Skip to main content

Anti-Viral Tetris: Modulation of the Innate Anti-Viral Immune Response by A20

  • Chapter
  • First Online:
The Multiple Therapeutic Targets of A20

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 809))

Abstract

The A20 protein has emerged as an important negative regulator of Toll like receptor (TLR) and retinoic acid-inducible gene 1 (RIG-I)-mediated anti-viral signaling. A20 functions both as a RING-type E3 ubiquitin ligase and as a de-ubiquitinating enzyme. Nuclear factor kappa B (NF-κB) and interferon regulatory factor (IRF) pathways are targeted by A20 through mechanisms that appear to be both overlapping and distinct, resulting in the downregulation of interferon α/β (IfNα/β) production. This review specifically details the impact of A20 on the cytosolic RIG-I/MDA5 pathway, a process that is less understood than that of NF-κB but is essential for the regulation of the innate immune response to viral infection.

These authors equally contributed to the manuscript.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Samuel CE. Antiviral actions of interferons. Clin Microbiol Rev 2001; 14:778–809; PMID:11585785; http://dx.doi.org/10.1128/CMR.14.4.778-809.2001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Malmgaard L. Induction and regulation of IFNs during viral infections. J Interferon Cytokine Res 2004; 24:439–54; PMID:15320958; http://dx.doi.org/10.1089/1079990041689665.

    Article  CAS  PubMed  Google Scholar 

  3. Yoneyama M, Kikuchi M, Natsukawa T, Shinobu N, Imaizumi T, Miyagishi M, et al. the RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses. Nat Immunol 2004; 5:730–7; PMID:15208624; http://dx.doi.org/10.1038/ni1087.

    Article  CAS  PubMed  Google Scholar 

  4. Kaisho T, Akira S. Pleiotropic function of Toll-like receptors. Microbes Infect 2004; 6:1388–94; PMID:15596125; http://dx.doi.org/10.1016/j.micinf.2004.08.019.

    Article  CAS  PubMed  Google Scholar 

  5. Takeda K, Akira S. Toll-like receptors in innate immunity. Int Immunol 2005; 17:1–14; PMID:15585605; http://dx.doi.org/10.1093/intimm/dxh186.

    Article  CAS  PubMed  Google Scholar 

  6. Iwasaki A, Medzhitov R. Toll-like receptor control of the adaptive immune responses. Nat Immunol 2004; 5:987–95; PMID:15454922; http://dx.doi.org/10.1038/ni1112.

    Article  CAS  PubMed  Google Scholar 

  7. Kato H, Sato S, Yoneyama M, Yamamoto M, Uematsu S, Matsui K, et al. Cell type-specific involvement of RIG-I in antiviral response. Immunity 2005; 23:19–28; PMID:16039576; http://dx.doi.org/10.1016/j.immuni.2005.04.010.

    Article  CAS  PubMed  Google Scholar 

  8. Pichlmair A, Schulz O, Tan CP, Näslund TI, Liljeström P, Weber F, et al. RIG-I-mediated antiviral responses to single-stranded RNA bearing 5′-phosphates. Science 2006; 314:997–1001; PMID:17038589; http://dx.doi.org/10.1126/science.1132998.

    Article  CAS  PubMed  Google Scholar 

  9. Stockinger S, Reutterer B, Schaljo B, Schellack C, Brunner S, Materna T, et al. IFN regulatory factor 3-dependent induction of type I IFNs by intracellular bacteria is mediated by aTLR-and Nod2-independent mechanism. J Immunol 2004; 173:7416–25; PMID:15585867.

    Article  CAS  PubMed  Google Scholar 

  10. Loo YM, Gale M Jr. Immune signaling by RIG-I-like receptors. Immunity 2011; 34:680–92; PMID:21616437; http://dx.doi.org/10.1016/j.immuni.2011.05.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Shembade N, Ma A, Harhaj EW. Inhibition of NF-kappaB signaling by A20 through disruption of ubiquitin enzyme complexes. Science 2010; 327:1135–9; PMID:20185725; http://dx.doi.org/10.1126/science.1182364.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Evans PC, Ovaa H, Hamon M, Kilshaw PJ, Hamm S, Bauer S, et al. Zinc-finger protein A20, a regulator of inflammation and cell survival, has de-ubiquitinating activity. Biochem J 2004; 378:727–34; PMID:14748687; http://dx.doi.org/10.1042/BJ20031377.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wertz IE, O’Rourke KM, Zhou H, Eby M, Aravind L, Seshagiri S, et al. De-ubiquitination and ubiquitin ligase domains of A20 downregulate NF-kappaB signalling. Nature 2004; 430:694–9; PMID:15258597; http://dx.doi.org/10.1038/nature02794.

    Article  CAS  PubMed  Google Scholar 

  14. Boone DL, Turer EE, Lee EG, Ahmad RC, Wheeler MT, Tsui C, et al. The ubiquitin-modifying enzyme A20 is requiredfortermination of Toll-like receptor responses. Nat Immunol 2004; 5:1052–60; PMID:15334086; http://dx.doi.org/10.1038/ni1110.

    Article  CAS  PubMed  Google Scholar 

  15. Heyninck K, Beyaert R. The cytokine-inducible zinc finger protein A20 inhibits IL-1-induced NF-kappaB activation at the level of TRAF6. fEBS lett 1999; 442:147–50; PMID:9928991; http://dx.doi.org/10.1016/S0014-5793(98)01645-7.

    Article  CAS  PubMed  Google Scholar 

  16. Mauro C, Pacifico F, Lavorgna A, Mellone S, Iannetti A, Acquaviva R, et al. ABIN-1 binds to NEMO/IKKgamma and co-operates with A20 in inhibiting NF-kappaB. J Biol chem 2006; 281:18482–8; PMID:16684768; http://dx.doi.org/10.1074/jbc.M601502200.

    Article  CAS  PubMed  Google Scholar 

  17. Wang YY, Li L, Han KJ, Zhai Z, Shu HB. A20 is a potent inhibitor of TLR3-and Sendai virus-induced activation of NF-kappaB and ISRE and IFN-beta promoter. FEBS Lett 2004; 576:86–90; PMID:15474016; http://dx.doi.org/10.1016/j.febslet.2004.08.071.

    Article  CAS  PubMed  Google Scholar 

  18. Saitoh T, Yamamoto M, Miyagishi M, Taira K, Nakanishi M, Fujita T, et al. A20 is a negative regulator of IFN regulatory factor 3 signaling. J Immunol 2005; 174:1507–12; PMID:15661910.

    Article  CAS  PubMed  Google Scholar 

  19. Lin R, Yang L, Nakhaei P, Sun Q, Sharif-Askari E, Julkunen I, et al. Negative regulation of the retinoic acid-inducible gene I-induced antiviral state by the ubiquitin-editing protein A20. J Biol Chem 2006; 281:2095–103; PMID:16306043; http://dx.doi.org/10.1074/jbc.M510326200.

    Article  CAS  PubMed  Google Scholar 

  20. Ning S, Pagano JS. The A20 deubiquitinase activity negatively regulates LMP1 activation of IRF7. J Virol 2010; 84:6130–8; PMID:20392859; http://dx.doi.org/10.1128/JVI.00364-10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Maelfait J, Roose K, Bogaert P, Sze M, Saelens X, Pasparakis M, et al. A20 (Tnfaip3) deficiency in myeloid cells protects against influenza A virus infection. PLoS Pathog 2012; 8:e1002570; PMID:22396652; http://dx.doi.org/10.1371/journal.ppat.1002570.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Gack MU, Shin YC, Joo CH, Urano T, Liang C, Sun L, et al. TRIM25 RING-finger E3 ubiquitin ligase is essential for RIG-I-mediated antiviral activity. Nature 2007; 446:916–20; PMID:17392790; http://dx.doi.org/10.1038/nature05732.

    Article  CAS  PubMed  Google Scholar 

  23. Seth RB, Sun L, Ea CK, Chen ZJ. Identification and characterization of MAVS, a mitochondrial antiviral signaling protein that activates NF-kappaB and IRF3. Cell 2005; 122:669–82; PMID:16125763; http://dx.doi.org/10.1016/j.cell.2005.08.012.

    Article  CAS  PubMed  Google Scholar 

  24. Kawai T, Takahashi K, Sato S, Coban C, Kumar H, Kato H, et al. IPS-1, an adaptor triggering RIG-I-and Mda5-mediatedtype I interferon induction. Nat Immunol 2005; 6:981–8; PMID:16127453; http://dx.doi.org/10.1038/ni1243.

    Article  CAS  PubMed  Google Scholar 

  25. Xu LG, Wang YY, Han KJ, Li LY, Zhai Z, Shu HB. VISA is an adapter protein required for virus-triggered IFN-beta signaling. Mol Cell 2005; 19:727–40; PMID:16153868; http://dx.doi.org/10.1016/j.molcel.2005.08.014.

    Article  CAS  PubMed  Google Scholar 

  26. Meylan E, Curran J, Hofmann K, Moradpour D, Binder M, Bartenschlager R, et al. Cardif is an adaptor protein in the RIG-I antiviral pathway and is targeted by hepatitis C virus. Nature 2005; 437:1167–72; PMID:16177806; http://dx.doi.org/10.1038/nature04193.

    Article  CAS  PubMed  Google Scholar 

  27. Koshiba T, Yasukawa K, Yanagi Y, Kawabata S. Mitochondrial membrane potential is required for MAVS-mediated antiviral signaling. Sci Signal 2011; 4:ra7; PMID:21285412; http://dx.doi.org/10.1126/scisignal.2001147.

    Article  PubMed  CAS  Google Scholar 

  28. Lin R, Lacoste J, Nakhaei P, Sun Q, Yang L, Paz S, et al. Dissociation of a MAVS/IPS-1/VISA/Cardif-IKKepsilon molecular complex from the mitochondrial outer membrane by hepatitis C virus NS3-4A proteolytic cleavage. J Virol 2006; 80:6072–83; PMID:16731946; http://dx.doi.org/10.1128/JVI.02495-05.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Dixit E, Boulant S, Zhang Y, Lee AS, Odendall C, Shum B, et al. Peroxisomes are signaling platforms for antiviral innate immunity. Cell 2010; 141:668–81; PMID:20451243; http://dx.doi.org/10.1016/j.cell.2010.04.018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hiscott J, Nguyen TL, Arguello M, Nakhaei P, Paz S. Manipulation of the nuclear factor-kappaB pathway and the innate immune response by viruses. Oncogene 2006; 25:6844–67; PMID:17072332; http://dx.doi.org/10.1038/sj.onc.1209941.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Paz S, Sun Q, Nakhaei P, Romieu-Mourez R, Goubau D, Julkunen I, et al. Induction of IRF-3 and IRF-7 phosphorylation following activation of the RIG-I pathway. Cell Mol Biol (Noisy-le-grand) 2006; 52:17–28; PMID:16914100.

    CAS  Google Scholar 

  32. Sharma S, tenOever BR, Grandvaux N, Zhou GP, Lin R, Hiscott J. Triggering the interferon antiviral response through an IKK-related pathway. Science 2003; 300:1148–51; PMID:12702806; http://dx.doi.org/10.1126/science.1081315.

    Article  CAS  PubMed  Google Scholar 

  33. Fitzgerald KA, McWhirter SM, Faia KL, Rowe DC, Latz E, Golenbock DT, et al. IKKepsilon and TBK1 are essential components of the IRF3 signaling pathway. Nat Immunol 2003; 4:491–6; PMID:12692549; http://dx.doi.org/10.1038/ni921.

    Article  CAS  PubMed  Google Scholar 

  34. McWhirter SM, Fitzgerald KA, Rosains J, Rowe DC, Golenbock DT, Maniatis T. IFN-regulatory factor 3-dependent gene expression is defective in Tbk1-deficient mouse embryonic fibroblasts. Proc Natl Acad Sci USA 2004; 101:233–8; PMID:14679297; http://dx.doi.org/10.1073/pnas.2237236100.

    Article  CAS  PubMed  Google Scholar 

  35. tenOever BR, Sharma S, Zou W, Sun Q, Grandvaux N, Julkunen I, et al. Activation of TBK1 and IKKvarepsilon kinases by vesicular stomatitis virus infection and the role of viral ribonucleoprotein in the development of interferon antiviral immunity. J Virol 2004; 78:10636–49; PMID:15367631; http://dx.doi.org/10.1128/JVI.78.19.10636-10649.2004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Tenoever BR, Ng SL, Chua MA, McWhirter SM, Garcia-Sastre A, Maniatis T. Multiple functions of the IKK-related kinase IK Kepsilon in interferon-mediated antiviral immunity. Science. Mar 2 2007; 315(5816): 1274–1278.

    Article  CAS  PubMed  Google Scholar 

  37. Hemmi H, Takeuchi O, Sato S, Yamamoto M, Kaisho T, Sanjo H, et al. The roles of two IkappaB kinase-related kinases in lipopolysaccharide and double stranded RNA signaling and viral infection. J Exp Med 2004; 199:1641–50; PMID:15210742; http://dx.doi.org/10.1084/jem.20040520.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ye Y, Rape M. Building ubiquitin chains: E2 enzymes at work. Nat Rev Mol Cell Biol 2009; 10:755–64; PMID:19851334; http://dx.doi.org/10.1038/nrm2780.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Paz S, Vilasco M, Werden SJ, Arguello M, Joseph-Pillai D, Zhao T, et al. A functional C-terminal TRAF3-binding site in MAVS participates in positive and negative regulation of the IFN antiviral response. Cell Res 2011; 21:895–910; PMID:21200404; http://dx.doi.org/10.1038/cr.2011.2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Belgnaoui SM, Paz S, Hiscott J. Orchestrating the interferon antiviral response through the mitochondrial antiviral signaling (MAVS) adapter. Curr Opin Immunol 2011; 23:564–72; PMID:21865020; http://dx.doi.org/10.1016/j.coi.2011.08.001.

    Article  CAS  PubMed  Google Scholar 

  41. Saha SK, Pietras EM, He JQ, Kang JR, Liu SY, Oganesyan G, et al. Regulation of antiviral responses by a direct and specific interaction between TRAF3 and Cardif. EMBO J 2006; 25:3257–63; PMID:16858409; http://dx.doi.org/10.1038/sj.emboj.7601220.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Paz S, Vilasco M, Arguello M, Sun Q, Lacoste J, Nguyen TL, et al. Ubiquitin-regulated recruitment of IkappaB kinase epsilon to the MAVS interferon signaling adapter. Mol Cell Biol 2009; 29:3401–12; PMID:19380491; http://dx.doi.org/10.1128/MCB.00880-08.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Guo B, Cheng G. Modulation of the interferon antiviral response by the TBK1/IKKi adaptor protein TANK. J Biol Chem 2007; 282:11817–26; PMID:17327220; http://dx.doi.org/10.1074/jbc.M700017200.

    Article  CAS  PubMed  Google Scholar 

  44. Zhao T, Yang L, Sun Q, Arguello M, Ballard DW, Hiscott J, et al. The NEMO adaptor bridges the nuclear factor-kappaB and interferon regulatory factor signaling pathways. Nat Immunol 2007; 8:592–600; PMID:17468758; http://dx.doi.org/10.1038/ni1465.

    Article  CAS  PubMed  Google Scholar 

  45. Chariot A, Leonardi A, Muller J, Bonif M, Brown K, Siebenlist U. Association of the adaptor TANK with the I kappa B kinase (IKK) regulator NEMO connects IKK complexes with IKK epsilon and TBK1 kinases. J Biol Chem 2002;277:37029–36; PMID:12133833; http://dx.doi.org/10.1074/jbc.M205069200.

    Article  CAS  PubMed  Google Scholar 

  46. Balachandran S, Thomas E, Barber GN. A FADD-dependent innate immune mechanism in mammalian cells. Nature 2004; 432:401–5; PMID:15549108; http://dx.doi.org/10.1038/nature03124.

    Article  CAS  PubMed  Google Scholar 

  47. Schulman BA, Harper JW. Ubiquitin-like protein activation by E1 enzymes: the apexfor downstream signalling pathways. Nat Rev Mol Cell Biol 2009; 10:319–31; PMID:19352404; http://dx.doi.org/10.1038/nrm2673.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Perkins ND. Post-translational modifications regulating the activity and function of the nuclear factor kappa B pathway. Oncogene 2006; 25:6717–30; PMID:17072324; http://dx.doi.org/10.1038/sj.onc.1209937.

    Article  CAS  PubMed  Google Scholar 

  49. Sebban H, Yamaoka S, Courtois G. Posttranslational modifications of NEMO and its partners in NF-kappaB signaling. Trends Cell Biol 2006; 16:569–77; PMID:16987664; http://dx.doi.org/10.1016/j.tcb.2006.09.004.

    Article  CAS  PubMed  Google Scholar 

  50. Wu CJ, Conze DB, Li T, Srinivasula SM, Ashwell JD. Sensing of Lys 63-linked polyubiquitination by NEMO is a key event in NF-kappaB activation [corrected]. [corrected]. Nat Cell Biol 2006; 8:398–406; PMID:16547522; http://dx.doi.org/10.1038/ncb1384.

    Article  CAS  PubMed  Google Scholar 

  51. Liao G, Zhang M, Harhaj EW, Sun SC Regulation of the NF-kappaB-inducing kinase by tumor necrosis factor receptor-associated factor 3-induced degradation. JBiol Chem 2004; 279:26243–50; PMID:15084608; http://dx.doi.org/10.1074/jbc.M403286200.

    Article  CAS  Google Scholar 

  52. He JQ, Saha SK, Kang JR, Zarnegar B, Cheng G. Specificity of TRAF3 in its negative regulation of the noncanonical NF-kappa B pathway. J Biol Chem 2007; 282:3688–94; PMID:17158868; http://dx.doi.org/10.1074/jbc.M610271200.

    Article  CAS  PubMed  Google Scholar 

  53. Maelfait J, Beyaert R. Emerging role of ubiquitination in antiviral RIG-I signaling. Microbiol Mol Biol 2012; 76:33–45; PMID:22390971; http://dx.doi.org/10.1128/MMBr.05012-11.

    Article  CAS  Google Scholar 

  54. Gack MU, Albrecht RA, Urano T, Inn KS, Huang IC, Carnero E, et al. Influenza A virus NS1 targets the ubiquitin ligase TRIM25 to evade recognition by the host viral RNA sensor RIG-I. Cell Host Microbe 2009; 5:439–49; PMID:19454348; http://dx.doi.org/10.1016/j.chom.2009.04.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Oshiumi H, Matsumoto M, Hatakeyama S, Seya T. Riplet/RNF135, a RING finger protein, ubiquitinates RIG-I to promote interferon-beta induction during the early phase of viral infection. J Biol Chem 2009; 284:807–17; PMID:19017631; http://dx.doi.org/10.1074/jbc.M804259200.

    Article  CAS  PubMed  Google Scholar 

  56. Oshiumi H, Miyashita M, Inoue N, Okabe M, Matsumoto M, Seya T. The ubiquitin ligase Riplet is essential for RIG-I-dependent innate immune responses to RNA virus infection. Cell Host Microbe 2010; 8:496–509; PMID:21147464; http://dx.doi.org/10.1016/j.chom.2010.11.008.

    Article  CAS  PubMed  Google Scholar 

  57. Gao D, Yang YK, Wang RP, Zhou X, Diao FC, Li MD, et al. REUL is a novel E3 ubiquitin ligase and stimulator of retinoic-acid-inducible gene-I. PLoS One 2009; 4:e5760; PMID:19484123; http://dx.doi.org/10.1371/journal.pone.0005760.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Mao AP, Li S, Zhong B, Li Y, Yan J, Li Q, et al. Virus-triggered ubiquitination of TRAF3/6 by cIAP1/2 is essential for induction of interferon-beta (IFN-beta) and cellular antiviral response. J Biol Chem 2010; 285:9470–6; PMID:20097753; http://dx.doi.org/10.1074/jbc.M109.071043.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Tang ED, Wang CY. TRAF5 is a downstream target of MAVS in antiviral innate immune signaling. PLoS One 2010; 5:e9172; PMID:20161788; http://dx.doi.org/10.1371/journal.pone.0009172.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Zeng W, Xu M, Liu S, Sun L, Chen ZJ. Key role of Ubc5 and lysine-63 polyubiquitination in viral activation of IRF3. Mol Cell 2009; 36:315–25; PMID:19854139; http://dx.doi.org/10.1016/j.molcel.2009.09.037.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Zeng W, Sun L, Jiang X, Chen X, Hou F, Adhikari A, et al. Reconstitution of the RIG-I pathway reveals a signaling role of unanchored polyubiquitin chains in innate immunity. Cell 2010; 141:315–30; PMID:20403326; http://dx.doi.org/10.1016/j.cell.2010.03.029.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Xia ZP, Sun L, Chen X, Pineda G, Jiang X, Adhikari A, et al. Direct activation of protein kinases by unanchored polyubiquitin chains. Nature 2009; 461:114–9; PMID:19675569; http://dx.doi.org/10.1038/nature08247.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Inn KS, Gack MU, Tokunaga F, Shi M, Wong LY, Iwai K, et al. Linear ubiquitin assembly complex negatively regulates RIG-I-and TRIM25-mediated type I interferon induction. Mol Cell 2011; 41:354–65; PMID:21292167; http://dx.doi.org/10.1016/j.molcel.2010.12.029.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Cui J, Li Y, Zhu L, Liu D, Songyang Z, Wang HY, et al. NLRP4 negatively regulates type I interferon signaling by targeting the kinase TBK1 for degradation via the ubiquitin ligase DTX4. Nat Immunol 2012; 13:387–95; PMID:22388039; http://dx.doi.org/10.1038/ni.2239.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Nakhaei P, Mesplede T, Solis M, Sun Q, Zhao T, Yang L, et al. The E3 ubiquitin ligase Triad 3 A negatively regulates the RIG-I/MAVS signaling pathway by targeting TRAF3 for degradation. PLoS Pathog 2009; 5:e1000650; PMID:19893624; http://dx.doi.org/10.1371/journal.ppat.1000650.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. You F, Sun H, Zhou X, Sun W, Liang S, Zhai Z, et al. PCBP2 mediates degradation of the adaptor MAVS via the HECT ubiquitin ligase AIP4. Nat Immunol 2009; 10:1300–8; PMID:19881509; http://dx.doi.org/10.1038/ni.1815.

    Article  CAS  PubMed  Google Scholar 

  67. Lin R, Heylbroeck C, Pitha PM, Hiscott J. Virus-dependent phosphorylation of the IRF-3 transcription factor regulates nuclear translocation, transactivation potential, and proteasome-mediated degradation. Mol Cell Biol 1998; 18:2986–96; PMID:9566918.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Ronco LV, Karpova AY, Vidal M, Howley PM. Human papillomavirus 16E6 oncoprotein binds to interferon regulatory factor-3 and inhibits its transcriptional activity. Genes Dev 1998; 12:2061–72; PMID:9649509; http://dx.doi.org/10.1101/gad.12.13.2061.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Bibeau-Poirier A, Gravel SP, Clément JF, Rolland S, Rodier G, Coulombe P, et al. Involvement of the IkappaB kinase (IKK)-related kinases tank-binding kinase 1/IKKi and cullin-based ubiquitin ligases in IFN regulatory factor-3 degradation. J Immunol 2006; 177:5059–67; PMID:17015689.

    Article  CAS  PubMed  Google Scholar 

  70. Higgs R, Ní Gabhann J, Ben Larbi N, Breen EP, Fitzgerald KA, Jefferies CA. The E3 ubiquitin ligase Ro52 negatively regulates IFN-beta production post-pathogen recognition by polyubiquitin-mediated degradation of IRF3. J Immunol 2008; 181:1780–6; PMID:18641315.

    Article  CAS  PubMed  Google Scholar 

  71. Higgs R, Lazzari E, Wynne C, Ní Gabhann J, Espinosa A, Wahren-Herlenius M, et al. Self protection from anti-viral responses—Ro52 promotes degradation of the transcription factor IRF7 downstream of the viral Toll-Like receptors. PLoS One 2010; 5: e11776; PMID:20668674; http://dx.doi.org/10.1371/journal.pone.0011776.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Zhang M, Tian Y, Wang RP, Gao D, Zhang Y, Diao FC, et al. Negative feedback regulation of cellular antiviral signaling by RBCK1-mediated degradation of IRF3. Cell Res 2008; 18:1096–104; PMID:18711448; http://dx.doi.org/10.1038/cr.2008.277.

    Article  CAS  PubMed  Google Scholar 

  73. Yu Y, Hayward GS. The ubiquitin E3 ligase RAUL negatively regulates type i interferon through ubiquitination of the transcription factors IRF7 and IRF3. Immunity 2010; 33:863–77; PMID:21167755; http://dx.doi.org/10.1016/j.immuni.2010.11.027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Friedman CS, O’Donnell MA, Legarda-Addison D, Ng A, Cárdenas WB, Yount JS, et al. The tumour suppressor CYLD is a negative regulator of RIG-I-mediated antiviral response. EMBO Rep 2008; 9:930–6; PMID:18636086; http://dx.doi.org/10.1038/embor.2008.136.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Kayagaki N, Phung Q, Chan S, Chaudhari R, Quan C, O’Rourke KM, et al. DUBA: a deubiquitinase that regulates type I interferon production. Science 2007; 318:1628–32; PMID:17991829; http://dx.doi.org/10.1126/science.1145918.

    Article  CAS  PubMed  Google Scholar 

  76. Cooper JT, Stroka DM, Brostjan C, Palmetshofer A, Bach FH, Ferran C. A20 blocks endothelial cell activation through a NF-kappaB-dependent mechanism. J Biol Chem 1996; 271:18068–73; PMID:8663499; http://dx.doi.org/10.1074/jbc.271.30.18068.

    Article  CAS  PubMed  Google Scholar 

  77. Shembade N, Harhaj EW. Regulation of NF-κB signaling by the A20 deubiquitinase. Cell Mol Immunol 2012; 9:123–30; PMID:22343828; http://dx.doi.org/10.1038/cmi.2011.59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Vereecke L, Beyaert R, van Loo G. Genetic relationships between A20/TNFAIP3, chronic inflammation and autoimmune disease. Biochem Soc Trans 2011; 39:1086–91; PMID:21787353; http://dx.doi.org/10.1042/BST0391086.

    Article  CAS  PubMed  Google Scholar 

  79. Lee EG, Boone DL, Chai S, Libby SL, Chien M, Lodolce JP, et al. Failure to regulate TNF-induced NF-kappaB and cell death responses in A20-deficient mice. Science 2000; 289:2350–4; PMID:11009421; http://dx.doi.org/10.1126/science.289.5488.2350.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Onose A, Hashimoto S, Hayashi S, Maruoka S, Kumasawa F, Mizumura K, et al. An inhibitory effect of A20 on NF-kappaB activation in airway epithelium upon influenza virus infection. Eur J Pharmacol 2006; 541:198–204; PMID:16765340; http://dx.doi.org/10.1016/j.ejphar.2006.03.073.

    Article  CAS  PubMed  Google Scholar 

  81. Loo YM, Fornek J, Crochet N, Bajwa G, Perwitasari O, Martinez-Sobrido L, et al. Distinct RIG-I and MDA5 signaling by RNA viruses in innate immunity. J Virol 2008; 82:335–45; PMID:17942531; http://dx.doi.org/10.1128/JVI.01080-07.

    Article  CAS  PubMed  Google Scholar 

  82. Rehwinkel J, Tan CP, Goubau D, Schulz O, Pichlmair A, Bier K, et al. RIG-I detects viral genomic RNA during negative-strand RNA virus infection. Cell 2010; 140:397–408; PMID:20144762; http://dx.doi.org/10.1016/j.cell.2010.01.020.

    Article  CAS  PubMed  Google Scholar 

  83. Gao L, Coope H, Grant S, Ma A, Ley SC, Harhaj EW. ABIN1 protein cooperates with TAX1BP1 and A20 proteins to inhibit antiviral signaling. J Biol Chem 2011; 286:36592–602; PMID:21885437; http://dx.doi.org/10.1074/jbc.M111.283762.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Parvatiyar K, Barber GN, Harhaj EW. TAX1BP1 and A20 inhibit antiviral signaling by targeting TBK1-IKKi kinases. J Biol Chem 2010; 285:14999–5009; PMID:20304918; http://dx.doi.org/10.1074/jbc.M110.109819.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Fries KL, Miller WE, Raab-Traub N. The A20 protein interacts with the Epstein-Barr virus latent membrane protein 1 (LMP1) and alters the LMP1/TRAF1/TRADD complex. Virology 1999; 264:159–66; PMID:10544141; http://dx.doi.org/10.1006/viro.1999.9980.

    Article  CAS  PubMed  Google Scholar 

  86. Belgnaoui SM, Paz S, Samuel S, Goulet ML, Sun Q, Kikkert M, et al. Linear ubiquitination of NEMO negatively regulates the interferon antiviral response through disruption of the MAVS-TRAF3 complex. Cell Host Microbe 2012; 12:211–22; PMID:22901541; http://dx.doi.org/10.1016/j.chom.2012.06.009.

    Article  CAS  PubMed  Google Scholar 

  87. Bonif M, Meuwis MA, Close P, Benoit V, Heyninck K, Chapelle JP, et al. TNFalpha-and IKKbeta-mediated TANK/I-TRAF phosphorylation: implications for interaction with NEMO/IKKgamma and NF-kappaB activation. Biochem J 2006; 394:593–603; PMID:16336209; http://dx.doi.org/10.1042/BJ20051659.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Hiscott .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Arguello, M., Paz, S., Ferran, C., Moll, H.P., Hiscott, J. (2014). Anti-Viral Tetris: Modulation of the Innate Anti-Viral Immune Response by A20. In: Ferran, C. (eds) The Multiple Therapeutic Targets of A20. Advances in Experimental Medicine and Biology, vol 809. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0398-6_4

Download citation

Publish with us

Policies and ethics