993) A fast and efficient method for simultaneous X and Y in situ hybridization of human blastomeres. J Assist Reprod Genet 10(1):82–90

    CAS  PubMed  Google Scholar 

  372. Baart EB, van den Berg I, Martini E, Eussen HJ, Fauser BCJM, Opstal DV (2007) FISH analysis of 15 chromosomes in human day 4 and 5 preimplantation embryos: the added value of extended aneuploidy detection. Prenat Diagn 27(1):55–63

    CAS  PubMed  Google Scholar 

  373. Wilton L, Thornhill A, Traeger-Synodinos J, Sermon KD, Harper JC (2009) The causes of misdiagnosis and adverse outcomes in PGD. Hum Reprod 24(5):1221–1228

    CAS  PubMed  Google Scholar 

  374. Treff NR, Su J, Kasabwala N, Tao X, Miller KA, Scott RT Jr (2010) Robust embryo identification using first polar body single nucleotide polymorphism microarray-based DNA fingerprinting. Fertil Steril 93(7):2453–2455

    CAS  PubMed  Google Scholar 

  375. Schoolcraft WB, Fragouli E, Stevens J, Munne S, Katz-Jaffe MG, Wells D (2010) Clinical application of comprehensive chromosomal screening at the blastocyst stage. Fertil Steril 94(5):1700–1706

    PubMed  Google Scholar 

  376. Harper J, SenGupta S (2011) Preimplantation genetic diagnosis: state of the ART. Hum Genet 2011:1–12

    Google Scholar 

  377. Scott RT Jr, Tao X, Taylor D, Ferry KM, Treff NR (2010) A prospective randomized controlled trial demonstrating significantly increased clinical pregnancy rates following 24 chromosome aneuploidy screening: biopsy and analysis on day 5 with fresh transfer. Fertil Steril 94(4 Suppl 1):S2

    Google Scholar 

  378. Assou S, Haouzi D, De Vos J, Hamamah S (2010) Human cumulus cells as biomarkers for embryo and pregnancy outcomes. Mol Hum Reprod 16(8):531–538

    CAS  PubMed  Google Scholar 

  379. Katz-Jaffe MG, McReynolds S, Gardner DK, Schoolcraft WB (2009) The role of proteomics in defining the human embryonic secretome. Mol Hum Reprod 15(5):271–277

    CAS  PubMed Central  PubMed  Google Scholar 

  380. Katz-Jaffe MG, Schoolcraft WB, Gardner DK (2006) Analysis of protein expression (secretome) by human and mouse preimplantation embryos. Fertil Steril 86(3):678–685

    CAS  PubMed  Google Scholar 

  381. Brison DR, Houghton FD, Falconer D, Roberts SA, Hawkhead J, Humpherson PG et al (2004) Identification of viable embryos in IVF by non-invasive measurement of amino acid turnover. Hum Reprod 19(10):2319–2324

    CAS  PubMed  Google Scholar 

  382. Nagy ZP, Sakkas D, Behr B (2008) Symposium: innovative techniques in human embryo viability assessment. Non-invasive assessment of embryo viability by metabolomic profiling of culture media (‘metabolomics’). Reprod Biomed Online 17(4):502–507

    CAS  PubMed  Google Scholar 

  383. Seli E, Sakkas D, Scott R, Kwok SC, Rosendahl SM, Burns DH (2007) Noninvasive metabolomic profiling of embryo culture media using Raman and near-infrared spectroscopy correlates with reproductive potential of embryos in women undergoing in vitro fertilization. Fertil Steril 88(5):1350–1357

    PubMed  Google Scholar 

  384. Scott R, Seli E, Miller K, Sakkas D, Scott K, Burns DH (2008) Noninvasive metabolomic profiling of human embryo culture media using Raman spectroscopy predicts embryonic reproductive potential: a prospective blinded pilot study. Fertil Steril 90(1):77–83

    PubMed  Google Scholar 

  385. Seli E, Vergouw CG, Morita H, Botros L, Roos P, Lambalk CB et al (2010) Noninvasive metabolomic profiling as an adjunct to morphology for noninvasive embryo assessment in women undergoing single embryo transfer. Fertil Steril 94(2):535–542

    PubMed  Google Scholar 

  386. Wong CC, Loewke KE, Bossert NL, Behr B, De Jonge CJ, Baer TM et al (2010) Non-invasive imaging of human embryos before embryonic genome activation predicts development to the blastocyst stage. Nat Biotechnol 28(10):1115–1121

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zev Rosenwaks M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Huang, J.Y.J., Rosenwaks, Z. (2014). Assisted Reproductive Techniques. In: Rosenwaks, Z., Wassarman, P. (eds) Human Fertility. Methods in Molecular Biology, vol 1154. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-0659-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0659-8_8

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-0658-1

  • Online ISBN: 978-1-4939-0659-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics