Skip to main content

Photoactivation Mechanisms of Flavin-Binding Photoreceptors Revealed Through Ultrafast Spectroscopy and Global Analysis Methods

  • Protocol
  • First Online:
Flavins and Flavoproteins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1146))

Abstract

Flavin-binding photoreceptor proteins use the isoalloxazine moiety of flavin cofactors to absorb light in the blue/UV-A wavelength region and subsequently translate it into biological information. The underlying photochemical reactions and protein structural dynamics are delicately tuned by the protein environment and represent fundamental reactions in biology and chemistry. Due to their photo-switchable nature, these proteins can be studied efficiently with laser-flash induced transient absorption and emission spectroscopy with temporal precision down to the femtosecond time domain. Here, we describe the application of both visible and mid-IR ultrafast transient absorption and time-resolved fluorescence methods in combination with sophisticated global analysis procedures to elucidate the photochemistry and signal transduction of BLUF (Blue light receptors using FAD) and LOV (Light oxygen voltage) photoreceptor domains.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Briggs WR (2007) The LOV domain: a chromophore module servicing multiple photoreceptors. J Biomed Sci 14:499–504

    PubMed  CAS  Google Scholar 

  2. Christie JM, Briggs WR (2005) Blue-light sensing and signaling by the phototropins. In: Briggs WR, Spudich JL (eds) Handbook of photosensory receptors. Wiley-VCH, Weinheim, pp 277–304

    Google Scholar 

  3. Iseki M, Matsunaga S, Murakami A, Ohno K, Shiga K, Yoshida K, Sugai M, Takahashi T, Hori T, Watanabe M (2002) A blue-light-activated adenylyl cyclase mediates photoavoidance in Euglena gracilis. Nature 415:1047–1051

    PubMed  CAS  Google Scholar 

  4. Gomelsky M, Klug G (2002) BLUF: a novel FAD-binding domain involved in sensory transduction in microorganisms. Trends Biochem Sci 27:497–500

    PubMed  CAS  Google Scholar 

  5. Losi A, Gärtner W (2008) Bacterial bilin- and flavin-binding photoreceptors. Photochem Photobiol Sci 7:1168–1178

    PubMed  CAS  Google Scholar 

  6. Herrou J, Crosson S (2011) Function, structure and mechanism of bacterial photosensory LOV proteins. Nat Rev Microbiol 9:713–723

    PubMed Central  PubMed  CAS  Google Scholar 

  7. Hegemann P (2008) Algal sensory photoreceptors. Annu Rev Plant Biol 59:167–189

    PubMed  CAS  Google Scholar 

  8. Ulijasz AT, Vierstra RD (2011) Phytochrome structure and photochemistry: recent advances toward a complete molecular picture. Curr Opin Plant Biol 14:498–506

    PubMed  CAS  Google Scholar 

  9. van der Horst MA, Hellingwerf KJ (2004) Photoreceptor proteins, “star actors of modern times”: a review of the functional dynamics in the structure of representative members of six different photoreceptor families. Acc Chem Res 37:13–20

    PubMed  Google Scholar 

  10. Lee IR, Lee W, Zewail AH (2006) Primary steps of the photoactive yellow protein: isolated chromophore dynamics and protein directed function. Proc Natl Acad Sci U S A 103:258–262

    PubMed Central  PubMed  CAS  Google Scholar 

  11. Schroeder-Lang S, Schwaerzel M, Seifert R, Struenker T, Kateriya S, Looser J, Watanabe M, Kaupp UB, Hegemann P, Nagel G (2007) Fast manipulation of cellular cAMP level by light in vivo. Nat Methods 4:39–42

    CAS  Google Scholar 

  12. Strickland D, Moffat K, Sosnick TR (2008) Light-activated DNA binding in a designed allosteric protein. Proc Natl Acad Sci U S A 105:10709–10714

    PubMed Central  PubMed  CAS  Google Scholar 

  13. Wu YI, Frey D, Lungu OI, Jaehrig A, Schlichting I, Kuhlman B, Hahn KM (2009) A genetically encoded photoactivatable Rac controls the motility of living cells. Nature 461:104–108

    PubMed Central  PubMed  CAS  Google Scholar 

  14. Stierl M, Stumpf P, Udwari D, Gueta R, Hagedorn R, Losi A, Gärtner W, Petereit L, Efetova M, Schwarzel M, Oertner TG, Nagel G, Hegemann P (2011) Light modulation of cellular cAMP by a small bacterial photoactivated adenylyl cyclase, bPAC, of the soil bacterium Beggiatoa. J Biol Chem 286:1181–1188

    PubMed Central  PubMed  CAS  Google Scholar 

  15. Ryu MH, Moskvin OV, Siltberg-Liberles J, Gomelsky M (2010) Natural and engineered photoactivated nucleotidyl cyclases for optogenetic applications. J Biol Chem 285: 41501–41508

    PubMed Central  PubMed  CAS  Google Scholar 

  16. Strickland D, Lin Y, Wagner E, Hope CM, Zayner J, Antoniou C, Sosnick TR, Weiss EL, Glotzer M (2012) TULIPs: tunable, light-controlled interacting protein tags for cell biology. Nat Methods 9:379–384

    PubMed Central  PubMed  CAS  Google Scholar 

  17. Berera R, van Grondelle R, Kennis JTM (2009) Ultrafast transient absorption spectroscopy: principles and application to photosynthetic systems. Photosynth Res 101:105–118

    PubMed Central  PubMed  CAS  Google Scholar 

  18. Andel F, Hasson KC, Gai F, Anfinrud PA, Mathies RA (1997) Femtosecond time-resolved spectroscopy of the primary photochemistry of phytochrome. Biospectroscopy 3:421–433

    CAS  Google Scholar 

  19. Miura R (2001) Versatility and specificity in flavoenzymes: control mechanisms of flavin reactivity. Chem Rec 1:183–194

    PubMed  CAS  Google Scholar 

  20. Lacowicz J (2006) Principles of fluorescence spectroscopy, 3rd edn. Springer, New York

    Google Scholar 

  21. Groot ML, van Wilderen LJGW, Di Donato M (2007) Time-resolved methods in biophysics. 5. Femtosecond time-resolved and dispersed infrared spectroscopy on proteins. Photochem Photobiol Sci 6:501–507

    PubMed  CAS  Google Scholar 

  22. van Stokkum IHM, Larsen DS, van Grondelle R (2004) Global and target analysis of time-resolved spectra. Biochim Biophys Acta 1657: 82–104

    PubMed  Google Scholar 

  23. Holzwarth AR (1996) Data analysis of time-resolved measurements. In: Amesz J, Hoff AJ (eds) Biophysical techniques in photosynthesis. Kluwer, Dordrecht, The Netherlands, pp 75–92

    Google Scholar 

  24. van Stokkum IHM, van Oort B, van Mourik F, Gobets B, van Amerongen H (2008) (Sub)-picosecond spectral evolution of fluorescence studied with a synchroscan streak-camera system and target analysis. In: Aartsma TJ, Matysik J (eds) Biophysical techniques in photosynthesis, vol II. Springer, Dordrecht, The Netherlands, pp 223–240

    Google Scholar 

  25. van Stokkum IHM (2005) Global and target analysis of time-resolved spectra. In: Lecture notes for the Troisième Cycle de la Physique en Suisse Romande, Department of Physics and Astronomy, Faculty of Sciences, Vrije Universiteit, Amsterdam, The Netherlands

    Google Scholar 

  26. van Stokkum IHM, Bal HE (2006) A problem solving environment for interactive modelling of multiway data. Concurrency Comput Pract Ex 18:263–269

    Google Scholar 

  27. Nagle JF, Parodi LA, Lozier RH (1982) Procedure for testing kinetic-models of the photocycle of bacteriorhodopsin. Biophys J 38: 161–174

    PubMed Central  PubMed  CAS  Google Scholar 

  28. Mullen KM, van Stokkum IHM (2007) TIMP: an R package for modeling multi-way spectroscopic measurements. J Stat Softw 18: 1–46

    Google Scholar 

  29. R Development Core Team (2010) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria

    Google Scholar 

  30. Snellenburg JJ, Laptenok SP, Seger R, Mullen KM, van Stokkum IHM (2012) Glotaran: a Java-based graphical user interface for the R-package TIMP. J Stat Softw 49:1–22

    Google Scholar 

  31. Laan W, Bednarz T, Heberle J, Hellingwerf KJ (2004) Chromophore composition of a heterologously expressed BLUF-domain. Photochem Photobiol Sci 3:1011–1016

    PubMed  CAS  Google Scholar 

  32. Gomelsky M, Hoff WD (2011) Light helps bacteria make important lifestyle decisions. Trends Microbiol 19:441–448

    PubMed  CAS  Google Scholar 

  33. Masuda S, Bauer CE (2002) AppA is a blue light photoreceptor that antirepresses photosynthesis gene expression in Rhodobacter sphaeroides. Cell 110:613–623

    PubMed  CAS  Google Scholar 

  34. Masuda S, Hasegawa K, Ohta H, Ono TA (2008) Crucial role in light signal transduction for the conserved Met93 of the BLUF protein PixD/Slr1694. Plant Cell Physiol 49:1600–1606

    PubMed  CAS  Google Scholar 

  35. Fiedler B, Börner T, Wilde A (2005) Phototaxis in the cyanobacterium Synechocystis sp. PCC 6803: role of different photoreceptors. Photochem Photobiol 81:1481–1488

    PubMed  CAS  Google Scholar 

  36. Anderson S, Dragnea V, Masuda S, Ybe J, Moffat K, Bauer C (2005) Structure of a novel photoreceptor, the BLUF domain of AppA from Rhodobacter sphaeroides. Biochemistry 44:7998–8005

    PubMed Central  PubMed  CAS  Google Scholar 

  37. Yuan H, Anderson S, Masuda S, Dragnea V, Moffat K, Bauer C (2006) Crystal structures of the Synechocystis photoreceptor Slr1694 reveal distinct structural states related to signaling. Biochemistry 45:12687–12694

    PubMed Central  PubMed  CAS  Google Scholar 

  38. Neiss C, Saalfrank P (2003) Ab initio quantum chemical investigation of the first steps of the photocycle of phototropin: a model study. Photochem Photobiol 77:101–109

    PubMed  CAS  Google Scholar 

  39. Neiss C, Saalfrank P, Parac M, Grimme S (2003) Quantum chemical calculation of excited states of flavin-related molecules. J Phys Chem A 107:140–147

    CAS  Google Scholar 

  40. Swartz TE, Corchnoy SB, Christie JM, Lewis JW, Szundi I, Briggs WR, Bogomolni RA (2001) The photocycle of a flavin-binding domain of the blue light photoreceptor phototropin. J Biol Chem 276:36493–36500

    PubMed  CAS  Google Scholar 

  41. Salomon M, Christie JM, Knieb E, Lempert U, Briggs WR (2000) Photochemical and mutational analysis of the FMN-binding domains of the plant blue light receptor, phototropin. Biochemistry 39:9401–9410

    PubMed  CAS  Google Scholar 

  42. Holzer W, Penzkofer A, Fuhrmann M, Hegemann P (2002) Spectroscopic characterization of flavin mononucleotide bound to the LOV1 domain of Phot1 from Chlamydomonas reinhardtii. Photochem Photobiol 75:479–487

    PubMed  CAS  Google Scholar 

  43. Losi A, Polverini E, Quest B, Gärtner W (2002) First evidence for phototropin-related blue-light receptors in prokaryotes. Biophys J 82:2627–2634

    PubMed Central  PubMed  CAS  Google Scholar 

  44. Hasegawa K, Masuda S, Ono T-A (2004) Structural intermediate in the photocycle of a BLUF (sensor of blue light using FAD) protein Slr1694 in a cyanobacterium Synechocystis sp. PCC6803. Biochemistry 43:14979–14986

    PubMed  CAS  Google Scholar 

  45. Bonetti C, Mathes T, van Stokkum IHM, Mullen KM, Groot M-L, van Grondelle R, Hegemann P, Kennis JTM (2008) Hydrogen bond switching among flavin and amino acid side chains in the BLUF photoreceptor observed by ultrafast infrared spectroscopy. Biophys J 95:4790–4802

    PubMed Central  PubMed  CAS  Google Scholar 

  46. Mathes T, Zhu J, van Stokkum IHM, Groot ML, Hegemann P, Kennis JTM (2012) Hydrogen bond switching among flavin and amino acids determines the nature of proton-coupled electron transfer in BLUF photoreceptors. J Phys Chem Lett 3:203–208

    CAS  Google Scholar 

  47. Jung A, Reinstein J, Domratcheva T, Shoeman RL, Schlichting I (2006) Crystal structures of the AppA BLUF domain photoreceptor provide insights into blue light-mediated signal transduction. J Mol Biol 362:717–732

    PubMed  CAS  Google Scholar 

  48. Jung A, Domratcheva T, Tarutina M, Wu Q, Ko W-H, Shoeman RL, Gomelsky M, Gardner KH, Schlichting I (2005) Structure of a bacterial BLUF photoreceptor: insights into blue light-mediated signal transduction. Proc Natl Acad Sci U S A 102: 12350–12355

    PubMed Central  PubMed  CAS  Google Scholar 

  49. Kita A, Okajima K, Morimoto Y, Ikeuchi M, Miki K (2005) Structure of a cyanobacterial BLUF protein, Tll0078, containing a novel FAD-binding blue light sensor domain. J Mol Biol 349:1–9

    PubMed  CAS  Google Scholar 

  50. Stelling AL, Ronayne KL, Nappa J, Tonge PJ, Meech SR (2007) Ultrafast structural dynamics in BLUF domains: transient infrared spectroscopy of AppA and its mutants. J Am Chem Soc 129:15556–15564

    PubMed  CAS  Google Scholar 

  51. Gauden M, van Stokkum IHM, Key JM, Lührs DC, van Grondelle R, Hegemann P, Kennis JTM (2006) Hydrogen-bond switching through a radical pair mechanism in a flavin-binding photoreceptor. Proc Natl Acad Sci U S A 103:10895–10900

    PubMed Central  PubMed  CAS  Google Scholar 

  52. Sadeghian K, Bocola M, Schütz M (2008) A conclusive mechanism of the photoinduced reaction cascade in blue light using flavin photoreceptors. J Am Chem Soc 130: 12501–12513

    PubMed  CAS  Google Scholar 

  53. Domratcheva T, Grigorenko BL, Schlichting I, Nemukhin AV (2008) Molecular models predict light-induced glutamine tautomerization in BLUF photoreceptors. Biophys J 94: 3872–3879

    PubMed Central  PubMed  CAS  Google Scholar 

  54. Grinstead JS, Avila-Perez M, Hellingwerf KJ, Boelens R, Kaptein R (2006) Light-induced flipping of a conserved glutamine sidechain and its orientation in the AppA BLUF domain. J Am Chem Soc 128: 15066–15067

    PubMed  CAS  Google Scholar 

  55. Unno M, Masuda S, Ono T-A, Yamauchi S (2006) Orientation of a key glutamine residue in the BLUF domain from AppA revealed by mutagenesis, spectroscopy, and quantum chemical calculations. J Am Chem Soc 128: 5638–5639

    PubMed  CAS  Google Scholar 

  56. Ishikita H (2008) Light-induced hydrogen bonding pattern and driving force of electron transfer in AppA BLUF domain photoreceptor. J Biol Chem 283:30618–30623

    PubMed Central  PubMed  CAS  Google Scholar 

  57. Hsiao YW, Gotze JP, Thiel W (2012) The central role of Gln63 for the hydrogen bonding network and UV-visible spectrum of the AppA BLUF domain. J Phys Chem B 116: 8064–8073

    PubMed  CAS  Google Scholar 

  58. Gauden M, Yeremenko S, Laan W, van Stokkum IHM, Ihalainen JA, van Grondelle R, Hellingwerf KJ, Kennis JTM (2005) Photocycle of the flavin-binding photoreceptor AppA, a bacterial transcriptional antirepressor of photosynthesis genes. Biochemistry 44:3653–3662

    PubMed  CAS  Google Scholar 

  59. Mathes T, van Stokkum IHM, Bonetti C, Hegemann P, Kennis JTM (2011) The hydrogen-bond switch reaction of the Blrb BLUF domain of Rhodobacter sphaeroides. J Phys Chem B 115:7963–7971

    PubMed  CAS  Google Scholar 

  60. Bonetti C, Stierl M, Mathes T, van Stokkum IHM, Mullen KM, Cohen-Stuart TA, van Grondelle R, Hegemann P, Kennis JTM (2009) The role of key amino acids in the photoactivation pathway of the Synechocystis Slr1694 BLUF domain. Biochemistry 48: 11458–11469

    PubMed  CAS  Google Scholar 

  61. Kennis JTM, Groot M-L (2007) Ultrafast spectroscopy of biological photoreceptors. Curr Opin Struct Biol 17:623–630

    PubMed  CAS  Google Scholar 

  62. Tanaka K, Nakasone Y, Okajima K, Ikeuchi M, Tokutomi S, Terazima M (2011) Light-induced conformational change and transient dissociation reaction of the BLUF photoreceptor Synechocystis PixD (Slr1694). J Mol Biol 409:773–785

    PubMed  CAS  Google Scholar 

  63. Tanaka K, Nakasone Y, Okajima K, Ikeuchi M, Tokutomi S, Terazima M (2009) Oligomeric-state-dependent conformational change of the BLUF protein TePixD (Tll0078). J Mol Biol 386:1290–1300

    PubMed  CAS  Google Scholar 

  64. Majerus T, Kottke T, Laan W, Hellingwerf K, Heberle J (2007) Time-resolved FT-IR spectroscopy traces signal relay within the blue-light receptor AppA. ChemPhysChem 8: 1787–1789

    PubMed  CAS  Google Scholar 

  65. van Stokkum IH, Gobets B, Gensch T, Mourik F, Hellingwerf KJ, Grondelle R, Kennis JT (2006) (Sub)-picosecond spectral evolution of fluorescence in photoactive proteins studied with a synchroscan streak camera system. Photochem Photobiol 82:380–388

    PubMed  Google Scholar 

  66. Grinstead JS, Hsu ST, Laan W, Bonvin AM, Hellingwerf KJ, Boelens R, Kaptein R (2006) The solution structure of the AppA BLUF domain: insight into the mechanism of light-induced signaling. ChemBioChem 7:187–193

    PubMed  CAS  Google Scholar 

  67. van den Berg PAW, Feenstra KA, Mark AE, Berendsen HJC, Visser AJWG (2002) Dynamic conformations of flavin adenine dinucleotide: simulated molecular dynamics of the flavin cofactor related to the time-resolved fluorescence characteristics. J Phys Chem B 106:8858–8869

    Google Scholar 

  68. Gauden M, Grinstead JS, Laan W, van Stokkum IHM, Avila-Pérez M, Toh KC, Boelens R, Kaptein R, van Grondelle R, Hellingwerf KJ, Kennis JTM (2007) On the role of aromatic side chains in the photoactivation of BLUF domains. Biochemistry 46:7405–7415

    PubMed  CAS  Google Scholar 

  69. Toh KC, van Stokkum IHM, Hendriks J, Alexandre MTA, Arents JC, Perez MA, van Grondelle R, Hellingwerf KJ, Kennis JTM (2008) On the signaling mechanism and the absence of photoreversibility in the AppA BLUF domain. Biophys J 95:312–321

    PubMed Central  PubMed  CAS  Google Scholar 

  70. Dragnea V, Waegele M, Balascuta S, Bauer C, Dragnea B (2005) Time-resolved spectroscopic studies of the AppA blue-light receptor BLUF domain from Rhodobacter sphaeroides. Biochemistry 44:15978–15985

    PubMed Central  PubMed  CAS  Google Scholar 

  71. Wolf MMN, Schumann C, Gross R, Domratcheva T, Diller R (2008) Ultrafast infrared spectroscopy of riboflavin: dynamics, electronic structure, and vibrational mode analysis. J Phys Chem B 112:13424–13432

    PubMed  CAS  Google Scholar 

  72. Laan W, Gauden M, Yeremenko S, van Grondelle R, Kennis JTM, Hellingwerf KJ (2006) On the mechanism of activation of the BLUF domain of AppA. Biochemistry 45: 51–60

    PubMed  CAS  Google Scholar 

  73. Alexandre MTA, Domratcheva T, Bonetti C, van Wilderen LJGW, van Grondelle R, Groot M-L, Hellingwerf KJ, Kennis JTM (2009) Primary reactions of the LOV2 domain of phototropin studied with ultrafast mid-infrared spectroscopy and quantum chemistry. Biophys J 97:227–237

    PubMed Central  PubMed  CAS  Google Scholar 

  74. Martin CB, Tsao ML, Hadad CM, Platz MS (2002) The reaction of triplet flavin with indole. A study of the cascade of reactive intermediates using density functional theory and time resolved infrared spectroscopy. J Am Chem Soc 124:7226–7234

    PubMed  CAS  Google Scholar 

  75. Barth A (2000) The infrared absorption of amino acid side chains. Prog Biophys Mol Biol 74:141–173

    PubMed  CAS  Google Scholar 

  76. Wolpert M, Hellwig P (2006) Infrared spectra and molar absorption coefficients of the 20 alpha amino acids in aqueous solutions in the spectral range from 1800 to 500 cm−1. Spectrochim Acta A Mol Biomol Spectrosc 64:987–1001

    PubMed  Google Scholar 

  77. Udvarhelyi A, Domratcheva T (2011) Photoreaction in BLUF receptors: proton-coupled electron transfer in the flavin-Gln-Tyr system. Photochem Photobiol 87:554–563

    PubMed  CAS  Google Scholar 

  78. Müller F, Hemmerich P, Ehrenberg A, Palmer G, Massey V (1970) Chemical and electronic structure of neutral flavin radical as revealed by electron spin resonance spectroscopy of chemically and isotopically substituted derivatives. Eur J Biochem 14:185–196

    PubMed  Google Scholar 

  79. Kandori H, Iwata T, Watanabe A, Iseki M, Watanabe M (2011) Strong donation of the hydrogen bond of tyrosine during photoactivation of the BLUF domain. J Phys Chem Lett 2:1015–1019

    Google Scholar 

  80. Kraft BJ, Masuda S, Kikuchi J, Dragnea V, Tollin G, Zaleski JM, Bauer CE (2003) Spectroscopic and mutational analysis of the blue-light photoreceptor AppA: a novel photocycle involving flavin stacking with an aromatic amino acid. Biochemistry 42: 6726–6734

    PubMed  CAS  Google Scholar 

  81. Laan W, van der Horst MA, van Stokkum IH, Hellingwerf KJ (2003) Initial characterization of the primary photochemistry of AppA, a blue-light-using flavin adenine dinucleotide-domain containing transcriptional antirepressor protein from Rhodobacter sphaeroides: a key role for reversible intramolecular proton transfer from the flavin adenine dinucleotide chromophore to a conserved tyrosine? Photochem Photobiol 78:290–297

    PubMed  CAS  Google Scholar 

  82. Okajima K, Fukushima Y, Suzuki H, Kita A, Ochiai Y, Katayama M, Shibata Y, Miki K, Noguchi T, Itoh S, Ikeuchi M (2006) Fate determination of the flavin photoreceptions in the cyanobacterial blue light receptor TePixD (T110078). J Mol Biol 363:10–18

    PubMed  CAS  Google Scholar 

  83. Zirak P, Penzkofer A, Lehmpfuhl C, Mathes T, Hegemann P (2007) Absorption and emission spectroscopic characterization of blue-light receptor Slr1694 from Synechocystis sp. PCC6803. J Photochem Photobiol B 86: 22–34

    PubMed  CAS  Google Scholar 

  84. Zirak P, Penzkofer A, Schiereis T, Hegemann P, Jung A, Schlichting I (2006) Photodynamics of the small BLUF protein BlrB from Rhodobacter sphaeroides. J Photochem Photobiol B 83: 180–194

    PubMed  CAS  Google Scholar 

  85. Zirak P, Penzkofer A, Schiereis T, Hegemann P, Jung A, Schlichting I (2005) Absorption and fluorescence spectroscopic characterization of BLUF domain of AppA from Rhodobacter sphaeroides. Chem Phys 315: 142–154

    CAS  Google Scholar 

  86. Zirak P, Penzkofer A, Hegemann P, Mathes T (2007) Photo dynamics of BLUF domain mutant H44R of AppA from Rhodobacter sphaeroides. Chem Phys 335:15–27

    CAS  Google Scholar 

  87. Mathes T, van Stokkum IH, Stierl M, Kennis JT (2012) Redox modulation of flavin and tyrosine determines photoinduced proton-coupled electron transfer and photoactivation of BLUF photoreceptors. J Biol Chem 287: 31725–31738

    PubMed Central  PubMed  CAS  Google Scholar 

  88. Taylor BL, Zhulin IB (1999) PAS domains: internal sensors of oxygen, redox potential, and light. Microbiol Mol Biol Rev 63: 479–506

    PubMed Central  PubMed  CAS  Google Scholar 

  89. Crosson S, Rajagopal S, Moffat K (2003) The LOV domain family: photoresponsive signaling modules coupled to diverse output domains. Biochemistry 42:2–10

    PubMed  CAS  Google Scholar 

  90. Harper SM, Neil LC, Gardner KH (2003) Structural basis of a phototropin light switch. Science 301:1541–1544

    PubMed  CAS  Google Scholar 

  91. Harper SM, Christie JM, Gardner KH (2004) Disruption of the LOV-J alpha helix interaction activates phototropin kinase activity. Biochemistry 43:16184–16192

    PubMed  CAS  Google Scholar 

  92. Alexandre MTA, Arents JC, van Grondelle R, Hellingwerf KJ, Kennis JTM (2007) A base-catalyzed mechanism for dark state recovery in the Avena sativa phototropin-1 LOV2 domain. Biochemistry 46:3129–3137

    PubMed  CAS  Google Scholar 

  93. Zoltowski BD, Vaccaro B, Crane BR (2009) Mechanism-based tuning of a LOV domain photoreceptor. Nat Chem Biol 5:827–834

    PubMed Central  PubMed  CAS  Google Scholar 

  94. Möglich A, Ayers RA, Moffat K (2009) Design and signaling mechanism of light-regulated histidine kinases. J Mol Biol 385: 1433–1444

    PubMed Central  PubMed  Google Scholar 

  95. Wu YI, Wang XB, He L, Montell D, Hahn KM (2010) Spatiotemporal control of small GTPases with light using the LOV domain. In: Voigt C (ed) Synthetic biology, methods for part/device characterization and chassis engineering Pt A, vol 497, Methods in enzymology. Elsevier, San Diego, pp 393–407

    Google Scholar 

  96. Strickland D, Yao XL, Gawlak G, Rosen MK, Gardner KH, Sosnick TR (2010) Rationally improving LOV domain-based photoswitches. Nat Methods 7:623–626

    PubMed Central  PubMed  CAS  Google Scholar 

  97. Zoltowski BD, Gardner KH (2011) Tripping the light fantastic: blue-light photoreceptors as examples of environmentally modulated protein-protein interactions. Biochemistry 50:4–16

    PubMed Central  PubMed  CAS  Google Scholar 

  98. Pham E, Mills E, Truong K (2011) A synthetic photoactivated protein to generate local or global Ca2+ signals. Chem Biol 18:880–890

    PubMed  CAS  Google Scholar 

  99. Drepper T, Eggert T, Circolone F, Heck A, Krauss U, Guterl J-K, Wendorff M, Losi A, Gärtner W, Jäger K-E (2007) Reporter proteins for in vivo fluorescence without oxygen. Nat Biotechnol 25:443–445

    PubMed  CAS  Google Scholar 

  100. Chapman S, Faulkner C, Kaiserli E, Garcia-Mata C, Savenkov EI, Roberts AG, Oparka KJ, Christie JM (2008) The photoreversible fluorescent protein iLOV outperforms GFP as a reporter of plant virus infection. Proc Natl Acad Sci U S A 105:20038–20043

    PubMed Central  PubMed  CAS  Google Scholar 

  101. Shu XK, Lev-Ram V, Deerinck TJ, Qi YC, Ramko EB, Davidson MW, Jin YS, Ellisman MH, Tsien RY (2011) A genetically encoded tag for correlated light and electron microscopy of intact cells, tissues, and organisms. PLoS Biol 9:10

    Google Scholar 

  102. Crosson S, Moffat K (2001) Structure of a flavin-binding plant photoreceptor domain: insights into light-mediated signal transduction. Proc Natl Acad Sci U S A 98:2995–3000

    PubMed Central  PubMed  CAS  Google Scholar 

  103. Fedorov R, Schlichting I, Hartmann E, Domratcheva T, Fuhrmann M, Hegemann P (2003) Crystal structures and molecular mechanism of a light-induced signaling switch: the Phot-LOV1 domain from Chlamydomonas reinhardtii. Biophys J 84:2474–2482

    PubMed Central  PubMed  CAS  Google Scholar 

  104. Halavaty AS, Moffat K (2007) N- and C-terminal flanking regions modulate light-induced signal transduction in the LOV2 domain of the blue light sensor phototropin 1 from Avena sativa. Biochemistry 46: 14001–14009

    PubMed  CAS  Google Scholar 

  105. Zoltowski BD, Schwerdtfeger C, Widom J, Loros JJ, Bilwes AM, Dunlap JC, Crane BR (2007) Conformational switching in the fungal light sensor vivid. Science 316: 1054–1057

    PubMed Central  PubMed  CAS  Google Scholar 

  106. Mitre D, Yang X, Moffat K (2012) Crystal structures of Aureochrome1 LOV suggest new design strategies for optogenetics. Structure 20:698–706

    Google Scholar 

  107. Möglich A, Moffat K (2007) Structural basis for light-dependent signaling in the dimeric LOV domain of the photosensor YtvA. J Mol Biol 373:112–126

    PubMed Central  PubMed  Google Scholar 

  108. Kennis JTM, Alexandre MTA (2006) Mechanisms of light activation in flavin-binding photoreceptors. In: Silva E, Edwards AM (eds) Flavins: photochemistry and photobiology. The Royal Society for Chemistry Publishing, Cambridge, pp 287–319

    Google Scholar 

  109. Salomon M, Eisenreich W, Dürr H, Schleicher E, Knieb E, Massey V, Rüdiger W, Müller F, Bacher A, Richter G (2001) An optomechanical transducer in the blue light receptor phototropin from Avena sativa. Proc Natl Acad Sci U S A 98:12357–12361

    PubMed Central  PubMed  CAS  Google Scholar 

  110. Crosson S, Moffat K (2002) Photoexcited structure of a plant photoreceptor domain reveals a light-driven molecular switch. Plant Cell 14:1067–1075

    PubMed Central  PubMed  CAS  Google Scholar 

  111. van Stokkum IHM, Gauden M, Crosson S, van Grondelle R, Moffat K, Kennis JTM (2011) The primary photophysics of the Avena sativa phototropin 1 LOV2 domain observed with time-resolved emission spectroscopy. Photochem Photobiol 87:534–541

    PubMed  Google Scholar 

  112. Losi A, Quest B, Gärtner W (2003) Listening to the blue: the time-resolved thermodynamics of the bacterial blue-light receptor YtvA and its isolated LOV domain. Photochem Photobiol Sci 2:759–766

    PubMed  CAS  Google Scholar 

  113. Kennis JTM, Crosson S, Gauden M, van Stokkum IHM, Moffat K, van Grondelle R (2003) Primary reactions of the LOV2 domain of phototropin, a plant blue-light photoreceptor. Biochemistry 42:3385–3392

    PubMed  CAS  Google Scholar 

  114. Kottke T, Heberle J, Hehn D, Dick B, Hegemann P (2003) Phot-LOV1: photocycle of a blue-light receptor domain from the green alga Chlamydomonas reinhardtii. Biophys J 84:1192–1201

    PubMed Central  PubMed  CAS  Google Scholar 

  115. Wolf MMN, Zimmermann H, Diller R, Domratcheva T (2011) Vibrational mode analysis of isotope-labeled electronically excited riboflavin. J Phys Chem B 115: 7621–7628

    PubMed  CAS  Google Scholar 

  116. Schüttrigkeit TA, Kompa CK, Salomon M, Rüdiger W, Michel-Beyerle ME (2003) Primary photophysics of the FMN binding LOV2 domain of the plant blue light receptor phototropin of Avena sativa. Chem Phys 294:501–508

    Google Scholar 

  117. Alexandre MTA, van Grondelle R, Hellingwerf KJ, Robert B, Kennis JTM (2008) Perturbation of the ground-state electronic structure of FMN by the conserved cysteine in phototropin LOV2 domains. Phys Chem Chem Phys 10:6693–6702

    PubMed  CAS  Google Scholar 

  118. Swartz TE, Wenzel PJ, Corchnoy SB, Briggs WR, Bogomolni RA (2002) Vibration spectroscopy reveals light-induced chromophore and protein structural changes in the LOV2 domain of the plant blue-light receptor phototropin 1. Biochemistry 41:7183–7189

    PubMed  CAS  Google Scholar 

  119. Ataka K, Hegemann P, Heberle J (2003) Vibrational spectroscopy of an algal Phot-LOV1 domain probes the molecular changes associated with blue-light reception. Biophys J 84:466–474

    PubMed Central  PubMed  CAS  Google Scholar 

  120. Holzer W, Penzkofer A, Hegemann P (2005) Absorption and emission spectroscopic characterisation of the LOV2-His domain of phot from Chlamydomonas reinhardtii. Chem Phys 308:79–91

    CAS  Google Scholar 

  121. Holzer W, Penzkofer A, Susdorf T, Alvarez M, Islam SDM, Hegemann P (2004) Absorption and emission spectroscopic characterisation of the LOV2-domain of phot from Chlamydomonas reinhardtii fused to a maltose binding protein. Chem Phys 302: 105–118

    CAS  Google Scholar 

  122. Alexandre MTA, Purcell EB, van Grondelle R, Robert B, Kennis JTM, Crosson S (2010) Electronic and protein structural dynamics of a photosensory histidine kinase. Biochemistry 49:4752–4759

    PubMed Central  PubMed  CAS  Google Scholar 

  123. Bednarz T, Losi A, Gärtner W, Hegemann P, Heberle J (2004) Functional variations among LOV domains as revealed by FT-IR difference spectroscopy. Photochem Photobiol Sci 3: 575–579

    PubMed  CAS  Google Scholar 

  124. Sato Y, Nabeno M, Iwata T, Tokutomi S, Sakurai M, Kandori H (2007) Heterogeneous environment of the S-H group of Cys966 near the flavin chromophore in the LOV2 domain of Adiantum neochrome 1. Biochemistry 46:10258–10265

    PubMed  CAS  Google Scholar 

  125. Song S-H, Freddolino PL, Nash AI, Carroll EC, Schulten K, Gardner KH, Larsen DS (2011) Modulating LOV domain photodynamics with a residue alteration outside the chromophore binding site. Biochemistry 50: 2411–2423

    PubMed Central  PubMed  CAS  Google Scholar 

  126. Corchnoy SB, Swartz TE, Lewis JW, Szundi I, Briggs WR, Bogomolni RA (2003) Intramolecular proton transfers and structural changes during the photocycle of the LOV2 domain of phototropin 1. J Biol Chem 278: 724–731

    PubMed  CAS  Google Scholar 

  127. Guo HM, Kottke T, Hegemann P, Dick B (2005) The Phot LOV2 domain and its interaction with LOV1. Biophys J 89:402–412

    PubMed Central  PubMed  CAS  Google Scholar 

  128. Kay CWM, Schleicher E, Kuppig A, Hofner H, Rüdiger W, Schleicher M, Fischer M, Bacher A, Weber S, Richter G (2003) Blue light perception in plants. Detection and characterization of a light-induced neutral flavin radical in a C450A mutant of phototropin. J Biol Chem 278:10973–10982

    PubMed  CAS  Google Scholar 

  129. Schleicher E, Kowalczyk RM, Kay CWM, Hegemann P, Bacher A, Fischer M, Bittl R, Richter G, Weber S (2004) On the reaction mechanism of adduct formation in LOV domains of the plant blue-light receptor phototropin. J Am Chem Soc 126:11067–11076

    PubMed  CAS  Google Scholar 

  130. Pfeifer A, Majerus T, Zikihara K, Matsuoka D, Tokutomi S, Heberle J Kottke T (2009) Time-Resolved Fourier Transform Infrared Study on Photoadduct Formation and Secondary Structural Changes within the Phototropin LOV Domain Biophys. J 96:1462–1470

    Google Scholar 

  131. Dittrich M, Freddolino PL, Schulten K (2005) When light falls in LOV: a quantum mechanical/molecular mechanical study of photoexcitation in Phot-LOV1 of Chlamydomonas reinhardtii. J Phys Chem B 109:13006–13013

    PubMed Central  PubMed  CAS  Google Scholar 

  132. Domratcheva T, Fedorov R, Schlichting I (2006) Analysis of the primary photocycle reactions occurring in the light, oxygen, and voltage blue-light receptor by multiconfigurational quantum-chemical methods. J Chem Theory Comput 2:1565–1574

    CAS  Google Scholar 

  133. Zenichowski K, Gothe M, Saalfrank P (2007) Exciting flavins: absorption spectra and spin-orbit coupling in light-oxygen-voltage (LOV) domains. J Photochem Photobiol Chem 190:290–300

    CAS  Google Scholar 

  134. Kasahara M, Swartz TE, Olney MA, Onodera A, Mochizuki N, Fukuzawa H, Asamizu E, Tabata S, Kanegae H, Takano M, Christie JM, Nagatani A, Briggs WR (2002) Photochemical properties of the flavin mononucleotide-binding domains of the phototropins from Arabidopsis, rice, and Chlamydomonas reinhardtii. Plant Physiol 129:762–773

    PubMed Central  PubMed  CAS  Google Scholar 

  135. Losi A (2004) The bacterial counterparts of plant phototropins. Photochem Photobiol Sci 3:566–574

    PubMed  CAS  Google Scholar 

  136. Kennis JTM, van Stokkum IHM, Crosson S, Gauden M, Moffat K, van Grondelle R (2004) The LOV2 domain of phototropin: a reversible photochromic switch. J Am Chem Soc 126:4512–4513

    PubMed  CAS  Google Scholar 

  137. Miller SM, Massey V, Ballou D, Williams CH, Distefano MD, Moore MJ, Walsh CT (1990) Use of a site-directed triple mutant to trap intermediates. Demonstration that the flavin-C(4a)-thiol adduct and reduced flavin are kinetically competent intermediates in mercuric ion reductase. Biochemistry 29:2831–2841

    PubMed  CAS  Google Scholar 

  138. Kawaguchi Y, Nakasone Y, Zikihara K, Tokutomi S, Terazima M (2010) When is the helix conformation restored after the reverse reaction of phototropin? J Am Chem Soc 132:8838–8839

    PubMed  CAS  Google Scholar 

  139. Bouly JP, Schleicher E, Dionisio-Sese M, Vandenbussche F, van der Straeten D, Bakrim N, Meier S, Batschauer A, Galland P, Bittl R, Ahmad M (2007) Cryptochrome blue light photoreceptors are activated through interconversion of flavin redox states. J Biol Chem 282:9383–9391

    PubMed  CAS  Google Scholar 

  140. Yamamoto A, Iwata T, Sato Y, Matsuoka D, Tokutomi S, Kandori H (2009) Light signal transduction pathway from flavin chromophore to the J alpha helix of Arabidopsis phototropin1. Biophys J 96:2771–2778

    PubMed Central  PubMed  CAS  Google Scholar 

  141. Alexandre MTA, van Grondelle R, Hellingwerf KJ, Kennis JTM (2009) Conformational heterogeneity and propagation of structural changes in the LOV2/Jα domain from Avena sativa phototropin 1 as recorded by temperature-dependent FTIR spectroscopy. Biophys J 97:238–247

    PubMed Central  PubMed  CAS  Google Scholar 

  142. Iwata T, Nozaki D, Tokutomi S, Kagawa T, Wada M, Kandori H (2003) Light-induced structural changes in the LOV2 domain of Adiantum phytochrome3 studied by low-temperature FTIR and UV-visible spectroscopy. Biochemistry 42:8183–8191

    PubMed  CAS  Google Scholar 

  143. Nozaki D, Iwata T, Ishikawa T, Todo T, Tokutomi S, Kandori H (2004) Role of Gln1029 in the photoactivation processes of the LOV2 domain in Adiantum phytochrome3. Biochemistry 43:8373–8379

    PubMed  CAS  Google Scholar 

  144. Yamamoto A, Iwata T, Tokutomi S, Kandori H (2008) Role of Phe1010 in light-induced structural changes of the neol-LOV2 domain of Adiantum. Biochemistry 47: 922–928

    PubMed  CAS  Google Scholar 

  145. Zayner JP, Antoniou C, Sosnick TR (2012) The amino-rerminal helix modulates light-activated conformational changes in AsLOV2. J Mol Biol 419:61–74

    PubMed Central  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Chemical Sciences council of the Netherlands Organization for Scientific Research (NWO-CW) through an ECHO grant and a VICI grant to J.T.M.K., and by the German Research Foundation (DFG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John T. M. Kennis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Mathes, T., van Stokkum, I.H.M., Kennis, J.T.M. (2014). Photoactivation Mechanisms of Flavin-Binding Photoreceptors Revealed Through Ultrafast Spectroscopy and Global Analysis Methods. In: Weber, S., Schleicher, E. (eds) Flavins and Flavoproteins. Methods in Molecular Biology, vol 1146. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-0452-5_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0452-5_16

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-0451-8

  • Online ISBN: 978-1-4939-0452-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics