Skip to main content

Understanding the Spermatozoon

  • Protocol
  • First Online:
Human Fertility

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1154))

Abstract

The former perception of the spermatozoon as a delivery device of the male genome has been expanded to include a new understanding of the cell’s complex role in fertilization. Once the spermatozoon reaches the oocyte, it triggers egg activation and orchestrates the stages of pre- and post-fertilization in a preprogrammed pattern while tapping the oocyte’s resources in an effort to generate a new life.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vanleeuwenhoek A (1978) Observationes de natis e semine genitali animalculis. Philos Trans R Soc Lond 12:1040–1043

    Google Scholar 

  2. Cole FJ (1930) Early theories of sexual generation. The Carendon, Oxford

    Google Scholar 

  3. Hartsoeker N (1694) Essai de dioptriques

    Google Scholar 

  4. Capanna E (1999) Lazzaro spallanzani: At the roots of modern biology. J Exp Zool 285(3):178–196

    PubMed  CAS  Google Scholar 

  5. Magner LN (2002) A history of the life sciences, 3rd edn. Marcel Dekker, New York, Revised and expanded ed

    Google Scholar 

  6. Hill KA (1985) Hartsoeker’s homonculus: a corrective note. J Hist Behav Sci 21(2):178–179

    PubMed  CAS  Google Scholar 

  7. Barratt CL (2007) Semen analysis is the cornerstone of investigation for male infertility. Practitioner 251(1690):8–10, 12, 15–7

    PubMed  Google Scholar 

  8. World Health Organization (2010) WHO laboratory manual for the examination and processing of human semen, vol 5, 5th edn. Cambridge Univ. Press, Cambridge

    Google Scholar 

  9. Jequier AM (2010) Semen analysis: a new manual and its application to the understanding of semen and its pathology. Asian J Androl 12(1):11–13

    PubMed Central  PubMed  Google Scholar 

  10. Guzick DS et al (2001) Sperm morphology, motility, and concentration in fertile and infertile men. N Engl J Med 345(19):1388–1393

    PubMed  CAS  Google Scholar 

  11. Sigman M, Baazeem A, Zini A (2009) Semen analysis and sperm function assays: what do they mean? Semin Reprod Med 27(2):115–123

    PubMed  Google Scholar 

  12. Smith KD, Rodriguez-Rigau LJ, Steinberger E (1977) Relation between indices of semen analysis and pregnancy rate in infertile couples. Fertil Steril 28(12):1314–1319

    PubMed  CAS  Google Scholar 

  13. Comhaire FH et al (1992) Objective semen analysis: has the target been reached? Hum Reprod 7(2):237–241

    PubMed  CAS  Google Scholar 

  14. Menkveld R et al (1990) The evaluation of morphological characteristics of human spermatozoa according to stricter criteria. Hum Reprod 5(5):586–592

    PubMed  CAS  Google Scholar 

  15. Adelman MM, Cahill EM (1989) Atlas of sperm morphology. Everbest, Hong Kong, p 123

    Google Scholar 

  16. Bartoov B, Berkovitz A, Eltes F (2001) Selection of spermatozoa with normal nuclei to improve the pregnancy rate with intracytoplasmic sperm injection. N Engl J Med 345(14):1067–1068

    PubMed  CAS  Google Scholar 

  17. Bartoov B et al (2002) Real-time fine morphology of motile human sperm cells is associated with IVF-ICSI outcome. J Androl 23(1):1–8

    PubMed  Google Scholar 

  18. Antinori M et al (2008) Intracytoplasmic morphologically selected sperm injection: a prospective randomized trial. Reprod Biomed Online 16(6):835–841

    PubMed  Google Scholar 

  19. Bartoov B et al (2003) Pregnancy rates are higher with intracytoplasmic morphologically selected sperm injection than with conventional intracytoplasmic injection. Fertil Steril 80(6):1413–1419

    PubMed  Google Scholar 

  20. Berkovitz A et al (2005) The morphological normalcy of the sperm nucleus and pregnancy rate of intracytoplasmic injection with morphologically selected sperm. Hum Reprod 20(1):185–190

    PubMed  Google Scholar 

  21. Hazout A et al (2006) High-magnification ICSI overcomes paternal effect resistant to conventional ICSI. Reprod Biomed Online 12(1):19–25

    PubMed  Google Scholar 

  22. Zamboni L (1987) The ultrastructural pathology of the spermatozoon as a cause of infertility: the role of electron microscopy in the evaluation of semen quality. Fertil Steril 48(5):711–734

    PubMed  CAS  Google Scholar 

  23. Fawcett DW, Ito S (1958) Observations on the cytoplasmic membranes of testicular cells, examined by phase contrast and electron microscopy. J Biophys Biochem Cytol 4(2):135–142

    PubMed Central  PubMed  CAS  Google Scholar 

  24. Baccetti B et al (1989) Crater defect in human spermatozoa. Gamete Res 22(3):249–255

    PubMed  CAS  Google Scholar 

  25. Kacem O et al (2010) Sperm nuclear vacuoles, as assessed by motile sperm organellar morphological examination, are mostly of acrosomal origin. Reprod Biomed Online 20(1):132–137

    PubMed  CAS  Google Scholar 

  26. Peer S et al (2007) Is fine morphology of the human sperm nuclei affected by in vitro incubation at 37 degrees C? Fertil Steril 88(6):1589–1594

    PubMed  Google Scholar 

  27. Tanaka A et al (2009) Are crater defects in human sperm heads physiological changes during spermiogenesis? Fertil Steril 92(3):S165

    Google Scholar 

  28. Watanabe S et al (2009) No relationship between chromosome aberrations and vacuole-like structures on human sperm head. Hum Reprod 24(Suppl 1):i94–i96

    Google Scholar 

  29. Palermo GD et al (2011) Thoughts on IMSI. In: Racowsky C et al (eds) Biennial review of infertility, vol 2. Springer, New York, p 296

    Google Scholar 

  30. Fawcett DW, Porter KR (1954) A study on the fine structure of ciliated epithelia. J Morphol 94:221–282

    Google Scholar 

  31. Barros C et al (1967) Membrane vesiculation as a feature of the mammalian acrosome reaction. J Cell Biol 34(3):C1–C5

    PubMed Central  PubMed  CAS  Google Scholar 

  32. Bleil JD, Wassarman PM (1983) Sperm-egg interactions in the mouse: sequence of events and induction of the acrosome reaction by a zona pellucida glycoprotein. Dev Biol 95(2):317–324

    PubMed  CAS  Google Scholar 

  33. Wassarman PM (2002) Sperm receptors and fertilization in mammals. Mt Sinai J Med 69(3):148–155

    PubMed  Google Scholar 

  34. Yanagimachi R, Bhattacharyya A (1988) Acrosome-reacted guinea pig spermatozoa become fusion competent in the presence of extracellular potassium ions. J Exp Zool 248(3):354–360

    PubMed  CAS  Google Scholar 

  35. Bedford JM (1970) Sperm capacitation and fertilization in mammals. Biol Reprod 2(Suppl 2):128–158

    PubMed  CAS  Google Scholar 

  36. Yanagimachi R, Noda YD (1970) Physiological changes in the postnuclear cap region of mammalian spermatozoa: a necessary preliminary to the membrane fusion between sperm and egg cells. J Ultrastruct Res 31(5–6):486–493

    PubMed  CAS  Google Scholar 

  37. Austin CR (1951) Observations on the penetration of the sperm in the mammalian egg. Aust J Sci Res B 4(4):581–596

    PubMed  CAS  Google Scholar 

  38. Chang MC (1951) Fertilizing capacity of spermatozoa deposited into the fallopian tubes. Nature 168(4277):697–698

    PubMed  CAS  Google Scholar 

  39. Yanagimachi R (1994) Fertility of mammalian spermatozoa: its development and relativity. Zygote 2(4):371–372

    PubMed  CAS  Google Scholar 

  40. Palermo G et al (1992) Pregnancies after intracytoplasmic injection of single spermatozoon into an oocyte. Lancet 340(8810):17–18

    PubMed  CAS  Google Scholar 

  41. Palermo GD et al (1995) Intracytoplasmic sperm injection: a novel treatment for all forms of male factor infertility. Fertil Steril 63(6):1231–1240

    PubMed  CAS  Google Scholar 

  42. Vanderzwalmen P et al (1996) Two essential steps for a successful intracytoplasmic sperm injection: injection of immobilized spermatozoa after rupture of the oolemma. Hum Reprod 11(3):540–547

    PubMed  CAS  Google Scholar 

  43. Fishel S et al (1995) Systematic examination of immobilizing spermatozoa before intracytoplasmic sperm injection in the human. Hum Reprod 10(3):497–500

    PubMed  CAS  Google Scholar 

  44. Gerris J et al (1995) ICSI and severe male-factor infertility: breaking the sperm tail prior to injection. Hum Reprod 10(3):484–486

    PubMed  CAS  Google Scholar 

  45. Palermo GD et al (1996) Aggressive sperm immobilization prior to intracytoplasmic sperm injection with immature spermatozoa improves fertilization and pregnancy rates. Hum Reprod 11(5):1023–1029

    PubMed  CAS  Google Scholar 

  46. Van den Bergh M et al (1995) Importance of breaking a spermatozoon’s tail before intracytoplasmic injection: a prospective randomized trial. Hum Reprod 10(11):2819–2820

    PubMed  Google Scholar 

  47. Dozortsev D et al (1995) Sperm plasma membrane damage prior to intracytoplasmic sperm injection: a necessary condition for sperm nucleus decondensation. Hum Reprod 10(11):2960–2964

    PubMed  CAS  Google Scholar 

  48. Christova Y et al (2004) Molecular diffusion in sperm plasma membranes during epididymal maturation. Mol Cell Endocrinol 216(1–2):41–46

    PubMed  CAS  Google Scholar 

  49. Palermo GD et al (2012) Development and current applications of assisted fertilization. Fertil Steril 97(2):248–259

    PubMed  Google Scholar 

  50. Takeuchi T et al (2004) Does ICSI require acrosomal disruption? An ultrastructural study. Hum Reprod 19(1):114–117

    PubMed  Google Scholar 

  51. Gomez-Torres MJ et al (2007) Sperm immobilized before intracytoplasmic sperm injection undergo ultrastructural damage and acrosomal disruption. Fertil Steril 88(3):702–704

    PubMed  Google Scholar 

  52. Katayama M et al (2005) Increased disruption of sperm plasma membrane at sperm immobilization promotes dissociation of perinuclear theca from sperm chromatin after intracytoplasmic sperm injection in pigs. Reproduction 130(6):907–916

    PubMed  CAS  Google Scholar 

  53. Yanagimachi R (1998) Intracytoplasmic sperm injection experiments using the mouse as a model. Hum Reprod 13(Suppl 1):87–98

    PubMed  Google Scholar 

  54. Dozortsev D et al (1995) Human oocyte activation following intracytoplasmic injection: the role of the sperm cell. Hum Reprod 10(2):403–407

    PubMed  CAS  Google Scholar 

  55. Palermo GD et al (1997) Human sperm cytosolic factor triggers Ca2+ oscillations and overcomes activation failure of mammalian oocytes. Mol Hum Reprod 3(4):367–374

    PubMed  CAS  Google Scholar 

  56. Swann K, Ozil JP (1994) Dynamics of the calcium signal that triggers mammalian egg activation. Int Rev Cytol 152:183–222

    PubMed  CAS  Google Scholar 

  57. Stice SL, Robl JM (1990) Activation of mammalian oocytes by a factor obtained from rabbit sperm. Mol Reprod Dev 25(3):272–280

    PubMed  CAS  Google Scholar 

  58. Swann K (1990) A cytosolic sperm factor stimulates repetitive calcium increases and mimics fertilization in hamster eggs. Development 110(4):1295–1302

    PubMed  CAS  Google Scholar 

  59. Parrington J et al (1996) Calcium oscillations in mammalian eggs triggered by a soluble sperm protein. Nature 379(6563):364–368

    PubMed  CAS  Google Scholar 

  60. Bedford JM, Moore HD, Franklin LE (1979) Significance of the equatorial segment of the acrosome of the spermatozoon in eutherian mammals. Exp Cell Res 119(1):119–126

    PubMed  CAS  Google Scholar 

  61. Oko R, Sutovsky P (2009) Biogenesis of sperm perinuclear theca and its role in sperm functional competence and fertilization. J Reprod Immunol 83(1–2):2–7

    PubMed  CAS  Google Scholar 

  62. Sutovsky P et al (2003) Interactions of sperm perinuclear theca with the oocyte: implications for oocyte activation, anti-polyspermy defense, and assisted reproduction. Microsc Res Tech 61(4):362–378

    PubMed  Google Scholar 

  63. Sutovsky P et al (1997) The removal of the sperm perinuclear theca and its association with the bovine oocyte surface during fertilization. Dev Biol 188(1):75–84

    PubMed  CAS  Google Scholar 

  64. Saunders CM et al (2002) PLC zeta: a sperm-specific trigger of Ca(2+) oscillations in eggs and embryo development. Development 129(15):3533–3544

    PubMed  CAS  Google Scholar 

  65. Colombero LT et al (1999) The role of structural integrity of the fertilising spermatozoon in early human embryogenesis. Zygote 7(2):157–163

    PubMed  CAS  Google Scholar 

  66. Kuretake S et al (1996) Fertilization and development of mouse oocytes injected with isolated sperm heads. Biol Reprod 55(4):789–795

    PubMed  CAS  Google Scholar 

  67. Fissore RA, Reis MM, Palermo GD (1999) Isolation of the Ca2+ releasing component(s) of mammalian sperm extracts: the search continues. Mol Hum Reprod 5(3):189–192

    PubMed  CAS  Google Scholar 

  68. Wolny YM et al (1999) Human glucosamine-6-phosphate isomerase, a homologue of hamster oscillin, does not appear to be involved in Ca2+ release in mammalian oocytes. Mol Reprod Dev 52(3):277–287

    PubMed  CAS  Google Scholar 

  69. Cox LJ et al (2002) Sperm phospholipase Czeta from humans and cynomolgus monkeys triggers Ca2+ oscillations, activation and development of mouse oocytes. Reproduction 124(5):611–623

    PubMed  CAS  Google Scholar 

  70. Neri QV et al (2010) Assessing and restoring sperm fertilizing ability. Fertil Steril 94(4 Suppl 1):S147

    Google Scholar 

  71. Neri QV (2010) Tweaking human fertilization. In: Reproductive medicine. Clinical & Translation Science Center, Weill Cornell Medical College, New York. p 24

    Google Scholar 

  72. Sullivan EJ et al (2004) Cloned calves from chromatin remodeled in vitro. Biol Reprod 70(1):146–153

    PubMed  CAS  Google Scholar 

  73. Heindryckx B et al (2008) Efficiency of assisted oocyte activation as a solution for failed intracytoplasmic sperm injection. Reprod Biomed Online 17(5):662–668

    PubMed  Google Scholar 

  74. Calvin HI, Bedford JM (1971) Formation of disulphide bonds in the nucleus and accessory structures of mammalian spermatozoa during maturation in the epididymis. J Reprod Fertil Suppl 13(Suppl 13):65–75

    PubMed  Google Scholar 

  75. Brewer L, Corzett M, Balhorn R (2002) Condensation of DNA by spermatid basic nuclear proteins. J Biol Chem 277(41):38895–38900

    PubMed  CAS  Google Scholar 

  76. Dadoune JP (2003) Expression of mammalian spermatozoal nucleoproteins. Microsc Res Tech 61(1):56–75

    PubMed  CAS  Google Scholar 

  77. Ward WS (1993) Deoxyribonucleic acid loop domain tertiary structure in mammalian spermatozoa. Biol Reprod 48(6):1193–1201

    PubMed  CAS  Google Scholar 

  78. Meistrich ML et al (1992) Highly acetylated H4 is associated with histone displacement in rat spermatids. Mol Reprod Dev 31(3):170–181

    PubMed  CAS  Google Scholar 

  79. Ward WS, Coffey DS (1990) Specific organization of genes in relation to the sperm nuclear matrix. Biochem Biophys Res Commun 173(1):20–25

    PubMed  CAS  Google Scholar 

  80. Marcon L, Boissonneault G (2004) Transient DNA strand breaks during mouse and human spermiogenesis new insights in stage specificity and link to chromatin remodeling. Biol Reprod 70(4):910–918

    PubMed  CAS  Google Scholar 

  81. McPherson S, Longo FJ (1993) Chromatin structure-function alterations during mammalian spermatogenesis: DNA nicking and repair in elongating spermatids. Eur J Histochem 37(2):109–128

    PubMed  CAS  Google Scholar 

  82. Sakkas D et al (1995) Relationship between the presence of endogenous nicks and sperm chromatin packaging in maturing and fertilizing mouse spermatozoa. Biol Reprod 52(5):1149–1155

    PubMed  CAS  Google Scholar 

  83. McPherson SM, Longo FJ (1993) Nicking of rat spermatid and spermatozoa DNA: possible involvement of DNA topoisomerase II. Dev Biol 158(1):122–130

    PubMed  CAS  Google Scholar 

  84. Boissonneault G (2002) Chromatin remodeling during spermiogenesis: a possible role for the transition proteins in DNA strand break repair. FEBS Lett 514(2–3):111–114

    PubMed  CAS  Google Scholar 

  85. Bungum M et al (2004) The predictive value of sperm chromatin structure assay (SCSA) parameters for the outcome of intrauterine insemination IVF and ICSI. Hum Reprod 19(6):1401–1408

    PubMed  CAS  Google Scholar 

  86. Evenson D, Jost L (2000) Sperm chromatin structure assay is useful for fertility assessment. Methods Cell Sci 22(2–3):169–189

    PubMed  CAS  Google Scholar 

  87. Evenson DP, Larson KL, Jost LK (2002) Sperm chromatin structure assay: its clinical use for detecting sperm DNA fragmentation in male infertility and comparisons with other techniques. J Androl 23(1):25–43

    PubMed  Google Scholar 

  88. Morris ID et al (2002) The spectrum of DNA damage in human sperm assessed by single cell gel electrophoresis (comet assay) and its relationship to fertilization and embryo development. Hum Reprod 17(4):990–998

    PubMed  CAS  Google Scholar 

  89. Sakkas D, Manicardi GC, Bizzaro D (2003) Sperm nuclear DNA damage in the human. Adv Exp Med Biol 518:73–84

    PubMed  Google Scholar 

  90. van der Heijden GW et al (2008) Sperm-derived histones contribute to zygotic chromatin in humans. BMC Dev Biol 8:34

    PubMed Central  PubMed  Google Scholar 

  91. Zini A, Sigman M (2009) Are tests of sperm DNA damage clinically useful? Pros and cons. J Androl 30(3):219–229

    PubMed  CAS  Google Scholar 

  92. Spano M et al (2000) Sperm chromatin damage impairs human fertility. The Danish First Pregnancy Planner Study Team. Fertil Steril 73(1):43–50

    PubMed  CAS  Google Scholar 

  93. Zini A et al (2001) Correlations between two markers of sperm DNA integrity, DNA denaturation and DNA fragmentation, in fertile and infertile men. Fertil Steril 75(4):674–677

    PubMed  CAS  Google Scholar 

  94. Chen C et al (2011) Kinetic characteristics and DNA integrity of human spermatozoa. Hum Reprod 19(Suppl 1):i30

    Google Scholar 

  95. Carrell DT, Liu L (2001) Altered protamine 2 expression is uncommon in donors of known fertility, but common among men with poor fertilizing capacity, and may reflect other abnormalities of spermiogenesis. J Androl 22(4):604–610

    PubMed  CAS  Google Scholar 

  96. Moskovtsev SI, Willis J, Mullen JB (2006) Age-related decline in sperm deoxyribonucleic acid integrity in patients evaluated for male infertility. Fertil Steril 85(2):496–499

    PubMed  CAS  Google Scholar 

  97. Moskovtsev SI et al (2007) Sperm survival: relationship to age-related sperm DNA integrity in infertile men. Arch Androl 53(1):29–32

    PubMed  CAS  Google Scholar 

  98. Plastira K et al (2007) The effects of age on DNA fragmentation, chromatin packaging and conventional semen parameters in spermatozoa of oligoasthenoteratozoospermic patients. J Assist Reprod Genet 24(10):437–443

    PubMed Central  PubMed  Google Scholar 

  99. Singh NP, Muller CH, Berger RE (2003) Effects of age on DNA double-strand breaks and apoptosis in human sperm. Fertil Steril 80(6):1420–1430

    PubMed  Google Scholar 

  100. Kunzle R et al (2003) Semen quality of male smokers and nonsmokers in infertile couples. Fertil Steril 79(2):287–291

    PubMed  Google Scholar 

  101. Potts RJ et al (1999) Sperm chromatin damage associated with male smoking. Mutat Res 423(1–2):103–111

    PubMed  CAS  Google Scholar 

  102. Saleh RA et al (2003) Evaluation of nuclear DNA damage in spermatozoa from infertile men with varicocele. Fertil Steril 80(6):1431–1436

    PubMed  Google Scholar 

  103. Xing W, Krishnamurthy H, Sairam MR (2003) Role of follitropin receptor signaling in nuclear protein transitions and chromatin condensation during spermatogenesis. Biochem Biophys Res Commun 312(3):697–701

    PubMed  CAS  Google Scholar 

  104. Brewer L et al (2003) Dynamics of protamine 1 binding to single DNA molecules. J Biol Chem 278(43):42403–42408

    PubMed  CAS  Google Scholar 

  105. Carrell DT (2012) Epigenetics of the male gamete. Fertil Steril 97(2):267–274

    PubMed  CAS  Google Scholar 

  106. Hud NV et al (1993) Identification of the elemental packing unit of DNA in mammalian sperm cells by atomic force microscopy. Biochem Biophys Res Commun 193(3):1347–1354

    PubMed  CAS  Google Scholar 

  107. Vilfan ID, Conwell CC, Hud NV (2004) Formation of native-like mammalian sperm cell chromatin with folded bull protamine. J Biol Chem 279(19):20088–20095

    PubMed  CAS  Google Scholar 

  108. Sotolongo B, Lino E, Ward WS (2003) Ability of hamster spermatozoa to digest their own DNA. Biol Reprod 69(6):2029–2035

    PubMed  CAS  Google Scholar 

  109. Perreault SD, Zirkin BR (1982) Sperm nuclear decondensation in mammals: role of sperm-associated proteinase in vivo. J Exp Zool 224(2):253–257

    PubMed  CAS  Google Scholar 

  110. Tamburrino L et al (2012) Mechanisms and clinical correlates of sperm DNA damage. Asian J Androl 14(1):24–31

    PubMed Central  PubMed  CAS  Google Scholar 

  111. Hu JCY et al (2011) DNA fragmentation assay – a useful tool or a red herring? Fertil Steril 96(3 Suppl 1):S236

    Google Scholar 

  112. Bench GS et al (1996) DNA and total protamine masses in individual sperm from fertile mammalian subjects. Cytometry 23(4):263–271

    PubMed  CAS  Google Scholar 

  113. Hammoud S, Liu L, Carrell DT (2009) Protamine ratio and the level of histone retention in sperm selected from a density gradient preparation. Andrologia 41(2):88–94

    PubMed  CAS  Google Scholar 

  114. Pittoggi C et al (1999) A fraction of mouse sperm chromatin is organized in nucleosomal hypersensitive domains enriched in retroposon DNA. J Cell Sci 112(Pt 20):3537–3548

    PubMed  CAS  Google Scholar 

  115. Carrell DT, Emery BR, Hammoud S (2007) Altered protamine expression and diminished spermatogenesis: what is the link? Hum Reprod Update 13(3):313–327

    PubMed  CAS  Google Scholar 

  116. Martins RP, Ostermeier GC, Krawetz SA (2004) Nuclear matrix interactions at the human protamine domain: a working model of potentiation. J Biol Chem 279(50):51862–51868

    PubMed  CAS  Google Scholar 

  117. Ajduk A, Yamauchi Y, Ward MA (2006) Sperm chromatin remodeling after intracytoplasmic sperm injection differs from that of in vitro fertilization. Biol Reprod 75(3):442–451

    PubMed  CAS  Google Scholar 

  118. Kopecny V, Pavlok A (1975) Incorporation of Arginine-3H into chromatin of mouse eggs shortly after sperm penetration. Histochemistry 45(4):341–345

    PubMed  CAS  Google Scholar 

  119. Bode J et al (2000) Transcriptional augmentation: modulation of gene expression by scaffold/matrix-attached regions (S/MAR elements). Crit Rev Eukaryot Gene Expr 10(1):73–90

    PubMed  CAS  Google Scholar 

  120. Ward WS, Coffey DS (1991) DNA packaging and organization in mammalian spermatozoa: comparison with somatic cells. Biol Reprod 44(4):569–574

    PubMed  CAS  Google Scholar 

  121. Arpanahi A et al (2009) Endonuclease-sensitive regions of human spermatozoal chromatin are highly enriched in promoter and CTCF binding sequences. Genome Res 19(8):1338–1349

    PubMed Central  PubMed  CAS  Google Scholar 

  122. Wykes SM, Krawetz SA (2003) The structural organization of sperm chromatin. J Biol Chem 278(32):29471–29477

    PubMed  CAS  Google Scholar 

  123. Hammoud SS et al (2009) Distinctive chromatin in human sperm packages genes for embryo development. Nature 460(7254):473–478

    PubMed Central  PubMed  CAS  Google Scholar 

  124. van der Heijden GW et al (2006) Transmission of modified nucleosomes from the mouse male germline to the zygote and subsequent remodeling of paternal chromatin. Dev Biol 298(2):458–469

    PubMed  Google Scholar 

  125. Martins RP, Krawetz SA (2005) Towards understanding the epigenetics of transcription by chromatin structure and the nuclear matrix. Gene Ther Mol Biol 9(B):229–246

    PubMed Central  PubMed  Google Scholar 

  126. Ostermeier GC et al (2005) Toward using stable spermatozoal RNAs for prognostic assessment of male factor fertility. Fertil Steril 83(6):1687–1694

    PubMed  Google Scholar 

  127. Sotolongo B et al (2005) An endogenous nuclease in hamster, mouse, and human spermatozoa cleaves DNA into loop-sized fragments. J Androl 26(2):272–280

    PubMed  CAS  Google Scholar 

  128. Kramer JA, Krawetz SA (1996) Nuclear matrix interactions within the sperm genome. J Biol Chem 271(20):11619–11622

    PubMed  CAS  Google Scholar 

  129. Nadel B, De Lara J, Ward WS (1995) Structure of the rRNA genes in the hamster sperm nucleus. J Androl 16(6):517–522

    PubMed  CAS  Google Scholar 

  130. Shaman JA, Yamauchi Y, Ward WS (2007) The sperm nuclear matrix is required for paternal DNA replication. J Cell Biochem 102(3):680–688

    PubMed  CAS  Google Scholar 

  131. Ward WS (2010) Function of sperm chromatin structural elements in fertilization and development. Mol Hum Reprod 16(1):30–36

    PubMed Central  PubMed  CAS  Google Scholar 

  132. Grewal SI, Elgin SC (2007) Transcription and RNA interference in the formation of heterochromatin. Nature 447(7143):399–406

    PubMed Central  PubMed  CAS  Google Scholar 

  133. Kloc A, Martienssen R (2008) RNAi, heterochromatin and the cell cycle. Trends Genet 24(10):511–517

    PubMed  CAS  Google Scholar 

  134. Haaf T, Ward DC (1995) Higher order nuclear structure in mammalian sperm revealed by in situ hybridization and extended chromatin fibers. Exp Cell Res 219(2):604–611

    PubMed  CAS  Google Scholar 

  135. Zalenskaya IA, Bradbury EM, Zalensky AO (2000) Chromatin structure of telomere domain in human sperm. Biochem Biophys Res Commun 279(1):213–218

    PubMed  CAS  Google Scholar 

  136. Zalensky A, Zalenskaya I (2007) Organization of chromosomes in spermatozoa: an additional layer of epigenetic information? Biochem Soc Trans 35(Pt 3):609–611

    PubMed  CAS  Google Scholar 

  137. Munne S et al (2004) Differences in chromosome susceptibility to aneuploidy and survival to first trimester. Reprod Biomed Online 8(1):81–90

    PubMed  Google Scholar 

  138. Vanneste E et al (2009) Chromosome instability is common in human cleavage-stage embryos. Nat Med 15(5):577–583

    PubMed  CAS  Google Scholar 

  139. Hassold T et al (1996) Human aneuploidy: incidence, origin, and etiology. Environ Mol Mutagen 28(3):167–175

    PubMed  CAS  Google Scholar 

  140. Gardner RJ, Sutherland GR (2004) Chromosome abnormalities and genetic counseling, 3rd edn. Oxford University Press, New York

    Google Scholar 

  141. Hassold T, Hunt P (2001) To err (meiotically) is human: the genesis of human aneuploidy. Nat Rev Genet 2(4):280–291

    PubMed  CAS  Google Scholar 

  142. Sloter E et al (2004) Effects of male age on the frequencies of germinal and heritable chromosomal abnormalities in humans and rodents. Fertil Steril 81(4):925–943

    PubMed  Google Scholar 

  143. Templado C, Bosch M, Benet J (2005) Frequency and distribution of chromosome abnormalities in human spermatozoa. Cytogenet Genome Res 111(3–4):199–205

    PubMed  CAS  Google Scholar 

  144. Angell RR (1991) Predivision in human oocytes at meiosis I: a mechanism for trisomy formation in man. Hum Genet 86(4):383–387

    PubMed  CAS  Google Scholar 

  145. Jones KT (2008) Meiosis in oocytes: predisposition to aneuploidy and its increased incidence with age. Hum Reprod Update 14(2):143–158

    PubMed  CAS  Google Scholar 

  146. Hu JCY et al (2011) The role of sperm aneuploidy assay. Fertil Steril 96(3 Suppl 1):S24–S25

    Google Scholar 

  147. Boveri T (1887) Ueber die “Befruchtung der Eier von Ascaris megalocephala”. Anat Anz 2:688–693

    Google Scholar 

  148. Pickett-Heaps J, Spurck T, Tippit D (1984) Chromosome motion and the spindle matrix. J Cell Biol 99(1 Pt 2):137s–143s

    PubMed Central  PubMed  CAS  Google Scholar 

  149. Bornens M et al (1987) Structural and chemical characterization of isolated centrosomes. Cell Motil Cytoskeleton 8(3):238–249

    PubMed  CAS  Google Scholar 

  150. Le Guen P, Crozet N (1989) Microtubule and centrosome distribution during sheep fertilization. Eur J Cell Biol 48(2):239–249

    PubMed  Google Scholar 

  151. Sathananthan AH et al (1991) Centrioles in the beginning of human development. Proc Natl Acad Sci U S A 88(11):4806–4810

    PubMed Central  PubMed  CAS  Google Scholar 

  152. Sathananthan AH et al (1996) The sperm centriole: its inheritance, replication and perpetuation in early human embryos. Hum Reprod 11(2):345–356

    PubMed  CAS  Google Scholar 

  153. Moomjy M et al (1999) Sperm integrity is critical for normal mitotic division and early embryonic development. Mol Hum Reprod 5(9):836–844

    PubMed  CAS  Google Scholar 

  154. Van Blerkom J, Davis P (1995) Evolution of the sperm aster after microinjection of isolated human sperm centrosomes into meiotically mature human oocytes. Hum Reprod 10(8):2179–2182

    PubMed  Google Scholar 

  155. Kimble M, Kuriyama R (1992) Functional components of microtubule-organizing centers. Int Rev Cytol 136:1–50

    PubMed  CAS  Google Scholar 

  156. Neri QV et al (2011) Assessment of the sperm centrosome. Fertil Steril 96(3 Suppl 1):S235–S236

    Google Scholar 

  157. Schatten G, Simerly C, Schatten H (1991) Maternal inheritance of centrosomes in mammals? Studies on parthenogenesis and polyspermy in mice. Proc Natl Acad Sci U S A 88(15):6785–6789

    PubMed Central  PubMed  CAS  Google Scholar 

  158. Palermo G, Munne S, Cohen J (1994) The human zygote inherits its mitotic potential from the male gamete. Hum Reprod 9(7):1220–1225

    PubMed  CAS  Google Scholar 

  159. Hamatani T (2012) Human spermatozoal RNAs. Fertil Steril 97(2):275–281

    PubMed  CAS  Google Scholar 

  160. Krawetz SA et al (2011) A survey of small RNAs in human sperm. Hum Reprod 26(12):3401–3412

    PubMed Central  PubMed  CAS  Google Scholar 

  161. Ostermeier GC et al (2005) A suite of novel human spermatozoal RNAs. J Androl 26(1):70–74

    PubMed  CAS  Google Scholar 

  162. Amanai M, Brahmajosyula M, Perry AC (2006) A restricted role for sperm-borne microRNAs in mammalian fertilization. Biol Reprod 75(6):877–884

    PubMed  CAS  Google Scholar 

  163. Yan W et al (2008) Birth of mice after intracytoplasmic injection of single purified sperm nuclei and detection of messenger RNAs and MicroRNAs in the sperm nuclei. Biol Reprod 78(5):896–902

    PubMed  CAS  Google Scholar 

  164. Curry E, Ellis SE, Pratt SL (2009) Detection of porcine sperm microRNAs using a heterologous microRNA microarray and reverse transcriptase polymerase chain reaction. Mol Reprod Dev 76(3):218–219

    PubMed  CAS  Google Scholar 

  165. Khraiwesh B et al (2010) Transcriptional control of gene expression by microRNAs. Cell 140(1):111–122

    PubMed  CAS  Google Scholar 

  166. Kim DH et al (2008) MicroRNA-directed transcriptional gene silencing in mammalian cells. Proc Natl Acad Sci U S A 105(42):16230–16235

    PubMed Central  PubMed  CAS  Google Scholar 

  167. Valeri N et al (2009) Epigenetics, miRNAs, and human cancer: a new chapter in human gene regulation. Mamm Genome 20(9–10):573–580

    PubMed  CAS  Google Scholar 

  168. Lian J et al (2009) Altered microRNA expression in patients with non-obstructive azoospermia. Reprod Biol Endocrinol 7:13

    PubMed Central  PubMed  Google Scholar 

  169. Rassoulzadegan M et al (2006) RNA-mediated non-mendelian inheritance of an epigenetic change in the mouse. Nature 441(7092):469–474

    PubMed  CAS  Google Scholar 

  170. Deng W, Lin H (2002) miwi, a murine homolog of piwi, encodes a cytoplasmic protein essential for spermatogenesis. Dev Cell 2(6):819–830

    PubMed  CAS  Google Scholar 

  171. Kuramochi-Miyagawa S et al (2004) Mili, a mammalian member of piwi family gene, is essential for spermatogenesis. Development 131(4):839–849

    PubMed  CAS  Google Scholar 

  172. Girard A et al (2006) A germline-specific class of small RNAs binds mammalian piwi proteins. Nature 442(7099):199–202

    PubMed  Google Scholar 

  173. Grandjean V et al (2009) The miR-124-Sox9 paramutation: RNA-mediated epigenetic control of embryonic and adult growth. Development 136(21):3647–3655

    PubMed  CAS  Google Scholar 

  174. Palini S et al (2011) Epigenetic regulatory mechanisms during preimplantation embryo development. Ann N Y Acad Sci 1221:54–60

    PubMed  CAS  Google Scholar 

  175. Carlson LL, Page AW, Bestor TH (1992) Properties and localization of DNA methyltransferase in preimplantation mouse embryos: implications for genomic imprinting. Genes Dev 6(12B):2536–2541

    PubMed  CAS  Google Scholar 

  176. Monk M, Boubelik M, Lehnert S (1987) Temporal and regional changes in DNA methylation in the embryonic, extraembryonic and germ cell lineages during mouse embryo development. Development 99(3):371–382

    PubMed  CAS  Google Scholar 

  177. World Health Organization (WHO) (1980) WHO laboratory manual for the examination and processing of human semen, vol 1. Cambridge University Press, Cambridge

    Google Scholar 

  178. World Health Organization (WHO) (1999) WHO laboratory manual for the examination and processing of human semen, vol 4, 4th edn. Cambridge University Press, Cambridge

    Google Scholar 

Download references

Acknowledgements

We are very appreciative to all clinicians and scientists at the Ronald O. Perelman AND Claudia Cohen Center for Reproductive Medicine and the Urology Department. We are thankful to Justin Kocent for help in the figures and Alessia Uccelli for listing the references.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gianpiero D. Palermo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Neri, Q.V., Hu, J., Rosenwaks, Z., Palermo, G.D. (2014). Understanding the Spermatozoon. In: Rosenwaks, Z., Wassarman, P. (eds) Human Fertility. Methods in Molecular Biology, vol 1154. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-0659-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0659-8_5

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-0658-1

  • Online ISBN: 978-1-4939-0659-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics