Skip to main content

Assessing Pseudomonas aeruginosa Virulence and the Host Response Using Murine Models of Acute and Chronic Lung Infection

  • Protocol
  • First Online:
Pseudomonas Methods and Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1149))

Abstract

Murine models of acute and chronic lung infection have been used in studying Pseudomonas aeruginosa for assessing in vivo behavior and for monitoring of the host response. These models provide an important resource for studies of the initiation and maintenance of bacterial infection, identify bacterial genes essential for in vivo maintenance and for the development and testing of new therapies. The rat has been used extensively as a model of chronic lung infection, whereas the mouse has been a model of acute and chronic infection. Intratracheal administration of planktonic bacterial cells in the mouse provides a model of acute pneumonia. Bacteria enmeshed in agar beads can be used in the rat and mouse to reproduce the lung pathology of cystic fibrosis patients with advanced chronic pulmonary disease. Here, we describe the methods to assess virulence of P. aeruginosa using prototype and clinical strains in the Sprague-Dawley rat and the C57BL/6NCrlBR mouse by monitoring several measurable read-outs including weight loss, mortality, in vivo growth curves, the competitive index of infectivity, and the inflammatory response.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bianconi I et al (2011) Positive signature-tagged mutagenesis in Pseudomonas aeruginosa: tracking patho-adaptive mutations promoting airways chronic infection. PLoS Pathog 7:e1001270

    Article  CAS  Google Scholar 

  2. Dunn MM, Toews GB, Hart D, Pierce AK (1985) The effects of systemic immunization of pulmonary clearance of Pseudomonas aeruginosa. Am Rev Respir Dis 131:426–431

    CAS  PubMed  Google Scholar 

  3. Lore NI et al (2012) Cystic fibrosis-niche adaptation of Pseudomonas aeruginosa reduces virulence in multiple infection hosts. PLoS ONE 7:e35648

    Article  CAS  Google Scholar 

  4. Schook LB, Carrick L Jr, Berk RS (1977) Experimental pulmonary infection of mice by tracheal intubation of Pseudomonas aeruginosa: the use of antineoplastic agents to overcome natural resistance. Can J Microbiol 23: 823–826

    Article  CAS  Google Scholar 

  5. Yu H, Hanes M, Chrisp CE, Boucher JC, Deretic V (1998) Microbial pathogenesis in cystic fibrosis: pulmonary clearance of mucoid Pseudomonas aeruginosa and inflammation in a mouse model of repeated respiratory challenge. Infect Immun 66:280–288

    Article  CAS  Google Scholar 

  6. McCray PB Jr, Zabner J, Jia HP, Welsh MJ, Thorne PS (1999) Efficient killing of inhaled bacteria in DeltaF508 mice: role of airway surface liquid composition. Am J Physiol 277: L183–L190

    Article  CAS  Google Scholar 

  7. Cash HA, Woods DE, McCullough B, Johanson WG Jr, Bass JA (1979) A rat model of chronic respiratory infection with Pseudomonas aeruginosa. Am Rev Respir Dis 119:453–459

    CAS  PubMed  Google Scholar 

  8. Klinger JD, Cash HA, Wood RE, Miler JJ (1983) Protective immunization against chronic Pseudomonas aeruginosa pulmonary infection in rats. Infect Immun 39:1377–1384

    Article  CAS  Google Scholar 

  9. Bragonzi A et al (2006) Sequence diversity of the mucABD locus in Pseudomonas aeruginosa isolates from patients with cystic fibrosis. Microbiology 152:3261–3269

    Article  CAS  Google Scholar 

  10. Hoiby N et al (2001) Pseudomonas aeruginosa and the in vitro and in vivo biofilm mode of growth. Microbes Infect 3:23–35

    Article  CAS  Google Scholar 

  11. Hodgson AE, Nelson SM, Brown MR, Gilbert PA (1995) Simple in vitro model for growth control of bacterial biofilms. J Appl Bacteriol 79:87–93

    Article  CAS  Google Scholar 

  12. Rejman J et al (2010) Impact of chronic pulmonary infection with Pseudomonas aeruginosa on transfection mediated by viral and nonviral vectors. Hum Gene Ther 21:351–356

    Article  CAS  Google Scholar 

  13. Cantin AM, Woods DE (1999) Aerosolized prolastin suppresses bacterial proliferation in a model of chronic Pseudomonas aeruginosa lung infection. Am J Respir Crit Care Med 160:1130–1135

    Article  CAS  Google Scholar 

  14. Amano H et al (2000) Role of cytokine-induced neutrophil chemoattractant-2 (CINC-2) alpha in a rat model of chronic bronchopulmonary infections with Pseudomonas aeruginosa. Cytokine 12:1662–1668

    Article  CAS  Google Scholar 

  15. Omri A, Suntres ZE, Shek PN (2002) Enhanced activity of liposomal polymyxin B against Pseudomonas aeruginosa in a rat model of lung infection. Biochem Pharmacol 64: 1407–1413

    Article  CAS  Google Scholar 

  16. Potvin E et al (2003) In vivo functional genomics of Pseudomonas aeruginosa for high-throughput screening of new virulence factors and antibacterial targets. Environ Microbiol 5:1294–1308

    Article  CAS  Google Scholar 

  17. Duan K, Dammel C, Stein J, Rabin H, Surette MG (2003) Modulation of Pseudomonas aeruginosa gene expression by host microflora through interspecies communication. Mol Microbiol 50:1477–1491

    Article  CAS  Google Scholar 

  18. Lehoux DE, Sanschagrin F, Kukavica-Ibrulj I, Potvin E, Levesque RC (2004) Identification of novel pathogenicity genes by PCR signature-tagged mutagenesis and related technologies. Methods Mol Biol 266:289–304

    CAS  PubMed  Google Scholar 

  19. Joly B et al (2005) Relative expression of Pseudomonas aeruginosa virulence genes analyzed by a real time RT-PCR method during lung infection in rats. FEMS Microbiol Lett 243: 271–278

    Article  Google Scholar 

  20. Woods DE, Cantin A, Cooley J, Kenney DM, Remold-O’Donnell E (2005) Aerosol treatment with MNEI suppresses bacterial proliferation in a model of chronic Pseudomonas aeruginosa lung infection. Pediatr Pulmonol 39:141–149

    Article  Google Scholar 

  21. Zhang L et al (2005) Antimicrobial peptide therapeutics for cystic fibrosis. Antimicrob Agents Chemother 49:2921–2927

    Article  CAS  Google Scholar 

  22. Boyer S et al (2005) Chronic pneumonia with Pseudomonas aeruginosa and impaired alveolar fluid clearance. Respir Res 6:17

    Article  Google Scholar 

  23. Kukavica-Ibrulj I, Levesque RC (2008) Animal models of chronic lung infection with Pseudomonas aeruginosa: useful tools for cystic fibrosis studies. Lab Anim 42:389–412

    Article  CAS  Google Scholar 

  24. Lehoux DE, Sanschagrin F, Levesque RC (2000) Genomics of the 35-kb pvd locus and analysis of novel pvdIJK genes implicated in pyoverdine biosynthesis in Pseudomonas aeruginosa. FEMS Microbiol Lett 190: 141–146

    Article  CAS  Google Scholar 

  25. Hava DL, Camilli A (2002) Large-scale identification of serotype 4 Streptococcus pneumoniae virulence factors. Mol Microbiol 45: 1389–1406

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Kukavica-Ibrulj I et al (2008) In vivo growth of Pseudomonas aeruginosa strains PAO1 and PA14 and the hypervirulent strain LESB58 in a rat model of chronic lung infection. J Bacteriol 190:2804–2813

    Article  CAS  Google Scholar 

  27. Winstanley C et al (2009) Newly introduced genomic prophage islands are critical determinants of in vivo competitiveness in the Liverpool epidemic strain of Pseudomonas aeruginosa. Genome Res 19:12–23

    Article  CAS  Google Scholar 

  28. Bragonzi A (2010) Murine models of acute and chronic lung infection with cystic fibrosis pathogens. Int J Med Microbiol 300: 584–593

    Article  Google Scholar 

Download references

Acknowledgements

R. C. Levesque is a research scholar of exceptional merit from the Fond de Recherche du Québec en Santé (FRQS). His laboratory is funded by the Canadian Institute for Health Research (CIHR), a CIHR-UK team grant, the CIHR-FRQS-Québec Respiratory Health Network (RSR), the Natural Sciences and Engineering Research Council of Canada (NSERC), Genome Québec, the Fonds de recherche du Québec Nature et technologies, and the Alberta Innovates Bio Solutions program.

Research in Bragonzi’s laboratory is funded by the Italian Cystic Fibrosis Foundation (CFaCore) and the European Commission (Grant NABATIVI, EU-FP7-HEALTH-2007-B, contract number 223670).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roger C. Levesque .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Kukavica-Ibrulj, I., Facchini, M., Cigana, C., Levesque, R.C., Bragonzi, A. (2014). Assessing Pseudomonas aeruginosa Virulence and the Host Response Using Murine Models of Acute and Chronic Lung Infection. In: Filloux, A., Ramos, JL. (eds) Pseudomonas Methods and Protocols. Methods in Molecular Biology, vol 1149. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-0473-0_58

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0473-0_58

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-0472-3

  • Online ISBN: 978-1-4939-0473-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics