Skip to main content

Mechanisms of Nuclear Size Regulation in Model Systems and Cancer

  • Chapter
  • First Online:
Cancer Biology and the Nuclear Envelope

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 773))

Abstract

Changes in nuclear size have long been used by cytopathologists as an important parameter to diagnose, stage, and prognose many cancers. Mechanisms underlying these changes and functional links between nuclear size and malignancy are largely unknown. Understanding mechanisms of nuclear size regulation and the physiological significance of proper nuclear size control will inform the interplay between altered nuclear size and oncogenesis. In this chapter we review what is known about molecular mechanisms of nuclear size control based on research in model experimental systems including yeast, Xenopus, Tetrahymena, Drosophila, plants, mice, and mammalian cell culture. We discuss how nuclear size is influenced by DNA ploidy, nuclear structural components, cytoplasmic factors and nucleocytoplasmic transport, the cytoskeleton, and the extracellular matrix. Based on these mechanistic insights, we speculate about how nuclear size might impact cell physiology and whether altered nuclear size could contribute to cancer development and progression. We end with some outstanding questions about mechanisms and functions of nuclear size regulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ABD:

Actin binding domain

CRC:

Colorectal cancer

ECM:

Extracellular matrix

ER:

Endoplasmic reticulum

HCC:

Hepatocellular carcinoma

INM:

Inner nuclear membrane

kuk:

Kugelkern

LINC:

Linker of nucleoskeleton and cytoskeleton

MAC:

Macronucleus

MBT:

Midblastula transition

MIC:

Micronucleus

NE:

Nuclear envelope

NLS:

Nuclear localization signal

NPC:

Nuclear pore complex

Rtn:

Reticulon

SCLC:

Small-cell lung carcinoma

References

  1. Pienta KJ, Partin AW, Coffey DS (1989) Cancer as a disease of DNA organization and dynamic cell structure. Cancer Res 49(10):2525–2532

    PubMed  CAS  Google Scholar 

  2. Dey P (2010) Cancer nucleus: morphology and beyond. Diagn Cytopathol 38(5):382–390

    PubMed  Google Scholar 

  3. Schaff Z, Lapis K, Safrany L (1971) The ultrastructure of primary hepatocellular cancer in man. Virchows Arch A Pathol Pathol Anat 352(4):340–358

    PubMed  CAS  Google Scholar 

  4. Rashid F, Ul Haque A (2011) Frequencies of different nuclear morphological features in prostate adenocarcinoma. Ann Diagn Pathol 15(6):414–421

    PubMed  Google Scholar 

  5. Veltri RW, Miller MC, Partin AW, Coffey DS, Epstein JI (1996) Ability to predict biochemical progression using Gleason score and a computer-generated quantitative nuclear grade derived from cancer cell nuclei. Urology 48(5):685–691

    PubMed  CAS  Google Scholar 

  6. Veltri RW, Partin AW, Epstein JE, Marley GM, Miller CM, Singer DS, Patton KP, Criley SR, Coffey DS (1994) Quantitative nuclear morphometry, Markovian texture descriptors, and DNA content captured on a CAS-200 Image analysis system, combined with PCNA and HER-2/neu immunohistochemistry for prediction of prostate cancer progression. J Cell Biochem Suppl 19:249–258

    PubMed  CAS  Google Scholar 

  7. Khan MA, Walsh PC, Miller MC, Bales WD, Epstein JI, Mangold LA, Partin AW, Veltri RW (2003) Quantitative alterations in nuclear structure predict prostate carcinoma distant metastasis and death in men with biochemical recurrence after radical prostatectomy. Cancer 98(12):2583–2591

    PubMed  Google Scholar 

  8. Blom JH, Ten Kate FJ, Schroeder FH, van der Heul RO (1990) Morphometrically estimated variation in nuclear size. A useful tool in grading prostatic cancer. Urol Res 18(2):93–99

    PubMed  CAS  Google Scholar 

  9. Ottesen GL (2003) Carcinoma in situ of the female breast. A clinico-pathological, immunohistological, and DNA ploidy study. APMIS Suppl 108:1–67

    PubMed  Google Scholar 

  10. Tan PH, Goh BB, Chiang G, Bay BH (2001) Correlation of nuclear morphometry with pathologic parameters in ductal carcinoma in situ of the breast. Mod Pathol 14(10):937–941

    PubMed  CAS  Google Scholar 

  11. Abdalla F, Boder J, Markus R, Hashmi H, Buhmeida A, Collan Y (2009) Correlation of nuclear morphometry of breast cancer in histological sections with clinicopathological features and prognosis. Anticancer Res 29(5):1771–1776

    PubMed  Google Scholar 

  12. Rajesh L, Dey P, Joshi K (2002) Automated image morphometry of lobular breast carcinoma. Anal Quant Cytol Histol 24(2):81–84

    PubMed  Google Scholar 

  13. Thunnissen FB, Diegenbach PC, van Hattum AH, Tolboom J, van der Sluis DM, Schaafsma W, Houthoff HJ, Baak JP (1992) Further evaluation of quantitative nuclear image features for classification of lung carcinomas. Pathol Res Pract 188(4–5):531–535

    PubMed  CAS  Google Scholar 

  14. Thunnissen FB, Diegenbach PC, Baak JP, Houthoff HJ (1988) The influence of variations in the measuring procedure on quantitative nuclear image features in histologic sections of lung tissue. Anal Quant Cytol Histol 10(5):349–354

    PubMed  CAS  Google Scholar 

  15. Mossbacher U, Knollmayer S, Binder M, Steiner A, Wolff K, Pehamberger H (1996) Increased nuclear volume in metastasizing “thick” melanomas. J Invest Dermatol 106(3): 437–440

    PubMed  CAS  Google Scholar 

  16. Zeimet AG, Fiegl H, Goebel G, Kopp F, Allasia C, Reimer D, Steppan I, Mueller-Holzner E, Ehrlich M, Marth C (2011) DNA ploidy, nuclear size, proliferation index and DNA-hypomethylation in ovarian cancer. Gynecol Oncol 121(1):24–31

    PubMed Central  PubMed  CAS  Google Scholar 

  17. Taira T, Kawahara A, Yamaguchi T, Abe H, Ishida Y, Okabe Y, Naito Y, Yano H, Kage M (2011) Morphometric image analysis of pancreatic disease by ThinPrep liquid-based cytology. Diagn Cytopathol 40(11):970–975

    PubMed  Google Scholar 

  18. van Velthoven R, Petein M, Oosterlinck WJ, Zandona C, Zlotta A, Van der Meijden AP, Pasteels JL, Roels H, Schulman C, Kiss R (1995) Image cytometry determination of ploidy level, proliferative activity, and nuclear size in a series of 314 transitional bladder cell carcinomas. Hum Pathol 26(1):3–11

    PubMed  Google Scholar 

  19. Helander KG, Tribukait B (1988) Modal DNA values of normal and malignant urothelial cells of the bladder in relation to nuclear size. Anal Quant Cytol Histol 10(2):127–133

    PubMed  CAS  Google Scholar 

  20. Yan J, Zhuo S, Chen G, Wu X, Zhou D, Xie S, Jiang J, Ying M, Jia F, Chen J, Zhou J (2012) Preclinical study of using multiphoton microscopy to diagnose liver cancer and differentiate benign and malignant liver lesions. J Biomed Opt 17(2):026004

    PubMed  Google Scholar 

  21. Camargo RY, Tomimori EK, Knobel M, Medeiros-Neto G (2007) Preoperative assessment of thyroid nodules: role of ultrasonography and fine needle aspiration biopsy followed by cytology. Clinics (Sao Paulo) 62(4):411–418

    Google Scholar 

  22. Samarnthai N, Elledge R, Prihoda TJ, Huang J, Massarweh S, Yeh IT (2012) Pathologic changes in breast cancer after anti-estrogen therapy. Breast J 18(4):362–366

    PubMed  CAS  Google Scholar 

  23. Chow KH, Factor RE, Ullman KS (2012) The nuclear envelope environment and its cancer connections. Nat Rev Cancer 12(3):196–209

    PubMed  CAS  Google Scholar 

  24. Wilson EB (1925) The karyoplasmic ratio. In: The cell in development and heredity, 3rd edn. The Macmillan Company, New York, pp 727–733

    Google Scholar 

  25. Gregory T (2005) Genome size evolution in animals. In: Gregory T (ed) The evolution of the genome, vol 1. Elsevier Academic Press, London, pp 4–87

    Google Scholar 

  26. Animal Genome Size Database (2011) http://www.genomesize.com.

  27. Cell Size Database (2011) http://www.genomesize.com/cellsize.

  28. Levy DL, Heald R (2012) Mechanisms of intracellular scaling. Annu Rev Cell Dev Biol 28:113–135

    PubMed  CAS  Google Scholar 

  29. Goehring NW, Hyman AA (2012) Organelle growth control through limiting pools of cytoplasmic components. Curr Biol 22(9):R330–R339

    PubMed  CAS  Google Scholar 

  30. Marshall WF (2008) Controlling size within cells. Semin Cell Dev Biol 19(6):479

    PubMed  Google Scholar 

  31. Marshall WF (2008) Engineering design principles for organelle size control systems. Semin Cell Dev Biol 19(6):520–524

    PubMed  CAS  Google Scholar 

  32. Buxboim A, Ivanovska IL, Discher DE (2010) Matrix elasticity, cytoskeletal forces and physics of the nucleus: how deeply do cells “feel” outside and in? J Cell Sci 123(Pt 3):297–308

    PubMed Central  PubMed  CAS  Google Scholar 

  33. Gregory TR (2001) Coincidence, coevolution, or causation? DNA content, cell size, and the C-value enigma. Biol Rev Camb Philos Soc 76(1):65–101

    PubMed  CAS  Google Scholar 

  34. Horner HA, Macgregor HC (1983) C value and cell volume: their significance in the evolution and development of amphibians. J Cell Sci 63:135–146

    PubMed  CAS  Google Scholar 

  35. Khatau SB, Hale CM, Stewart-Hutchinson PJ, Patel MS, Stewart CL, Searson PC, Hodzic D, Wirtz D (2009) A perinuclear actin cap regulates nuclear shape. Proc Natl Acad Sci U S A 106(45):19017–19022

    PubMed Central  PubMed  CAS  Google Scholar 

  36. Baetcke KP, Sparrow AH, Nauman CH, Schwemmer SS (1967) The relationship of DNA content to nuclear and chromosome volumes and to radiosensitivity (LD50). Proc Natl Acad Sci U S A 58(2):533–540

    PubMed Central  PubMed  CAS  Google Scholar 

  37. Cavalier-Smith T (1982) Skeletal DNA and the evolution of genome size. Annu Rev Biophys Bioeng 11:273–302

    PubMed  CAS  Google Scholar 

  38. Fankhauser G (1945) The effects of changes in chromosome number on amphibian development. Q Rev Biol 20(1):20–78

    Google Scholar 

  39. Henery CC, Kaufman MH (1992) Relationship between cell size and nuclear volume in nucleated red blood cells of developmentally matched diploid and tetraploid mouse embryos. J Exp Zool 261(4):472–478

    PubMed  CAS  Google Scholar 

  40. Altman PL, Katz DD (1976) Cell biology. Federation of American Societies for Experimental Biology, Bethesda, MD

    Google Scholar 

  41. Butler JT, Hall LL, Smith KP, Lawrence JB (2009) Changing nuclear landscape and unique PML structures during early epigenetic transitions of human embryonic stem cells. J Cell Biochem 107(4):609–621

    PubMed Central  PubMed  CAS  Google Scholar 

  42. Oh SK, Kim HS, Ahn HJ, Seol HW, Kim YY, Park YB, Yoon CJ, Kim DW, Kim SH, Moon SY (2005) Derivation and characterization of new human embryonic stem cell lines: SNUhES1, SNUhES2, and SNUhES3. Stem Cells 23(2):211–219

    PubMed  Google Scholar 

  43. Faro-Trindade I, Cook PR (2006) A conserved organization of transcription during embryonic stem cell differentiation and in cells with high C value. Mol Biol Cell 17(7):2910–2920

    PubMed Central  PubMed  CAS  Google Scholar 

  44. Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM (1998) Embryonic stem cell lines derived from human blastocysts. Science 282(5391):1145–1147

    PubMed  CAS  Google Scholar 

  45. Gerdes AM, Morales MC, Handa V, Moore JA, Alvarez MR (1991) Nuclear size and DNA content in rat cardiac myocytes during growth, maturation and aging. J Mol Cell Cardiol 23(7):833–839

    PubMed  CAS  Google Scholar 

  46. Mitchell JP, van der Ploeg M (1982) Nuclear changes accompanying cell differentiation in stems of Pisum sativum L. Histochemistry 75(3):327–340

    PubMed  CAS  Google Scholar 

  47. Jorgensen P, Edgington NP, Schneider BL, Rupes I, Tyers M, Futcher B (2007) The size of the nucleus increases as yeast cells grow. Mol Biol Cell 18(9):3523–3532

    PubMed Central  PubMed  CAS  Google Scholar 

  48. Neumann FR, Nurse P (2007) Nuclear size control in fission yeast. J Cell Biol 179(4):593–600

    PubMed Central  PubMed  CAS  Google Scholar 

  49. Maeshima K, Iino H, Hihara S, Funakoshi T, Watanabe A, Nishimura M, Nakatomi R, Yahata K, Imamoto F, Hashikawa T, Yokota H, Imamoto N (2010) Nuclear pore formation but not nuclear growth is governed by cyclin-dependent kinases (Cdks) during interphase. Nat Struct Mol Biol 17(9):1065–1071

    PubMed  CAS  Google Scholar 

  50. Chan RC, Forbes DI (2006) In vitro study of nuclear assembly and nuclear import using Xenopus egg extracts. Methods Mol Biol 322:289–300

    PubMed  CAS  Google Scholar 

  51. Levy DL, Heald R (2010) Nuclear size is regulated by importin alpha and Ntf2 in Xenopus. Cell 143(2):288–298

    PubMed Central  PubMed  CAS  Google Scholar 

  52. Nieuwkoop PD, Faber J (1967) Normal table of Xenopus laevis (Daudin), 2nd edn. North-Holland Publishing Company, Amsterdam

    Google Scholar 

  53. Montorzi M, Burgos MH, Falchuk KH (2000) Xenopus laevis embryo development: arrest of epidermal cell differentiation by the chelating agent 1,10-phenanthroline. Mol Reprod Dev 55(1):75–82

    PubMed  CAS  Google Scholar 

  54. Yanai I, Peshkin L, Jorgensen P, Kirschner MW (2011) Mapping gene expression in two Xenopus species: evolutionary constraints and developmental flexibility. Dev Cell 20(4): 483–496

    PubMed Central  PubMed  CAS  Google Scholar 

  55. Gerhart JC (1980) Mechanisms regulating pattern formation in the amphibian egg and early embryo. In: Goldberger RF (ed) Biological regulation and development, vol 2. Plenum, New York, pp 133–316

    Google Scholar 

  56. Cook M, Tyers M (2007) Size control goes global. Curr Opin Biotechnol 18(4):341–350

    PubMed  CAS  Google Scholar 

  57. Fankhauser G (1939) Polyploidy in the salamander, Eurycea bislineata. J Hered 30:379–388

    Google Scholar 

  58. Sugimoto-Shirasu K, Roberts K (2003) “Big it up”: endoreduplication and cell-size control in plants. Curr Opin Plant Biol 6(6):544–553

    PubMed  CAS  Google Scholar 

  59. Lee HO, Davidson JM, Duronio RJ (2009) Endoreplication: polyploidy with purpose. Genes Dev 23(21):2461–2477

    PubMed Central  PubMed  CAS  Google Scholar 

  60. Leiva-Neto JT, Grafi G, Sabelli PA, Dante RA, Woo YM, Maddock S, Gordon-Kamm WJ, Larkins BA (2004) A dominant negative mutant of cyclin-dependent kinase A reduces endoreduplication but not cell size or gene expression in maize endosperm. Plant Cell 16(7):1854–1869

    PubMed Central  PubMed  CAS  Google Scholar 

  61. Schnittger A, Weinl C, Bouyer D, Schobinger U, Hulskamp M (2003) Misexpression of the cyclin-dependent kinase inhibitor ICK1/KRP1 in single-celled Arabidopsis trichomes reduces endoreduplication and cell size and induces cell death. Plant Cell 15(2):303–315

    PubMed Central  PubMed  CAS  Google Scholar 

  62. Liautaud-Roger F, Teyssier JR, Ferre D, Dufer J, Coninx P (1992) Can chromatin texture predict structural karyotypic changes in diploid cells from thyroid cold nodules? Anal Cell Pathol 4(6):421–428

    PubMed  CAS  Google Scholar 

  63. Teyssier JR, Liautaud-Roger F, Ferre D, Patey M, Dufer J (1990) Chromosomal changes in thyroid tumors. Relation with DNA content, karyotypic features, and clinical data. Cancer Genet Cytogenet 50(2):249–263

    PubMed  CAS  Google Scholar 

  64. Brahmi U, Rajwanshi A, Joshi K, Ganguly NK, Vohra H, Gupta SK, Dey P (2001) Role of immunocytochemistry and DNA flow cytometry in the fine-needle aspiration diagnosis of malignant small round-cell tumors. Diagn Cytopathol 24(4):233–239

    PubMed  CAS  Google Scholar 

  65. Sorensen FB (1996) Quantitative analysis of nuclear size for prognosis-related malignancy grading. In: Heppner G, Bittar EE (eds) Advances in oncobiology, vol 1. JAI Press Inc, Greenwich, CT, pp 221–255

    Google Scholar 

  66. Zink D, Fischer AH, Nickerson JA (2004) Nuclear structure in cancer cells. Nat Rev Cancer 4(9):677–687

    PubMed  CAS  Google Scholar 

  67. Nielsen K, Petersen SE, Orntoft T (1989) A comparison between stereological estimates of mean nuclear volume and DNA flow cytometry in bladder tumours. APMIS 97(10): 949–956

    PubMed  CAS  Google Scholar 

  68. Dangou JM, Kiss R, DePrez C, Jeannot MC, Fastrez R, Pasteels JL, Verhest A (1993) Heterogeneity of DNA ploidy, proliferation index and nuclear size in human colorectal carcinomas. Anal Quant Cytol Histol 15(1):23–31

    PubMed  CAS  Google Scholar 

  69. Lindberg LG (1992) Nuclear DNA ploidy in mammary carcinomas; using nuclear size as co-parameter reveals more complex patterns. Anal Cell Pathol 4(5):389–394

    PubMed  CAS  Google Scholar 

  70. Miyamoto H, Isobe H, Akita H, Ishiguro A, Endo T, Inoue S, Kawakami Y (1992) The flow cytometric nuclear-DNA content, tumor-origin, nuclear size and prognosis in squamous-cell lung-cancer. Int J Oncol 1(3):325–329

    PubMed  CAS  Google Scholar 

  71. Sorensen FB, Erlandsen M (1990) Intralesional and metastatic heterogeneity in malignant melanomas demonstrated by stereologic estimates of nuclear volume. Lab Invest 62(5): 646–654

    PubMed  CAS  Google Scholar 

  72. Sorensen FB, Bichel P, Jakobsen A (1992) DNA level and stereologic estimates of nuclear volume in squamous cell carcinomas of the uterine cervix. A comparative study with analysis of prognostic impact. Cancer 69(1):187–199

    PubMed  CAS  Google Scholar 

  73. Wang N, Stenkvist BG, Tribukait B (1992) Morphometry of nuclei of the normal and malignant prostate in relation to DNA ploidy. Anal Quant Cytol Histol 14(3):210–216

    PubMed  CAS  Google Scholar 

  74. Cremer M, Kupper K, Wagler B, Wizelman L, von Hase J, Weiland Y, Kreja L, Diebold J, Speicher MR, Cremer T (2003) Inheritance of gene density-related higher order chromatin arrangements in normal and tumor cell nuclei. J Cell Biol 162(5):809–820

    PubMed Central  PubMed  CAS  Google Scholar 

  75. Fischer AH, Bond JA, Taysavang P, Battles OE, Wynford-Thomas D (1998) Papillary thyroid carcinoma oncogene (RET/PTC) alters the nuclear envelope and chromatin structure. Am J Pathol 153(5):1443–1450

    PubMed Central  PubMed  CAS  Google Scholar 

  76. Debes JD, Sebo TJ, Heemers HV, Kipp BR, Haugen DL, Lohse CM, Tindall DJ (2005) p300 modulates nuclear morphology in prostate cancer. Cancer Res 65(3):708–712

    PubMed  CAS  Google Scholar 

  77. Huber MD, Gerace L (2007) The size-wise nucleus: nuclear volume control in eukaryotes. J Cell Biol 179(4):583–584

    PubMed Central  PubMed  CAS  Google Scholar 

  78. Harris H (1967) The reactivation of the red cell nucleus. J Cell Sci 2(1):23–32

    PubMed  CAS  Google Scholar 

  79. Merriam RW (1969) Movement of cytoplasmic proteins into nuclei induced to enlarge and initiate DNA or RNA synthesis. J Cell Sci 5:333–349

    PubMed  CAS  Google Scholar 

  80. Gurdon JB (1976) Injected nuclei in frog oocytes: fate, enlargement, and chromatin dispersal. J Embryol Exp Morphol 36:523–540

    PubMed  CAS  Google Scholar 

  81. Conklin E (1912) Cell size and nuclear size. J Exp Embryol 12:1–98

    Google Scholar 

  82. Sato S, Burgess SB, McIlwain DL (1994) Transcription and motoneuron size. J Neurochem 63(5):1609–1615

    PubMed  CAS  Google Scholar 

  83. Schmidt EE, Schibler U (1995) Cell size regulation, a mechanism that controls cellular RNA accumulation: consequences on regulation of the ubiquitous transcription factors Oct1 and NF-Y and the liver-enriched transcription factor DBP. J Cell Biol 128(4):467–483

    PubMed  CAS  Google Scholar 

  84. Edens LJ, White KH, Jevtic P, Li X, Levy DL (2013) Nuclear size regulation: from single cells to development and disease. Trends Cell Biol 23(4):151–159

    PubMed  CAS  Google Scholar 

  85. Webster MT, McCaffery JM, Cohen-Fix O (2010) Vesicle trafficking maintains nuclear shape in Saccharomyces cerevisiae during membrane proliferation. J Cell Biol 191(6):1079–1088

    PubMed Central  PubMed  CAS  Google Scholar 

  86. Lum PY, Wright R (1995) Degradation of HMG-CoA reductase-induced membranes in the fission yeast, Schizosaccharomyces pombe. J Cell Biol 131(1):81–94

    PubMed  CAS  Google Scholar 

  87. Tange Y, Hirata A, Niwa O (2002) An evolutionarily conserved fission yeast protein, Ned1, implicated in normal nuclear morphology and chromosome stability, interacts with Dis3, Pim1/RCC1 and an essential nucleoporin. J Cell Sci 115(Pt 22):4375–4385

    PubMed  CAS  Google Scholar 

  88. Stewart M (2007) Molecular mechanism of the nuclear protein import cycle. Nat Rev Mol Cell Biol 8(3):195–208

    PubMed  CAS  Google Scholar 

  89. Madrid AS, Weis K (2006) Nuclear transport is becoming crystal clear. Chromosoma 115(2):98–109

    PubMed  Google Scholar 

  90. Newport JW, Wilson KL, Dunphy WG (1990) A lamin-independent pathway for nuclear envelope assembly. J Cell Biol 111(6 Pt 1):2247–2259

    PubMed  CAS  Google Scholar 

  91. Misteli T, Spector DL (2011) The nucleus. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  92. Maul GG, Deaven LL, Freed JJ, Campbell GL, Becak W (1980) Investigation of the determinants of nuclear pore number. Cytogenet Cell Genet 26(2–4):175–190

    PubMed  CAS  Google Scholar 

  93. Maul GG, Deaven L (1977) Quantitative determination of nuclear pore complexes in cycling cells with differing DNA content. J Cell Biol 73(3):748–760

    PubMed Central  PubMed  CAS  Google Scholar 

  94. Shen X, Yu L, Weir JW, Gorovsky MA (1995) Linker histones are not essential and affect chromatin condensation in vivo. Cell 82(1):47–56

    PubMed  CAS  Google Scholar 

  95. Iwamoto M, Mori C, Kojidani T, Bunai F, Hori T, Fukagawa T, Hiraoka Y, Haraguchi T (2009) Two distinct repeat sequences of Nup98 nucleoporins characterize dual nuclei in the binucleated ciliate tetrahymena. Curr Biol 19(10):843–847

    PubMed  CAS  Google Scholar 

  96. Malone CD, Falkowska KA, Li AY, Galanti SE, Kanuru RC, LaMont EG, Mazzarella KC, Micev AJ, Osman MM, Piotrowski NK, Suszko JW, Timm AC, Xu MM, Liu L, Chalker DL (2008) Nucleus-specific importin alpha proteins and nucleoporins regulate protein import and nuclear division in the binucleate Tetrahymena thermophila. Eukaryot Cell 7(9):1487–1499

    PubMed Central  PubMed  CAS  Google Scholar 

  97. Theerthagiri G, Eisenhardt N, Schwarz H, Antonin W (2010) The nucleoporin Nup188 controls passage of membrane proteins across the nuclear pore complex. J Cell Biol 189(7): 1129–1142

    PubMed Central  PubMed  CAS  Google Scholar 

  98. Tamura K, Hara-Nishimura I (2011) Involvement of the nuclear pore complex in morphology of the plant nucleus. Nucleus 2(3):168–172

    PubMed Central  PubMed  Google Scholar 

  99. Yasuhara N, Shibazaki N, Tanaka S, Nagai M, Kamikawa Y, Oe S, Asally M, Kamachi Y, Kondoh H, Yoneda Y (2007) Triggering neural differentiation of ES cells by subtype switching of importin-alpha. Nat Cell Biol 9(1):72–79

    PubMed  CAS  Google Scholar 

  100. Yasuhara N, Oka M, Yoneda Y (2009) The role of the nuclear transport system in cell differentiation. Semin Cell Dev Biol 20(5):590–599

    PubMed  CAS  Google Scholar 

  101. D’Angelo MA, Gomez-Cavazos JS, Mei A, Lackner DH, Hetzer MW (2012) A change in nuclear pore complex composition regulates cell differentiation. Dev Cell 22(2):446–458

    PubMed Central  PubMed  Google Scholar 

  102. Andrade R, Alonso R, Pena R, Arlucea J, Arechaga J (2003) Localization of importin alpha (Rch1) at the plasma membrane and subcellular redistribution during lymphocyte activation. Chromosoma 112(2):87–95

    PubMed  CAS  Google Scholar 

  103. Dahl E, Kristiansen G, Gottlob K, Klaman I, Ebner E, Hinzmann B, Hermann K, Pilarsky C, Durst M, Klinkhammer-Schalke M, Blaszyk H, Knuechel R, Hartmann A, Rosenthal A, Wild PJ (2006) Molecular profiling of laser-microdissected matched tumor and normal breast tissue identifies karyopherin alpha2 as a potential novel prognostic marker in breast cancer. Clin Cancer Res 12(13):3950–3960

    PubMed  CAS  Google Scholar 

  104. Gluz O, Wild P, Meiler R, Diallo-Danebrock R, Ting E, Mohrmann S, Schuett G, Dahl E, Fuchs T, Herr A, Gaumann A, Frick M, Poremba C, Nitz UA, Hartmann A (2008) Nuclear karyopherin alpha2 expression predicts poor survival in patients with advanced breast cancer irrespective of treatment intensity. Int J Cancer 123(6):1433–1438

    PubMed  CAS  Google Scholar 

  105. Wang CI, Wang CL, Wang CW, Chen CD, Wu CC, Liang Y, Tsai YH, Chang YS, Yu JS, Yu CJ (2010) Importin subunit alpha-2 is identified as a potential biomarker for non-small cell lung cancer by integration of the cancer cell secretome and tissue transcriptome. Int J Cancer 128(10):2364–2372

    Google Scholar 

  106. Kau TR, Silver PA (2003) Nuclear transport as a target for cell growth. Drug Discov Today 8(2):78–85

    PubMed  CAS  Google Scholar 

  107. Kau TR, Way JC, Silver PA (2004) Nuclear transport and cancer: from mechanism to intervention. Nat Rev Cancer 4(2):106–117

    PubMed  CAS  Google Scholar 

  108. Poon IK, Jans DA (2005) Regulation of nuclear transport: central role in development and transformation? Traffic 6(3):173–186

    PubMed  CAS  Google Scholar 

  109. Rensen WM, Mangiacasale R, Ciciarello M, Lavia P (2008) The GTPase Ran: regulation of cell life and potential roles in cell transformation. Front Biosci 13:4097–4121

    PubMed  CAS  Google Scholar 

  110. Yashiroda Y, Yoshida M (2003) Nucleo-cytoplasmic transport of proteins as a target for therapeutic drugs. Curr Med Chem 10(9):741–748

    PubMed  CAS  Google Scholar 

  111. Marshall WF (2012) Organelle size control systems: from cell geometry to organelle-directed medicine. Bioessays 34(9):721–724

    PubMed Central  PubMed  CAS  Google Scholar 

  112. Gruenbaum Y, Margalit A, Goldman RD, Shumaker DK, Wilson KL (2005) The nuclear lamina comes of age. Nat Rev Mol Cell Biol 6(1):21–31

    PubMed  CAS  Google Scholar 

  113. Worman HJ, Courvalin JC (2005) Nuclear envelope, nuclear lamina, and inherited disease. Int Rev Cytol 246:231–279

    PubMed  CAS  Google Scholar 

  114. Walters AD, Bommakanti A, Cohen-Fix O (2012) Shaping the nucleus: factors and forces. J Cell Biochem 113(9):2813–2821

    PubMed Central  PubMed  CAS  Google Scholar 

  115. Dechat T, Adam SA, Taimen P, Shimi T, Goldman RD (2010) Nuclear lamins. Cold Spring Harb Perspect Biol 2(11):a000547

    PubMed Central  PubMed  CAS  Google Scholar 

  116. Parnaik VK, Chaturvedi P, Muralikrishna B (2011) Lamins, laminopathies and disease mechanisms: possible role for proteasomal degradation of key regulatory proteins. J Biosci 36(3): 471–479

    PubMed  CAS  Google Scholar 

  117. Jenkins H, Holman T, Lyon C, Lane B, Stick R, Hutchison C (1993) Nuclei that lack a lamina accumulate karyophilic proteins and assemble a nuclear matrix. J Cell Sci 106(Pt 1):275–285

    PubMed  CAS  Google Scholar 

  118. Stick R, Hausen P (1985) Changes in the nuclear lamina composition during early development of Xenopus laevis. Cell 41(1):191–200

    PubMed  CAS  Google Scholar 

  119. Lehner CF, Stick R, Eppenberger HM, Nigg EA (1987) Differential expression of nuclear lamin proteins during chicken development. J Cell Biol 105(1):577–587

    PubMed  CAS  Google Scholar 

  120. Rober RA, Weber K, Osborn M (1989) Differential timing of nuclear lamin A/C expression in the various organs of the mouse embryo and the young animal: a developmental study. Development 105(2):365–378

    PubMed  CAS  Google Scholar 

  121. Benavente R, Krohne G, Franke WW (1985) Cell type-specific expression of nuclear lamina proteins during development of Xenopus laevis. Cell 41(1):177–190

    PubMed  CAS  Google Scholar 

  122. Rober RA, Sauter H, Weber K, Osborn M (1990) Cells of the cellular immune and hemopoietic system of the mouse lack lamins A/C: distinction versus other somatic cells. J Cell Sci 95(Pt 4):587–598

    PubMed  Google Scholar 

  123. Prufert K, Vogel A, Krohne G (2004) The lamin CxxM motif promotes nuclear membrane growth. J Cell Sci 117(Pt 25):6105–6116

    PubMed  Google Scholar 

  124. Meyerzon M, Gao Z, Liu J, Wu JC, Malone CJ, Starr DA (2009) Centrosome attachment to the C. elegans male pronucleus is dependent on the surface area of the nuclear envelope. Dev Biol 327(2):433–446

    PubMed Central  PubMed  CAS  Google Scholar 

  125. Berger R, Theodor L, Shoham J, Gokkel E, Brok-Simoni F, Avraham KB, Copeland NG, Jenkins NA, Rechavi G, Simon AJ (1996) The characterization and localization of the mouse thymopoietin/lamina-associated polypeptide 2 gene and its alternatively spliced products. Genome Res 6(5):361–370

    PubMed  CAS  Google Scholar 

  126. Dechat T, Vlcek S, Foisner R (2000) Review: lamina-associated polypeptide 2 isoforms and related proteins in cell cycle-dependent nuclear structure dynamics. J Struct Biol 129(2–3): 335–345

    PubMed  CAS  Google Scholar 

  127. Yang L, Guan T, Gerace L (1997) Lamin-binding fragment of LAP2 inhibits increase in nuclear volume during the cell cycle and progression into S phase. J Cell Biol 139(5): 1077–1087

    PubMed Central  PubMed  CAS  Google Scholar 

  128. Gant TM, Harris CA, Wilson KL (1999) Roles of LAP2 proteins in nuclear assembly and DNA replication: truncated LAP2beta proteins alter lamina assembly, envelope formation, nuclear size, and DNA replication efficiency in Xenopus laevis extracts. J Cell Biol 144(6):1083–1096

    PubMed Central  PubMed  CAS  Google Scholar 

  129. O'Brien LL, Wiese C (2006) TPX2 is required for postmitotic nuclear assembly in cell-free Xenopus laevis egg extracts. J Cell Biol 173(5):685–694

    PubMed Central  PubMed  Google Scholar 

  130. Olins AL, Rhodes G, Welch DB, Zwerger M, Olins DE (2010) Lamin B receptor: multi-tasking at the nuclear envelope. Nucleus 1(1):53–70

    PubMed Central  PubMed  Google Scholar 

  131. Brandt A, Papagiannouli F, Wagner N, Wilsch-Brauninger M, Braun M, Furlong EE, Loserth S, Wenzl C, Pilot F, Vogt N, Lecuit T, Krohne G, Grosshans J (2006) Developmental control of nuclear size and shape by Kugelkern and Kurzkern. Curr Biol 16(6):543–552

    PubMed  CAS  Google Scholar 

  132. Gonzalez Y, Saito A, Sazer S (2012) Fission yeast Lem2 and Man1 perform fundamental functions of the animal cell nuclear lamina. Nucleus 3(1):60–76

    PubMed Central  PubMed  Google Scholar 

  133. Hiraoka Y, Maekawa H, Asakawa H, Chikashige Y, Kojidani T, Osakada H, Matsuda A, Haraguchi T (2011) Inner nuclear membrane protein Ima1 is dispensable for intranuclear positioning of centromeres. Genes Cells 16(10):1000–1011

    PubMed  CAS  Google Scholar 

  134. King MC, Lusk CP, Blobel G (2006) Karyopherin-mediated import of integral inner nuclear membrane proteins. Nature 442(7106):1003–1007

    PubMed  CAS  Google Scholar 

  135. Kruger A, Batsios P, Baumann O, Luckert E, Schwarz H, Stick R, Meyer I, Graf R (2012) Characterization of NE81, the first lamin-like nucleoskeleton protein in a unicellular organism. Mol Biol Cell 23(2):360–370

    PubMed Central  PubMed  Google Scholar 

  136. DuBois KN, Alsford S, Holden JM, Buisson J, Swiderski M, Bart JM, Ratushny AV, Wan Y, Bastin P, Barry JD, Navarro M, Horn D, Aitchison JD, Rout MP, Field MC (2012) NUP-1 Is a large coiled-coil nucleoskeletal protein in trypanosomes with lamin-like functions. PLoS Biol 10(3):e1001287

    PubMed Central  PubMed  CAS  Google Scholar 

  137. Dittmer TA, Stacey NJ, Sugimoto-Shirasu K, Richards EJ (2007) LITTLE NUCLEI genes affecting nuclear morphology in Arabidopsis thaliana. Plant Cell 19(9):2793–2803

    PubMed Central  PubMed  CAS  Google Scholar 

  138. van Zanten M, Koini MA, Geyer R, Liu Y, Brambilla V, Bartels D, Koornneef M, Fransz P, Soppe WJ (2011) Seed maturation in Arabidopsis thaliana is characterized by nuclear size reduction and increased chromatin condensation. Proc Natl Acad Sci U S A 108(50):20219–20224

    PubMed Central  PubMed  Google Scholar 

  139. Foster CR, Przyborski SA, Wilson RG, Hutchison CJ (2010) Lamins as cancer biomarkers. Biochem Soc Trans 38(Pt 1):297–300

    PubMed  CAS  Google Scholar 

  140. Tilli CM, Ramaekers FC, Broers JL, Hutchison CJ, Neumann HA (2003) Lamin expression in normal human skin, actinic keratosis, squamous cell carcinoma and basal cell carcinoma. Br J Dermatol 148(1):102–109

    PubMed  CAS  Google Scholar 

  141. Moss SF, Krivosheyev V, de Souza A, Chin K, Gaetz HP, Chaudhary N, Worman HJ, Holt PR (1999) Decreased and aberrant nuclear lamin expression in gastrointestinal tract neoplasms. Gut 45(5):723–729

    PubMed Central  PubMed  CAS  Google Scholar 

  142. Broers JL, Raymond Y, Rot MK, Kuijpers H, Wagenaar SS, Ramaekers FC (1993) Nuclear A-type lamins are differentially expressed in human lung cancer subtypes. Am J Pathol 143(1):211–220

    PubMed Central  PubMed  CAS  Google Scholar 

  143. Oguchi M, Sagara J, Matsumoto K, Saida T, Taniguchi S (2002) Expression of lamins depends on epidermal differentiation and transformation. Br J Dermatol 147(5):853–858

    PubMed  CAS  Google Scholar 

  144. Sun S, Xu MZ, Poon RT, Day PJ, Luk JM (2010) Circulating Lamin B1 (LMNB1) biomarker detects early stages of liver cancer in patients. J Proteome Res 9(1):70–78

    PubMed  CAS  Google Scholar 

  145. Hudson ME, Pozdnyakova I, Haines K, Mor G, Snyder M (2007) Identification of differentially expressed proteins in ovarian cancer using high-density protein microarrays. Proc Natl Acad Sci U S A 104(44):17494–17499

    PubMed Central  PubMed  CAS  Google Scholar 

  146. Willis ND, Cox TR, Rahman-Casans SF, Smits K, Przyborski SA, van den Brandt P, van Engeland M, Weijenberg M, Wilson RG, de Bruine A, Hutchison CJ (2008) Lamin A/C is a risk biomarker in colorectal cancer. PLoS One 3(8):e2988

    PubMed Central  PubMed  Google Scholar 

  147. Kaufmann SH, Mabry M, Jasti R, Shaper JH (1991) Differential expression of nuclear envelope lamins A and C in human lung cancer cell lines. Cancer Res 51(2):581–586

    PubMed  CAS  Google Scholar 

  148. de Las Heras JI, Batrakou DG, Schirmer EC (2013) Cancer biology and the nuclear envelope: a convoluted relationship. Semin Cancer Biol 23(2):125–137

    PubMed  Google Scholar 

  149. Bussolati G, Marchio C, Gaetano L, Lupo R, Sapino A (2008) Pleomorphism of the nuclear envelope in breast cancer: a new approach to an old problem. J Cell Mol Med 12(1):209–218

    PubMed  Google Scholar 

  150. Crisp M, Liu Q, Roux K, Rattner JB, Shanahan C, Burke B, Stahl PD, Hodzic D (2006) Coupling of the nucleus and cytoplasm: role of the LINC complex. J Cell Biol 172(1):41–53

    PubMed Central  PubMed  CAS  Google Scholar 

  151. Mierke CT (2013) Physical break-down of the classical view on cancer cell invasion and metastasis. Eur J Cell Biol 92(3):89–104

    PubMed  CAS  Google Scholar 

  152. Mejat A, Misteli T (2010) LINC complexes in health and disease. Nucleus 1(1):40–52

    PubMed Central  PubMed  Google Scholar 

  153. Luke Y, Zaim H, Karakesisoglou I, Jaeger VM, Sellin L, Lu W, Schneider M, Neumann S, Beijer A, Munck M, Padmakumar VC, Gloy J, Walz G, Noegel AA (2008) Nesprin-2 Giant (NUANCE) maintains nuclear envelope architecture and composition in skin. J Cell Sci 121(Pt 11):1887–1898

    PubMed  Google Scholar 

  154. Lu W, Schneider M, Neumann S, Jaeger VM, Taranum S, Munck M, Cartwright S, Richardson C, Carthew J, Noh K, Goldberg M, Noegel AA, Karakesisoglou I (2012) Nesprin interchain associations control nuclear size. Cell Mol Life Sci 69(20):3493–3509

    PubMed  CAS  Google Scholar 

  155. Sjoblom T, Jones S, Wood LD, Parsons DW, Lin J, Barber TD, Mandelker D, Leary RJ, Ptak J, Silliman N, Szabo S, Buckhaults P, Farrell C, Meeh P, Markowitz SD, Willis J, Dawson D, Willson JK, Gazdar AF, Hartigan J, Wu L, Liu C, Parmigiani G, Park BH, Bachman KE, Papadopoulos N, Vogelstein B, Kinzler KW, Velculescu VE (2006) The consensus coding sequences of human breast and colorectal cancers. Science 314(5797):268–274

    PubMed  Google Scholar 

  156. Mokarram P, Kumar K, Brim H, Naghibalhossaini F, Saberi-firoozi M, Nouraie M, Green R, Lee E, Smoot DT, Ashktorab H (2009) Distinct high-profile methylated genes in colorectal cancer. PLoS One 4(9):e7012

    PubMed Central  PubMed  Google Scholar 

  157. Doherty JA, Rossing MA, Cushing-Haugen KL, Chen C, Van Den Berg DJ, Wu AH, Pike MC, Ness RB, Moysich K, Chenevix-Trench G, Beesley J, Webb PM, Chang-Claude J, Wang-Gohrke S, Goodman MT, Lurie G, Thompson PJ, Carney ME, Hogdall E, Kjaer SK, Hogdall C, Goode EL, Cunningham JM, Fridley BL, Vierkant RA, Berchuck A, Moorman PG, Schildkraut JM, Palmieri RT, Cramer DW, Terry KL, Yang HP, Garcia-Closas M, Chanock S, Lissowska J, Song H, Pharoah PD, Shah M, Perkins B, McGuire V, Whittemore AS, Di Cioccio RA, Gentry-Maharaj A, Menon U, Gayther SA, Ramus SJ, Ziogas A, Brewster W, Anton-Culver H, Pearce CL (2010) ESR1/SYNE1 polymorphism and invasive epithelial ovarian cancer risk: an Ovarian Cancer Association Consortium study. Cancer Epidemiol Biomarkers Prev 19(1):245–250

    PubMed Central  PubMed  CAS  Google Scholar 

  158. Marme A, Zimmermann HP, Moldenhauer G, Schorpp-Kistner M, Muller C, Keberlein O, Giersch A, Kretschmer J, Seib B, Spiess E, Hunziker A, Merchan F, Moller P, Hahn U, Kurek R, Marme F, Bastert G, Wallwiener D, Ponstingl H (2008) Loss of Drop1 expression already at early tumor stages in a wide range of human carcinomas. Int J Cancer 123(9):2048–2056

    PubMed  CAS  Google Scholar 

  159. West M, Zurek N, Hoenger A, Voeltz GK (2011) A 3D analysis of yeast ER structure reveals how ER domains are organized by membrane curvature. J Cell Biol 193(2):333–346

    PubMed Central  PubMed  CAS  Google Scholar 

  160. Voeltz GK, Prinz WA, Shibata Y, Rist JM, Rapoport TA (2006) A class of membrane proteins shaping the tubular endoplasmic reticulum. Cell 124(3):573–586

    PubMed  CAS  Google Scholar 

  161. Hu J, Shibata Y, Voss C, Shemesh T, Li Z, Coughlin M, Kozlov MM, Rapoport TA, Prinz WA (2008) Membrane proteins of the endoplasmic reticulum induce high-curvature tubules. Science 319(5867):1247–1250

    PubMed  CAS  Google Scholar 

  162. Shibata Y, Shemesh T, Prinz WA, Palazzo AF, Kozlov MM, Rapoport TA (2010) Mechanisms determining the morphology of the peripheral ER. Cell 143(5):774–788

    PubMed Central  PubMed  CAS  Google Scholar 

  163. Orso G, Pendin D, Liu S, Tosetto J, Moss TJ, Faust JE, Micaroni M, Egorova A, Martinuzzi A, McNew JA, Daga A (2009) Homotypic fusion of ER membranes requires the dynamin-like GTPase atlastin. Nature 460(7258):978–983

    PubMed  CAS  Google Scholar 

  164. Hu J, Shibata Y, Zhu PP, Voss C, Rismanchi N, Prinz WA, Rapoport TA, Blackstone C (2009) A class of dynamin-like GTPases involved in the generation of the tubular ER network. Cell 138(3):549–561

    PubMed Central  PubMed  CAS  Google Scholar 

  165. Anderson DJ, Hetzer MW (2007) Nuclear envelope formation by chromatin-mediated reorganization of the endoplasmic reticulum. Nat Cell Biol 9(10):1160–1166

    PubMed  CAS  Google Scholar 

  166. Anderson DJ, Hetzer MW (2008) Reshaping of the endoplasmic reticulum limits the rate for nuclear envelope formation. J Cell Biol 182(5):911–924

    PubMed Central  PubMed  CAS  Google Scholar 

  167. Anderson DJ, Vargas JD, Hsiao JP, Hetzer MW (2009) Recruitment of functionally distinct membrane proteins to chromatin mediates nuclear envelope formation in vivo. J Cell Biol 186(2):183–191

    PubMed Central  PubMed  CAS  Google Scholar 

  168. Razafsky D, Hodzic D (2009) Bringing KASH under the SUN: the many faces of nucleo-cytoskeletal connections. J Cell Biol 186(4):461–472

    PubMed Central  PubMed  CAS  Google Scholar 

  169. Bjorling E, Lindskog C, Oksvold P, Linne J, Kampf C, Hober S, Uhlen M, Ponten F (2008) A web-based tool for in silico biomarker discovery based on tissue-specific protein profiles in normal and cancer tissues. Mol Cell Proteomics 7(5):825–844

    PubMed  Google Scholar 

  170. Rahbari R, Kitano M, Zhang L, Bommareddi S, Kebebew E (2013) RTN4IP1 is down-regulated in thyroid cancer and has tumor-suppressive function. J Clin Endocrinol Metab 98(3):E446–E454

    PubMed Central  PubMed  CAS  Google Scholar 

  171. Shirahata M, Oba S, Iwao-Koizumi K, Saito S, Ueno N, Oda M, Hashimoto N, Ishii S, Takahashi JA, Kato K (2009) Using gene expression profiling to identify a prognostic molecular spectrum in gliomas. Cancer Sci 100(1):165–172

    PubMed  CAS  Google Scholar 

  172. van de Velde HJ, Senden NH, Roskams TA, Broers JL, Ramaekers FC, Roebroek AJ, Van de Ven WJ (1994) NSP-encoded reticulons are neuroendocrine markers of a novel category in human lung cancer diagnosis. Cancer Res 54(17):4769–4776

    PubMed  Google Scholar 

  173. Senden N, Linnoila I, Timmer E, van de Velde H, Roebroek A, Van de Ven W, Broers J, Ramaekers F (1997) Neuroendocrine-specific protein (NSP)-reticulons as independent markers for non-small cell lung cancer with neuroendocrine differentiation. An in vitro histochemical study. Histochem Cell Biol 108(2):155–165

    PubMed  CAS  Google Scholar 

  174. Yang YS, Strittmatter SM (2007) The reticulons: a family of proteins with diverse functions. Genome Biol 8(12):234

    PubMed Central  PubMed  Google Scholar 

  175. Morrone FB, Oliveira DL, Gamermann P, Stella J, Wofchuk S, Wink MR, Meurer L, Edelweiss MI, Lenz G, Battastini AM (2006) In vivo glioblastoma growth is reduced by apyrase activity in a rat glioma model. BMC Cancer 6:226

    PubMed Central  PubMed  Google Scholar 

  176. Petersen I, Kotb WF, Friedrich KH, Schluns K, Bocking A, Dietel M (2009) Core classification of lung cancer: correlating nuclear size and mitoses with ploidy and clinicopathological parameters. Lung Cancer 65(3):312–318

    PubMed  Google Scholar 

  177. Zaidel-Bar R, Itzkovitz S, Ma'ayan A, Iyengar R, Geiger B (2007) Functional atlas of the integrin adhesome. Nat Cell Biol 9(8):858–867

    PubMed Central  PubMed  CAS  Google Scholar 

  178. Maniotis AJ, Chen CS, Ingber DE (1997) Demonstration of mechanical connections between integrins, cytoskeletal filaments, and nucleoplasm that stabilize nuclear structure. Proc Natl Acad Sci U S A 94(3):849–854

    PubMed Central  PubMed  CAS  Google Scholar 

  179. Bissell MJ, Weaver VM, Lelievre SA, Wang F, Petersen OW, Schmeichel KL (1999) Tissue structure, nuclear organization, and gene expression in normal and malignant breast. Cancer Res 59(Suppl 7):1757s–1763s, discussion 1763s–1764s

    CAS  Google Scholar 

  180. Dahl KN, Ribeiro AJ, Lammerding J (2008) Nuclear shape, mechanics, and mechanotransduction. Circ Res 102(11):1307–1318

    PubMed Central  PubMed  CAS  Google Scholar 

  181. Pajerowski JD, Dahl KN, Zhong FL, Sammak PJ, Discher DE (2007) Physical plasticity of the nucleus in stem cell differentiation. Proc Natl Acad Sci U S A 104(40):15619–15624

    PubMed Central  PubMed  CAS  Google Scholar 

  182. Dahl KN, Kahn SM, Wilson KL, Discher DE (2004) The nuclear envelope lamina network has elasticity and a compressibility limit suggestive of a molecular shock absorber. J Cell Sci 117(Pt 20):4779–4786

    PubMed  CAS  Google Scholar 

  183. Friedl P, Wolf K, Lammerding J (2011) Nuclear mechanics during cell migration. Curr Opin Cell Biol 23(1):55–64

    PubMed Central  PubMed  CAS  Google Scholar 

  184. Discher DE, Janmey P, Wang YL (2005) Tissue cells feel and respond to the stiffness of their substrate. Science 310(5751):1139–1143

    PubMed  CAS  Google Scholar 

  185. Mammoto T, Ingber DE (2010) Mechanical control of tissue and organ development. Development 137(9):1407–1420

    PubMed Central  PubMed  CAS  Google Scholar 

  186. Engler AJ, Sen S, Sweeney HL, Discher DE (2006) Matrix elasticity directs stem cell lineage specification. Cell 126(4):677–689

    PubMed  CAS  Google Scholar 

  187. Briand P, Nielsen KV, Madsen MW, Petersen OW (1996) Trisomy 7p and malignant transformation of human breast epithelial cells following epidermal growth factor withdrawal. Cancer Res 56(9):2039–2044

    PubMed  CAS  Google Scholar 

  188. Danen EH, Yamada KM (2001) Fibronectin, integrins, and growth control. J Cell Physiol 189(1):1–13

    PubMed  CAS  Google Scholar 

  189. Malhas A, Goulbourne C, Vaux DJ (2011) The nucleoplasmic reticulum: form and function. Trends Cell Biol 21(6):362–373

    PubMed  CAS  Google Scholar 

  190. Titus LC, Dawson TR, Rexer DJ, Ryan KJ, Wente SR (2010) Members of the RSC chromatin-remodeling complex are required for maintaining proper nuclear envelope structure and pore complex localization. Mol Biol Cell 21(6):1072–1087

    PubMed Central  PubMed  CAS  Google Scholar 

  191. Hodge CA, Choudhary V, Wolyniak MJ, Scarcelli JJ, Schneiter R, Cole CN (2010) Integral membrane proteins Brr6 and Apq12 link assembly of the nuclear pore complex to lipid homeostasis in the endoplasmic reticulum. J Cell Sci 123(Pt 1):141–151

    PubMed  CAS  Google Scholar 

  192. Friederichs JM, Ghosh S, Smoyer CJ, McCroskey S, Miller BD, Weaver KJ, Delventhal KM, Unruh J, Slaughter BD, Jaspersen SL (2011) The SUN protein Mps3 is required for spindle pole body insertion into the nuclear membrane and nuclear envelope homeostasis. PLoS Genet 7(11):e1002365

    PubMed Central  PubMed  CAS  Google Scholar 

  193. Zwerger M, Kolb T, Richter K, Karakesisoglou I, Herrmann H (2010) Induction of a massive endoplasmic reticulum and perinuclear space expansion by expression of lamin B receptor mutants and the related sterol reductases TM7SF2 and DHCR7. Mol Biol Cell 21(2):354–368

    PubMed Central  PubMed  CAS  Google Scholar 

  194. Webster M, Witkin KL, Cohen-Fix O (2009) Sizing up the nucleus: nuclear shape, size and nuclear-envelope assembly. J Cell Sci 122(Pt 10):1477–1486

    PubMed Central  PubMed  CAS  Google Scholar 

  195. Bidwell JP, Fey EG, van Wijnen AJ, Penman S, Stein JL, Lian JB, Stein GS (1994) Nuclear matrix proteins distinguish normal diploid osteoblasts from osteosarcoma cells. Cancer Res 54(1):28–32

    PubMed  CAS  Google Scholar 

  196. Leman ES, Getzenberg RH (2002) Nuclear matrix proteins as biomarkers in prostate cancer. J Cell Biochem 86(2):213–223

    PubMed  CAS  Google Scholar 

  197. Leman ES, Arlotti JA, Dhir R, Greenberg N, Getzenberg RH (2002) Characterization of the nuclear matrix proteins in a transgenic mouse model for prostate cancer. J Cell Biochem 86(2):203–212

    PubMed  CAS  Google Scholar 

  198. Lakshmanan Y, Subong EN, Partin AW (1998) Differential nuclear matrix protein expression in prostate cancers: correlation with pathologic stage. J Urol 159(4):1354–1358

    PubMed  CAS  Google Scholar 

  199. Keesee SK, Briggman JV, Thill G, Wu YJ (1996) Utilization of nuclear matrix proteins for cancer diagnosis. Crit Rev Eukaryot Gene Expr 6(2–3):189–214

    PubMed  CAS  Google Scholar 

  200. Coffey DS (2002) Nuclear matrix proteins as proteomic markers of preneoplastic and cancer lesions. Clin Cancer Res 8(10):3031–3033

    PubMed  Google Scholar 

  201. Chen YB, Guo LC, Yang L, Feng W, Zhang XQ, Ling CH, Ji C, Huang JA (2010) Angiosarcoma of the lung: 2 cases report and literature reviewed. Lung Cancer 70(3): 352–356

    PubMed  Google Scholar 

  202. Zhuang PY, Zhang JB, Zhu XD, Zhang W, Wu WZ, Tan YS, Hou J, Tang ZY, Qin LX, Sun HC (2008) Two pathologic types of hepatocellular carcinoma with lymph node metastasis with distinct prognosis on the basis of CK19 expression in tumor. Cancer 112(12):2740–2748

    PubMed  Google Scholar 

  203. Hokamp HG, Grundmann E (1983) Histological grading and clinical staging of plasmacytoma. J Cancer Res Clin Oncol 105(2):197–198

    PubMed  CAS  Google Scholar 

  204. Nandakumar V, Kelbauskas L, Hernandez KF, Lintecum KM, Senechal P, Bussey KJ, Davies PC, Johnson RH, Meldrum DR (2012) Isotropic 3D nuclear morphometry of normal, fibrocystic and malignant breast epithelial cells reveals new structural alterations. PLoS One 7(1):e29230

    PubMed Central  PubMed  CAS  Google Scholar 

  205. Hanai S, Kishi K, Watanabe S, Shimosato Y (1985) Morphometry of bladder cancer cells in tissue sections according to histological grade of malignancy. Jpn J Clin Oncol 15(4): 671–678

    PubMed  CAS  Google Scholar 

  206. Nakayama H, Kondo Y, Saito N, Sarashina H, Okui K (1988) Morphometric analysis of cytological atypia in colonic adenomas. Virchows Arch A Pathol Anat Histopathol 413(6):499–504

    PubMed  CAS  Google Scholar 

  207. van den Einden LC, Grefte JM, van der Avoort IA, Vedder JE, van Kempen LC, Massuger LF, de Hullu JA (2012) Cytology of the vulva: feasibility and preliminary results of a new brush. Br J Cancer 106(2):269–273

    PubMed Central  PubMed  Google Scholar 

  208. Wahi PN, Kehar U, Mali S, Misra GD (1962) Histopathogenesis of carcinoma in situ of the uterine cervix. Bull World Health Organ 26:661–674

    PubMed Central  PubMed  CAS  Google Scholar 

  209. Srivastava S, Henson DE, Gazdar A (1999) Molecular pathology of early cancer. Ios Press, Amsterdam

    Google Scholar 

  210. Newport J, Kirschner M (1982) A major developmental transition in early Xenopus embryos: I. Characterization and timing of cellular changes at the midblastula stage. Cell 30(3):675–686

    PubMed  CAS  Google Scholar 

  211. Newport J, Kirschner M (1982) A major developmental transition in early Xenopus embryos: II. Control of the onset of transcription. Cell 30(3):687–696

    PubMed  CAS  Google Scholar 

  212. Clute P, Masui Y (1995) Regulation of the appearance of division asynchrony and microtubule-dependent chromosome cycles in Xenopus laevis embryos. Dev Biol 171(2):273–285

    PubMed  CAS  Google Scholar 

  213. Gasser SM (2002) Visualizing chromatin dynamics in interphase nuclei. Science 296(5572):1412–1416

    PubMed  CAS  Google Scholar 

  214. Chai H, Brown RE (2009) Field effect in cancer-an update. Ann Clin Lab Sci 39(4):331–337

    PubMed  CAS  Google Scholar 

  215. Brunagel G, Schoen RE, Bauer AJ, Vietmeier BN, Getzenberg RH (2002) Nuclear matrix protein alterations associated with colon cancer metastasis to the liver. Clin Cancer Res 8(10):3039–3045

    PubMed  CAS  Google Scholar 

  216. Konety BR, Nguyen TS, Dhir R, Day RS, Becich MJ, Stadler WM, Getzenberg RH (2000) Detection of bladder cancer using a novel nuclear matrix protein, BLCA-4. Clin Cancer Res 6(7):2618–2625

    PubMed  CAS  Google Scholar 

  217. Franklin WA, Gazdar AF, Haney J, Wistuba II, La Rosa FG, Kennedy T, Ritchey DM, Miller YE (1997) Widely dispersed p53 mutation in respiratory epithelium. A novel mechanism for field carcinogenesis. J Clin Invest 100(8):2133–2137

    PubMed Central  PubMed  CAS  Google Scholar 

  218. Veltri RW, Khan MA, Miller MC, Epstein JI, Mangold LA, Walsh PC, Partin AW (2004) Ability to predict metastasis based on pathology findings and alterations in nuclear structure of normal-appearing and cancer peripheral zone epithelium in the prostate. Clin Cancer Res 10(10):3465–3473

    PubMed  CAS  Google Scholar 

  219. Deng G, Lu Y, Zlotnikov G, Thor AD, Smith HS (1996) Loss of heterozygosity in normal tissue adjacent to breast carcinomas. Science 274(5295):2057–2059

    PubMed  CAS  Google Scholar 

  220. Tomasetti C, Vogelstein B, Parmigiani G (2013) Half or more of the somatic mutations in cancers of self-renewing tissues originate prior to tumor initiation. Proc Natl Acad Sci U S A 110(6):1999–2004

    PubMed Central  PubMed  CAS  Google Scholar 

  221. Cope NF, Fraser P, Eskiw CH (2010) The yin and yang of chromatin spatial organization. Genome Biol 11(3):204

    PubMed Central  PubMed  Google Scholar 

  222. Meaburn KJ, Misteli T, Soutoglou E (2007) Spatial genome organization in the formation of chromosomal translocations. Semin Cancer Biol 17(1):80–90

    PubMed Central  PubMed  CAS  Google Scholar 

  223. Roca-Cusachs P, Alcaraz J, Sunyer R, Samitier J, Farre R, Navajas D (2008) Micropatterning of single endothelial cell shape reveals a tight coupling between nuclear volume in G1 and proliferation. Biophys J 94(12):4984–4995

    PubMed Central  PubMed  CAS  Google Scholar 

  224. Zuleger N, Robson MI, Schirmer EC (2011) The nuclear envelope as a chromatin organizer. Nucleus 2(5):339–349

    PubMed Central  PubMed  Google Scholar 

  225. Solovei I, Wang AS, Thanisch K, Schmidt CS, Krebs S, Zwerger M, Cohen TV, Devys D, Foisner R, Peichl L, Herrmann H, Blum H, Engelkamp D, Stewart CL, Leonhardt H, Joffe B (2013) LBR and lamin A/C sequentially tether peripheral heterochromatin and inversely regulate differentiation. Cell 152(3):584–598

    PubMed  CAS  Google Scholar 

  226. Peric-Hupkes D, Meuleman W, Pagie L, Bruggeman SW, Solovei I, Brugman W, Graf S, Flicek P, Kerkhoven RM, van Lohuizen M, Reinders M, Wessels L, van Steensel B (2010) Molecular maps of the reorganization of genome-nuclear lamina interactions during differentiation. Mol Cell 38(4):603–613

    PubMed  CAS  Google Scholar 

  227. Kohwi M, Lupton JR, Lai SL, Miller MR, Doe CQ (2013) Developmentally regulated subnuclear genome reorganization restricts neural progenitor competence in Drosophila. Cell 152(1–2):97–108

    PubMed Central  PubMed  CAS  Google Scholar 

  228. Gerlitz G, Bustin M (2011) The role of chromatin structure in cell migration. Trends Cell Biol 21(1):6–11

    PubMed Central  PubMed  CAS  Google Scholar 

  229. Schuster-Bockler B, Lehner B (2012) Chromatin organization is a major influence on regional mutation rates in human cancer cells. Nature 488(7412):504–507

    PubMed  Google Scholar 

  230. Ma Y, Zhang P, Wang F, Yang J, Yang Z, Qin H (2010) The relationship between early embryo development and tumourigenesis. J Cell Mol Med 14(12):2697–2701

    PubMed  Google Scholar 

  231. Heiser PW, Hebrok M (2004) Development and cancer: lessons learned in the pancreas. Cell Cycle 3(3):270–272

    PubMed  CAS  Google Scholar 

  232. Calvo R, Drabkin HA (2000) Embryonic genes in cancer. Ann Oncol 11(Suppl 3):207–218

    PubMed  Google Scholar 

  233. Tang Y, Kitisin K, Jogunoori W, Li C, Deng CX, Mueller SC, Ressom HW, Rashid A, He AR, Mendelson JS, Jessup JM, Shetty K, Zasloff M, Mishra B, Reddy EP, Johnson L, Mishra L (2008) Progenitor/stem cells give rise to liver cancer due to aberrant TGF-beta and IL-6 signaling. Proc Natl Acad Sci U S A 105(7):2445–2450

    PubMed Central  PubMed  CAS  Google Scholar 

  234. Donhuijsen K, Schulz S, Leder LD (1991) Nuclear grading of renal cell carcinomas–is morphometry necessary? J Cancer Res Clin Oncol 117(1):73–78

    PubMed  CAS  Google Scholar 

  235. Gregory TR (2001) The bigger the C-value, the larger the cell: genome size and red blood cell size in vertebrates. Blood Cells Mol Dis 27(5):830–843

    PubMed  CAS  Google Scholar 

  236. van Zanten M, Carles A, Li Y, Soppe W (2012) Control and consequences of chromatin compaction during seed maturation in Arabidopsis thaliana. Plant Signal Behav 7(3):338–341

    PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Lisa Edens and Karen White for critical reading of the manuscript. This work was supported by start-up funds from the University of Wyoming. P.J. is supported by a graduate assistantship from the University of Wyoming Agricultural Experiment Station.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel L. Levy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Jevtić, P., Levy, D.L. (2014). Mechanisms of Nuclear Size Regulation in Model Systems and Cancer. In: Schirmer, E., de las Heras, J. (eds) Cancer Biology and the Nuclear Envelope. Advances in Experimental Medicine and Biology, vol 773. Springer, New York, NY. https://doi.org/10.1007/978-1-4899-8032-8_25

Download citation

Publish with us

Policies and ethics