Skip to main content

Covalent Immobilization of Microtubules on Glass Surfaces for Molecular Motor Force Measurements and Other Single-Molecule Assays

  • Protocol
  • First Online:
Mitosis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1136))

Abstract

Rigid attachment of microtubules (MTs) to glass cover slip surfaces is a prerequisite for a variety of microscopy experiments in which MTs are used as substrates for MT-associated proteins, such as the molecular motors kinesin and cytoplasmic dynein. We present an MT-surface coupling protocol in which aminosilanized glass is formylated using the cross-linker glutaraldehyde, fluorescence-labeled MTs are covalently attached, and the surface is passivated with highly pure beta-casein. The technique presented here yields rigid MT immobilization while simultaneously blocking the remaining glass surface against nonspecific binding by polystyrene optical trapping microspheres. This surface chemistry is straightforward and relatively cheap and uses a minimum of specialized equipment or hazardous reagents. These methods provide a foundation for a variety of optical tweezers experiments with MT-associated molecular motors and may also be useful in other assays requiring surface-immobilized proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yildiz A, Tomishige M, Vale RD et al (2004) Kinesin walks hand-over-hand. Science 303: 676–678

    Article  CAS  PubMed  Google Scholar 

  2. Reck-Peterson SL, Yildiz A, Carter AP et al (2006) Single-molecule analysis of dynein processivity and stepping behavior. Cell 126: 335–348

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Gennerich A, Carter AP, Reck-Peterson SL et al (2007) Force-induced bidirectional stepping of cytoplasmic dynein. Cell 131:952–965

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Cho C, Reck-Peterson S, Vale R (2008) Cytoplasmic dynein’s regulatory ATPase sites affect processivity and force generation. J Biol Chem 283:25839–25845

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Kardon JR, Reck-Peterson SL, Vale RD (2009) Regulation of the processivity and intracellular localization of Saccharomyces cerevisiae dynein by dynactin. Proc Natl Acad Sci USA 106:5669–5674

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Guydosh NR, Block SM (2009) Direct observation of the binding state of the kinesin head to the microtubule. Nature 461:125–128

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Visscher K, Schnitzer MJ, Block SM (1999) Single kinesin molecules studied with a molecular force clamp. Nature 400:184–189

    Article  CAS  PubMed  Google Scholar 

  8. Barak P, Rai A, Rai P et al (2013) Quantitative optical trapping on single organelles in cell extract. Nat Methods 10:68–70

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Vershinin M, Carter BC, Razafsky DS et al (2006) Multiple-motor based transport and its regulation by Tau. Proc Natl Acad Sci USA 104:87–92

    Article  PubMed Central  PubMed  Google Scholar 

  10. Helenius J, Brouhard G, Kalaidzidis Y et al (2006) The depolymerizing kinesin MCAK uses lattice diffusion to rapidly target microtubule ends. Nature 441:115–119

    Article  CAS  PubMed  Google Scholar 

  11. Rice S, Lin AW, Safer D et al (1999) A structural change in the kinesin motor protein that drives motility. Nature 402:778–784

    Article  CAS  PubMed  Google Scholar 

  12. Gestaut DR, Graczyk B, Cooper J et al (2008) Phosphoregulation, lattice diffusion, and depolymerization-driven movement of the Dam1 complex do not require ring formation. Nat Cell Biol 10:407–414

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Nakata T, Hirokawa N (1995) Point mutation of adenosine triphosphate-binding motif generated rigor kinesin that selectively blocks anterograde lysosome membrane transport. J Cell Biol 131:1039–1053

    Article  CAS  PubMed  Google Scholar 

  14. Crevel IM-TC, Nyitrai M, Alonso MC et al (2003) What kinesin does at roadblocks: the coordination mechanism for molecular walking. EMBO J 23:23–32

    Article  PubMed Central  PubMed  Google Scholar 

  15. Adio S, Jaud J, Ebbing B et al (2009) Dissection of kinesin’s processivity. PLoS One 4:e4612

    Article  PubMed Central  PubMed  Google Scholar 

  16. Schroeder HW III, Mitchell C, Shuman H et al (2010) Motor number controls cargo switching at actin-microtubule intersections in vitro. Curr Biol 20:687–696

    Article  CAS  PubMed  Google Scholar 

  17. Taylor AP, Webb RI, Barry JC et al (2000) Adhesion of microbes using 3-aminopropyl triethoxy silane and specimen stabilisation techniques for analytical transmission electron microscopy. J Microsc 199:56–67

    Article  CAS  PubMed  Google Scholar 

  18. Turner DC, Chang C, Fang K et al (1995) Selective adhesion of functional microtubules to patterned silane surfaces. Biophys J 69: 2782–2789

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Jeney S, Florin EL, Hörber JK (2001) Use of photonic force microscopy to study single-motor-molecule mechanics. Methods Mol Biol 164:91–108

    CAS  PubMed  Google Scholar 

  20. Brown TB, Hancock WO (2002) A polarized microtubule array for kinesin-powered nanoscale assembly and force generation. Nano Lett 2:1131–1135

    Article  CAS  Google Scholar 

  21. Kanan SM, Tze WTY, Tripp CP (2002) Method to double the surface concentration and control the orientation of adsorbed (3-aminopropyl)dimethylethoxysilane on silica powders and glass slides. Langmuir 18: 6623–6627

    Article  CAS  Google Scholar 

  22. Howarter JA, Youngblood JP (2006) Optimization of silica silanization by 3-aminopropyltriethoxysilane. Langmuir 22: 11142–11147

    Article  CAS  PubMed  Google Scholar 

  23. Asenath SE, Chen W (2008) How to prevent the loss of surface functionality derived from aminosilanes. Langmuir 24:12405–12409

    Article  Google Scholar 

  24. Kim J, Seidler P, Wan LS et al (2009) Formation, structure, and reactivity of amino-terminated organic films on silicon substrates. J Colloid Interface Sci 329:114–119

    Article  CAS  PubMed  Google Scholar 

  25. Aissaoui N, Bergaoui L, Landoulsi J et al (2012) Silane layers on silicon surfaces: mechanism of interaction, stability, and influence on protein adsorption. Langmuir 28:656–665

    Article  CAS  PubMed  Google Scholar 

  26. Zhu M, Lerum MZ, Chen W (2012) How to prepare reproducible, homogeneous, and hydrolytically stable aminosilane-derived layers on silica. Langmuir 28:416–423

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Walt DR, Agayn VI (1994) The chemistry of enzyme and protein immobilization with glutaraldehyde. Trends Anal Chem 13:425–430

    Article  CAS  Google Scholar 

  28. Migneault I, Dartiguenave C, Bertrand MJ et al (2004) Glutaraldehyde: behavior in aqueous solution, reaction with proteins, and application to enzyme crosslinking. Biotechniques 37:790–802

    CAS  PubMed  Google Scholar 

  29. Hermanson GT (2008) Bioconjugate techniques, 2nd edn. Academic, New York

    Google Scholar 

  30. Betancor L, López-Gallego F, Alonso-Morales N et al (2006) Glutaraldehyde in protein immobilization. Methods Biotechnol 22:57–64

    Article  CAS  Google Scholar 

  31. Clancy BE, Behnke-Parks WM, Andreasson JOL et al (2011) A universal pathway for kinesin stepping. Nat Struct Mol Biol 18: 1020–1027

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Iler RK (1979) The chemistry of silica: solubility, polymerization, colloid and surface properties and biochemistry of silica. Wiley-Interscience, Hoboken, NJ

    Google Scholar 

  33. Rother D, Sen T, East D et al (2011) Silicon, silica and its surface patterning/activation with alkoxy- and amino-silanes for nanomedical applications. Nanomedicine 6: 281–300

    Article  CAS  PubMed  Google Scholar 

  34. Der Voort PV, Vansant EF (1996) Silylation of the silica surface: a review. J Liq Chrom Relat Tech 19:2723–2752

    Article  Google Scholar 

  35. Witucki GL (1993) A silane primer: chemistry and applications of alkoxysilanes. J Coating Tech Res 65:57–60

    CAS  Google Scholar 

  36. Brinker C (1988) Hydrolysis and condensation of silicates: effects on structure. J Non-Cryst Solids 100:31–50

    Article  CAS  Google Scholar 

  37. Tan W, Desai TA (2004) Layer-by-layer microfluidics for biomimetic three-dimensional structures. Biomaterials 25:1355–1364

    Article  CAS  PubMed  Google Scholar 

  38. Diao J, Ren D, Engstrom JR et al (2005) A surface modification strategy on silicon nitride for developing biosensors. Anal Biochem 343:322–328

    Article  CAS  PubMed  Google Scholar 

  39. Peloquin J, Komarova Y, Borisy G (2005) Conjugation of fluorophores to tubulin. Nat Methods 2:299–303

    Article  CAS  PubMed  Google Scholar 

  40. Keates RAB (1980) Effects of glycerol on microtubule polymerization kinetics. Biochem Biophys Res Commun 97:1163–1169

    Article  CAS  PubMed  Google Scholar 

  41. O’Brien ET, Erickson HP (1989) Assembly of pure tubulin in the absence of free GTP: effect of magnesium, glycerol, ATP, and the nonhydrolyzable GTP analogues. Biochemistry 28:1413–1422

    Article  PubMed  Google Scholar 

  42. Mitchison T, Kirschner M (1984) Dynamic instability of microtubule growth. Nature 312:237–242

    Article  CAS  PubMed  Google Scholar 

  43. Gardner MK, Zanic M, Howard J (2013) Microtubule catastrophe and rescue. Curr Opin Cell Biol 25:14–22

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Carlier MF, Pantaloni D (1983) Taxol effect on tubulin polymerization and associated guanosine 5′-triphosphate hydrolysis. Biochemistry 22:4814–4822

    Article  CAS  PubMed  Google Scholar 

  45. Orr GA, Verdier-Pinard P, McDaid H et al (2003) Mechanisms of taxol resistance related to microtubules. Oncogene 22: 7280–7295

    Article  CAS  PubMed  Google Scholar 

  46. Schiff PB, Fant J, Horwitz SB (1979) Promotion of microtubule assembly in vitro by taxol. Nature 277:665–667

    Article  CAS  PubMed  Google Scholar 

  47. Schiff PB, Horwitz SB (1980) Taxol stabilizes microtubules in mouse fibroblast cells. Proc Natl Acad Sci USA 77:1561–1565

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Thompson WC, Wilson L, Purich DL (1981) Taxol induces microtubule assembly at low temperature. Cell Motil 1:445–454

    Article  CAS  PubMed  Google Scholar 

  49. Kumar N (1981) Taxol-induced polymerization of purified tubulin. Mechanism of action. J Biol Chem 256:10435–10441

    CAS  PubMed  Google Scholar 

  50. Robinson J, Engelborghs Y (1982) Tubulin polymerization in dimethyl sulfoxide. J Biol Chem 257:5367–5371

    CAS  PubMed  Google Scholar 

  51. Baker NA, Sept D, Joseph S et al (2001) Electrostatics of nanosystems: application to microtubules and the ribosome. Proc Natl Acad Sci USA 98:10037–10041

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Minoura I, Muto E (2006) Dielectric measurement of individual microtubules using the electroorientation method. Biophys J 90:3739–3748

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Sackett DL, Bhattacharyya B, Wolff J (1986) Promotion of tubulin assembly by carboxyterminal charge reduction. Ann NY Acad Sci 466:460–466

    Article  CAS  PubMed  Google Scholar 

  54. Redeker V, Melki R, Promé D et al (1992) Structure of tubulin C-terminal domain obtained by subtilisin treatment. The major α and β tubulin isotypes from pig brain are glutamylated. FEBS Lett 313:185–192

    Article  CAS  PubMed  Google Scholar 

  55. Bezanilla M, Manne S, Laney DE et al (1995) Adsorption of DNA to mica, silylated mica, and minerals: characterization by atomic force microscopy. Langmuir 11:655–659

    Article  CAS  Google Scholar 

  56. Van der Maaden K, Sliedregt K, Kros A et al (2012) Fluorescent nanoparticle adhesion assay: a novel method for surface pKa determination of self-assembled monolayers on silicon surfaces. Langmuir 28:3403–3411

    Article  PubMed  Google Scholar 

  57. Gell C, Bormuth V, Brouhard GJ et al (2010) Microtubule dynamics reconstituted in vitro and imaged by single-molecule fluorescence microscopy. Methods Cell Biol 95:221–245

    Article  CAS  PubMed  Google Scholar 

  58. Schäffer E, Nørrelykke SF, Howard J (2007) Surface forces and drag coefficients of microspheres near a plane surface measured with optical tweezers. Langmuir 23: 3654–3665

    Article  PubMed  Google Scholar 

  59. Tolić-Nørrelykke SF, Schäffer E, Howard J et al (2006) Calibration of optical tweezers with positional detection in the back focal plane. Rev Sci Instrum 77:103101–103111

    Article  Google Scholar 

  60. Vandenberg ET, Bertilsson L, Liedberg B et al (1991) Structure of 3-aminopropyl triethoxy silane on silicon oxide. J Colloid Interface Sci 147:103–118

    Article  CAS  Google Scholar 

  61. Vigers GP, Coue M, McIntosh JR (1988) Fluorescent microtubules break up under illumination. J Cell Biol 107:1011–1024

    Article  CAS  PubMed  Google Scholar 

  62. Guo H, Xu C, Liu C et al (2006) Mechanism and dynamics of breakage of fluorescent microtubules. Biophys J 90:2093–2098

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  63. Weisenberg RC (1972) Microtubule formation in vitro in solutions containing low calcium concentrations. Science 177:1104–1105

    Article  CAS  PubMed  Google Scholar 

  64. Borisy GG, Olmsted JB (1972) Nucleated assembly of microtubules in porcine brain extracts. Science 177:1196–1197

    Article  CAS  PubMed  Google Scholar 

  65. Miller HP, Wilson L (2010) Preparation of microtubule protein and purified tubulin from bovine brain by cycles of assembly and disassembly and phosphocellulose chromatography. Methods Cell Biol 95:3–15

    CAS  PubMed  Google Scholar 

  66. Castoldi M, Popov AV (2003) Purification of brain tubulin through two cycles of polymerization–depolymerization in a high-molarity buffer. Protein Expr Purif 32:83–88

    Article  CAS  PubMed  Google Scholar 

  67. Gell C, Friel CT, Borgonovo B et al (2011) Purification of tubulin from porcine brain. Methods Mol Biol 777:15–28

    Article  CAS  PubMed  Google Scholar 

  68. Widlund PO, Podolski M, Reber S et al (2012) One-step purification of assembly-competent tubulin from diverse eukaryotic sources. Mol Biol Cell 23:4393–4401

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  69. Fox PF, McSweeney PLH (2003) Advanced dairy chemistry: protein. Springer, New York

    Book  Google Scholar 

  70. Fox PF, McSweeney PLH (1998) Dairy chemistry and biochemistry. Springer, New York

    Google Scholar 

  71. Eigel WN, Butler JE, Ernstrom CA et al (1984) Nomenclature of proteins of cow’s milk: fifth revision. J Dairy Sci 67:1599–1631

    Article  CAS  Google Scholar 

  72. Nylander T, Wahlgren NM (1997) Forces between adsorbed layers of β-casein. Langmuir 13:6219–6225

    Article  CAS  Google Scholar 

  73. Mikheeva LM, Grinberg NV, Grinberg VY et al (2003) Thermodynamics of micellization of bovine β-casein studied by high-sensitivity differential scanning calorimetry. Langmuir 19:2913–2921

    Article  CAS  Google Scholar 

  74. Thorn DC, Meehan S, Sunde M et al (2005) Amyloid fibril formation by bovine milk κ-casein and its inhibition by the molecular chaperones αS- and β-casein. Biochemistry 44:17027–17036

    Article  CAS  PubMed  Google Scholar 

  75. Portnaya I, Ben-Shoshan E, Cogan U et al (2008) Self-assembly of bovine β-casein below the isoelectric pH. J Agric Food Chem 56:2192–2198

    Article  CAS  PubMed  Google Scholar 

  76. Evers CHJ, Andersson T, Lund M et al (2012) Adsorption of unstructured protein β-casein to hydrophobic and charged surfaces. Langmuir 28:11843–11849

    Article  CAS  PubMed  Google Scholar 

  77. Tompa P (2002) Intrinsically unstructured proteins. Trends Biochem Sci 27:527–533

    Article  CAS  PubMed  Google Scholar 

  78. Kull T, Nylander T, Tiberg F et al (1997) Effect of surface properties and added electrolyte on the structure of β-casein layers adsorbed at the solid/aqueous interface. Langmuir 13:5141–5147

    Article  CAS  Google Scholar 

  79. Verma V, Hancock WO, Catchmark JM (2008) The role of casein in supporting the operation of surface bound kinesin. J Biol Eng 2:14

    Article  PubMed Central  PubMed  Google Scholar 

  80. Ong S, Zhao X, Eisenthal KB (1992) Polarization of water molecules at a charged interface: second harmonic studies of the silica/water interface. Chem Phys Lett 191: 327–335

    Article  CAS  Google Scholar 

  81. Fan H-F, Li F, Zare RN et al (2007) Characterization of two types of silanol groups on fused-silica surfaces using evanescent-wave cavity ring-down spectroscopy. Anal Chem 79:3654–3661

    Article  CAS  PubMed  Google Scholar 

  82. Hair ML, Hertl W (1970) Acidity of surface hydroxyl groups. J Phys Chem 74:91–94

    Article  CAS  Google Scholar 

  83. Balladur V, Theretz A, Mandrand B (1997) Determination of the main forces driving DNA oligonucleotide adsorption onto aminated silica wafers. J Colloid Interface Sci 194:408–418

    Article  CAS  PubMed  Google Scholar 

  84. Belkind A, Gershman S (2008) Plasma cleaning of surfaces. Vacuum Coating and Technology November, 46–57

    Google Scholar 

  85. Isabell TC, Fischione PE, O’Keefe C et al (1999) Plasma cleaning and its applications for electron microscopy. Microsc Microanal 5:126–135

    Article  CAS  PubMed  Google Scholar 

  86. DeRosa RL, Schader PA, Shelby JE (2003) Hydrophilic nature of silicate glass surfaces as a function of exposure condition. J Non-Cryst Solids 331:32–40

    Article  CAS  Google Scholar 

  87. Bhattacharya S, Datta A, Berg JM et al (2005) Studies on surface wettability of poly(dimethyl) siloxane (PDMS) and glass under oxygen-plasma treatment and correlation with bond strength. J Microelectromech Syst 14:590–597

    Article  CAS  Google Scholar 

  88. Kern W (1990) The evolution of silicon wafer cleaning technology. J Electrochem Soc 137: 1887–1892

    Article  CAS  Google Scholar 

  89. Williams EH, Davydov AV, Motayed A et al (2012) Immobilization of streptavidin on 4H-SiC for biosensor development. Appl Surf Sci 258:6056–6063

    Article  CAS  Google Scholar 

  90. Armarego WLF, Chai C (2012) Purification of laboratory chemicals. Butterworth-Heinemann, Oxford

    Google Scholar 

  91. Weires NA, Johnston A, Warner DL et al (2011) Recycling of waste acetone by fractional distillation. J Chem Educ 88: 1724–1726

    Article  CAS  Google Scholar 

  92. Siqueira Petri DF, Wenz G, Schunk P et al (1999) An improved method for the assembly of amino-terminated monolayers on SiO2 and the vapor deposition of gold layers. Langmuir 15:4520–4523

    Article  Google Scholar 

  93. Leal O, Bolívar C, Ovalles C et al (1995) Reversible adsorption of carbon dioxide on amine surface-bonded silica gel. Inorg Chim Acta 240:183–189

    Article  CAS  Google Scholar 

  94. Serna-Guerrero R, Da’na E, Sayari A (2008) New insights into the interactions of CO2 with amine-functionalized silica. Ind Eng Chem Res 47:9406–9412

    Article  CAS  Google Scholar 

  95. Etienne M, Walcarius A (2003) Analytical investigation of the chemical reactivity and stability of aminopropyl-grafted silica in aqueous medium. Talanta 59:1173–1188

    Article  CAS  PubMed  Google Scholar 

  96. Möller R, Csáki A, Köhler JM et al (2000) DNA probes on chip surfaces studied by scanning force microscopy using specific binding of colloidal gold. Nucleic Acids Res 28:e91

    Article  PubMed Central  PubMed  Google Scholar 

  97. Turner D, Chang C, Fang K et al (1996) Kinesin movement on glutaraldehyde-fixed microtubules. Anal Biochem 242:20–25

    Article  CAS  PubMed  Google Scholar 

  98. Cross AR, Williams RC Jr (1991) Kinky microtubules: bending and breaking induced by fixation in vitro with glutaraldehyde and formaldehyde. Cell Motil Cytoskeleton 20:272–278

    Article  CAS  PubMed  Google Scholar 

  99. Shelanski ML, Gaskin F, Cantor CR (1973) Microtubule assembly in the absence of added nucleotides. Proc Natl Acad Sci USA 70:765–768

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  100. Habeeb AFSA, Hiramoto R (1968) Reaction of proteins with glutaraldehyde. Arch Biochem Biophys 126:16–26

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Johan Andreasson, Robert Coleman, and Wei Chen for helpful discussions regarding aminosilanization and Laura E.K. Nicholas for assistance with photography and figure illustration. The authors are supported by the National Institutes of Health grant R01GM098469. M.P.N. received support from the NIH-funded Medical Scientist Training and Molecular Biophysics Training programs (NIH grants T32GM007288 and T32GM008572, respectively) at the Albert Einstein College of Medicine.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arne Gennerich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Nicholas, M.P., Rao, L., Gennerich, A. (2014). Covalent Immobilization of Microtubules on Glass Surfaces for Molecular Motor Force Measurements and Other Single-Molecule Assays. In: Sharp, D. (eds) Mitosis. Methods in Molecular Biology, vol 1136. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-0329-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0329-0_9

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-0328-3

  • Online ISBN: 978-1-4939-0329-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics