Skip to main content

Abstract

Cells and therefore tissues ordinarily experience some form of mechanical stimulation as they are often in mechanically diverse and dynamic environments. As a result we have learned that cells have the astounding ability to sense and respond to their environment. This seemingly innate behavior of cells has intrigued many researchers in the field of cell mechanics for decades and compelled efforts aimed at characterizing its behaviors and underlying mechanisms. While many techniques exist, in the context of this chapter, novel techniques we have developed and implemented will be examined as well as new emergent behaviors we have discovered. The behaviors that will be discussed have relevance in various areas of pathology and physiology including collective cell migration and cancer metastasis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Angelini TE, Hannezo E, Trepat X, Marquez M, Fredberg JJ, Weitz DA. Glass-like dynamics of collective cell migration. Proc Natl Acad Sci U S A. 2011;108(12):4714–9. doi:1010059108 [pii] 10.1073/pnas.1010059108.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Bao G, Suresh S. Cell and molecular mechanics of biological materials. Nat Mater. 2003;2(11):715–25. doi:10.1038/nmat1001 nmat1001 [pii].

    Article  PubMed  CAS  Google Scholar 

  • Bellin RM, Kubicek JD, Frigault MJ, Kamien AJ, Steward Jr RL, Barnes HM, Digiacomo MB, Duncan LJ, Edgerly CK, Morse EM, Park CY, Fredberg JJ, Cheng CM, LeDuc PR. Defining the role of syndecan-4 in mechanotransduction using surface-modification approaches. Proc Natl Acad Sci U S A. 2009;106(52):22102–7. doi:0902639106 [pii] 10.1073/pnas.0902639106.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Borghi N, Lowndes M, Maruthamuthu V, Gardel ML, Nelson WJ. Regulation of cell motile behavior by crosstalk between cadherin- and integrin-mediated adhesions. Proc Natl Acad Sci U S A. 2010;107(30):13324–9. doi:1002662107 [pii] 10.1073/pnas.1002662107.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Butcher JT, Penrod AM, Garcia AJ, Nerem RM. Unique morphology and focal adhesion development of valvular endothelial cells in static and fluid flow environments. Arterioscler Thromb Vasc Biol. 2004;24(8):1429–34. doi:10.1161/01.ATV.0000130462.50769.5a01.ATV.0000130462.50769.5a [pii].

    Article  PubMed  CAS  Google Scholar 

  • Butler JP, Tolic-Norrelykke IM, Fabry B, Fredberg JJ. Traction fields, moments, and strain energy that cells exert on their surroundings. Am J Physiol Cell Physiol. 2002;282(3):C595–605. doi:10.1152/ajpcell.00270.2001.

    Article  PubMed  CAS  Google Scholar 

  • Cao LG, Fishkind DJ, Wang YL. Localization and dynamics of nonfilamentous actin in cultured cells. J Cell Biol. 1993;123(1):173–81.

    Article  PubMed  CAS  Google Scholar 

  • Chen C, Krishnan R, Zhou E, Ramachandran A, Tambe D, Rajendran K, Adam RM, Deng L, Fredberg JJ. Fluidization and resolidification of the human bladder smooth muscle cell in response to transient stretch. PLoS One. 2010;5(8):e12035. doi:10.1371/journal.pone.0012035.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cheng CM, Steward Jr RL, LeDuc PR. Probing cell structure by controlling the mechanical environment with cell-substrate interactions. J Biomech. 2009;42(2):187–92. doi:S0021-9290(08)00520-4 [pii]10.1016/j.jbiomech.2008.10.014.

    Article  PubMed  Google Scholar 

  • Chien S. Mechanotransduction and endothelial cell homeostasis: the wisdom of the cell. Am J Physiol Heart Circ Physiol. 2007;292(3):H1209–24. doi:01047.2006 [pii] 10.1152/ajpheart.01047.2006.

    Article  PubMed  CAS  Google Scholar 

  • Choquet D, Felsenfeld DP, Sheetz MP. Extracellular matrix rigidity causes strengthening of integrin-cytoskeleton linkages. Cell. 1997;88(1):39–48. doi:S0092-8674(00)81856-5 [pii].

    Article  PubMed  CAS  Google Scholar 

  • Crick FC. The physical properties of the cytoplasm. A study by means of the magnetic particle method. Part 2. Theoretical treatment. Exp Cell Res. 1950;1:505–33.

    Article  Google Scholar 

  • Crick FC, Hughes AW. The physical properties of the cytoplasm. A study by means of the magnetic particle method. Part 1. Exp Cell Res. 1950;1:37–80.

    Article  Google Scholar 

  • DeMali KA, Wennerberg K, Burridge K. Integrin signaling to the actin cytoskeleton. Curr Opin Cell Biol. 2003;15(5):572–82. doi:S0955067403001091 [pii].

    Article  PubMed  CAS  Google Scholar 

  • Dembo M, Wang YL. Stresses at the cell-to-substrate interface during locomotion of fibroblasts. Biophys J. 1999;76(4):2307–16. doi:S0006-3495(99)77386-8 [pii] 10.1016/S0006-3495(99)77386-8.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Dembo M, Oliver T, Ishihara A, Jacobson K. Imaging the traction stresses exerted by locomoting cells with the elastic substratum method. Biophys J. 1996;70(4):2008–22. doi:S0006-3495(96)79767-9 [pii] 10.1016/S0006-3495(96)79767-9.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Duchek P, Rorth P. Guidance of cell migration by EGF receptor signaling during Drosophila oogenesis. Science. 2001;291(5501):131–3. doi:10.1126/science.291.5501.131291/5501/131 [pii].

    Article  PubMed  CAS  Google Scholar 

  • Eastwood M, McGrouther DA, Brown RA. Fibroblast responses to mechanical forces. Proc Inst Mech Eng H. 1998;212(2):85–92.

    Article  PubMed  CAS  Google Scholar 

  • Ewald AJ, Brenot A, Duong M, Chan BS, Werb Z. Collective epithelial migration and cell rearrangements drive mammary branching morphogenesis. Dev Cell. 2008;14(4):570–81. doi:S1534-5807(08)00111-1 [pii] 10.1016/j.devcel.2008.03.003.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Fabry B, Maksym GN, Shore SA, Moore PE, Panettieri Jr RA, Butler JP, Fredberg JJ. Selected contribution: time course and heterogeneity of contractile responses in cultured human airway smooth muscle cells. J Appl Physiol. 2001a;91(2):986–94.

    PubMed  CAS  Google Scholar 

  • Fabry B, Maksym GN, Butler JP, Glogauer M, Navajas D, Fredberg JJ. Scaling the microrheology of living cells. Phys Rev Lett. 2001b;87(14):148102.

    Article  PubMed  CAS  Google Scholar 

  • Friedl P, Hegerfeldt Y, Tusch M. Collective cell migration in morphogenesis and cancer. Int J Dev Biol. 2004;48(5–6):441–9. doi:10.1387/ijdb.041821 041821 [pii].

    Article  PubMed  CAS  Google Scholar 

  • Garanich JS, Mathura RA, Shi ZD, Tarbell JM. Effects of fluid shear stress on adventitial fibroblast migration: implications for flow-mediated mechanisms of arterialization and intimal hyperplasia. Am J Physiol Heart Circ Physiol. 2007;292(6):H3128–3135. doi:00578.2006 [pii]10.1152/ajpheart.00578.2006.

    Article  PubMed  CAS  Google Scholar 

  • Gomez GA, McLachlan RW, Yap AS. Productive tension: force-sensing and homeostasis of cell-cell junctions. Trends Cell Biol. 2011;21(9):499–505. doi:S0962-8924(11)00105-X [pii] 10.1016/j.tcb.2011.05.006.

    Article  PubMed  CAS  Google Scholar 

  • Hall A, Nobes CD. Rho GTPases: molecular switches that control the organization and dynamics of the actin cytoskeleton. Philos Trans R Soc Lond B Biol Sci. 2000;355(1399):965–70. doi:10.1098/rstb.2000.0632.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Harris AK. Fibroblasts and myofibroblasts. Methods Enzymol. 1988;163:623–42.

    Article  PubMed  CAS  Google Scholar 

  • Harris AK, Wild P, Stopak D. Silicone rubber substrata: a new wrinkle in the study of cell locomotion. Science. 1980;208(4440):177–9.

    Article  PubMed  CAS  Google Scholar 

  • Hu S, Eberhard L, Chen J, Love JC, Butler JP, Fredberg JJ, Whitesides GM, Wang N. Mechanical anisotropy of adherent cells probed by a three-dimensional magnetic twisting device. Am J Physiol Cell Physiol. 2004;287(5):C1184–91. doi:10.1152/ajpcell.00224.2004 00224.2004 [pii].

    Article  PubMed  CAS  Google Scholar 

  • Huang H, Kamm RD, Lee RT. Cell mechanics and mechanotransduction: pathways, probes, and physiology. Am J Physiol Cell Physiol. 2004;287(1):C1–11. doi:10.1152/ajpcell.00559.2003 287/1/C1 [pii].

    Article  PubMed  CAS  Google Scholar 

  • Inaki M, Vishnu S, Cliffe A, Rorth P. Effective guidance of collective migration based on differences in cell states. Proc Natl Acad Sci U S A. 2012;109(6):2027–32. doi:1115260109 [pii] 10.1073/pnas.1115260109.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Insall RH, Machesky LM. Actin dynamics at the leading edge: from simple machinery to complex networks. Dev Cell. 2009;17(3):310–22. doi:S1534-5807(09)00348-7 [pii] 10.1016/j.devcel.2009.08.012.

    Article  PubMed  CAS  Google Scholar 

  • Krishnan R, Trepat X, Nguyen TT, Lenormand G, Oliver M, Fredberg JJ. Airway smooth muscle and bronchospasm: fluctuating, fluidizing, freezing. Respir Physiol Neurobiol. 2008; 163(1–3):17–24. doi:S1569-9048(08)00099-2 [pii] 10.1016/j.resp.2008.04.006.

    Article  PubMed  PubMed Central  Google Scholar 

  • Krishnan R, Park CY, Lin YC, Mead J, Jaspers RT, Trepat X, Lenormand G, Tambe D, Smolensky AV, Knoll AH, Butler JP, Fredberg JJ. Reinforcement versus fluidization in cytoskelet al mechanoresponsiveness. PLoS One. 2009;4(5):e5486. doi:10.1371/journal.pone.0005486.

    Article  PubMed  PubMed Central  Google Scholar 

  • Krishnan R, Klumpers DD, Park CY, Rajendran K, Trepat X, van Bezu J, van Hinsbergh VW, Carman CV, Brain JD, Fredberg JJ, Butler JP, van Nieuw Amerongen GP. Substrate stiffening promotes endothelial monolayer disruption through enhanced physical forces. Am J Physiol Cell Physiol. 2011;300(1):C146–54. doi:ajpcell.00195.2010 [pii] 10.1152/ajpcell.00195.2010.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Kung C. A possible unifying principle for mechanosensation. Nature. 2005;436(7051):647–54. doi:nature03896 [pii]10.1038/nature03896.

    Article  PubMed  CAS  Google Scholar 

  • Larsen M, Wei C, Yamada KM. Cell and fibronectin dynamics during branching morphogenesis. JCell Sci. 2006;119(Pt 16):3376–84. doi:jcs.03079 [pii] 10.1242/jcs.03079.

    Article  PubMed  CAS  Google Scholar 

  • Lauffenburger DA. Cell signaling pathways as control modules: complexity for simplicity? Proc Natl Acad Sci U S A. 2000;97(10):5031–3. doi:97/10/5031 [pii].

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Liu Z, Tan JL, Cohen DM, Yang MT, Sniadecki NJ, Ruiz SA, Nelson CM, Chen CS. Mechanical tugging force regulates the size of cell-cell junctions. Proc Natl Acad Sci U S A. 2010;107(22):9944–9. doi:0914547107 [pii] 10.1073/pnas.0914547107.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Maksym GN, Fabry B, Butler JP, Navajas D, Tschumperlin DJ, Laporte JD, Fredberg JJ. Mechanical properties of cultured human airway smooth muscle cells from 0.05 to 0.4 Hz. J Appl Physiol. 2000;89(4):1619–32.

    PubMed  CAS  Google Scholar 

  • Maruthamuthu V, Sabass B, Schwarz US, Gardel ML. Cell-ECM traction force modulates endogenous tension at cell-cell contacts. Proc Natl Acad Sci U S A. 2011;108(12):4708–13. doi:1011123108 [pii]10.1073/pnas.1011123108.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Matthews BD, Overby DR, Mannix R, Ingber DE. Cellular adaptation to mechanical stress: role of integrins, Rho, cytoskelet al tension and mechanosensitive ion channels. J Cell Sci. 2006;119(Pt 3):508–18. doi:119/3/508 [pii] 10.1242/jcs.02760.

    Article  PubMed  CAS  Google Scholar 

  • Norman JC, Jones D, Barry ST, Holt MR, Cockcroft S, Critchley DR. ARF1 mediates paxillin recruitment to focal adhesions and potentiates Rho-stimulated stress fiber formation in intact and permeabilized Swiss 3T3 fibroblasts. J Cell Biol. 1998;143(7):1981–95.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Oliver T, Dembo M, Jacobson K. Traction forces in locomoting cells. Cell Motil Cytoskeleton. 1995;31(3):225–40. doi:10.1002/cm.970310306.

    Article  PubMed  CAS  Google Scholar 

  • Oliver T, Jacobson K, Dembo M. Design and use of substrata to measure traction forces exerted by cultured cells. Methods Enzymol. 1998;298:497–521.

    Article  PubMed  CAS  Google Scholar 

  • Oliver T, Dembo M, Jacobson K. Separation of propulsive and adhesive traction stresses in locomoting keratocytes. J Cell Biol. 1999;145(3):589–604.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Owan I, Burr DB, Turner CH, Qiu J, Tu Y, Onyia JE, Duncan RL. Mechanotransduction in bone: osteoblasts are more responsive to fluid forces than mechanical strain. Am J Physiol. 1997;273(3 Pt 1):C810–5.

    PubMed  CAS  Google Scholar 

  • Pirentis AP, Peruski E, Iordan AL, Stamenovic D. A model for stress fiber realignment caused by cytoskelet al fluidization during cyclic stretching. Cell Mol Bioeng. 2011;4(1):67–80. doi:10.1007/s12195-010-0152-9.

    Article  PubMed  PubMed Central  Google Scholar 

  • Poukkula M, Cliffe A, Changede R, Rorth P. Cell behaviors regulated by guidance cues in collective migration of border cells. J Cell Biol. 2011;192(3):513–24. doi:jcb.201010003 [pii] 10.1083/jcb.201010003.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Puig-De-Morales M, Grabulosa M, Alcaraz J, Mullol J, Maksym GN, Fredberg JJ, Navajas D. Measurement of cell microrheology by magnetic twisting cytometry with frequency domain demodulation. J Appl Physiol. 2001;91(3):1152–9.

    PubMed  CAS  Google Scholar 

  • Quinn TP, Schlueter M, Soifer SJ, Gutierrez JA. Cyclic mechanical stretch induces VEGF and FGF-2 expression in pulmonary vascular smooth muscle cells. Am J Physiol Lung Cell Mol Physiol. 2001;282(5):L897–903.

    Article  Google Scholar 

  • Revenu C, Athman R, Robine S, Louvard D. The co-workers of actin filaments: from cell structures to signals. Nat Rev Mol Cell Biol. 2004;5(8):635–46. doi:10.1038/nrm1437.

    Article  PubMed  CAS  Google Scholar 

  • Ribeiro C, Ebner A, Affolter M. In vivo imaging reveals different cellular functions for FGF and Dpp signaling in tracheal branching morphogenesis. Dev Cell. 2002;2(5):677–83. doi:S1534580702001715 [pii].

    Article  PubMed  CAS  Google Scholar 

  • Richard MN, Deniset JF, Kneesh AL, Blackwood D, Pierce GN. Mechanical stretching stimulates smooth muscle cell growth, nuclear protein import, and nuclear pore expression through mitogen-activated protein kinase activation. J Biol Chem. 2007;282(32):23081–8. doi:M703602200 [pii]10.1074/jbc.M703602200.

    Article  PubMed  CAS  Google Scholar 

  • Ridley AJ, Schwartz MA, Burridge K, Firtel RA, Ginsberg MH, Borisy G, Parsons JT, Horwitz AR. Cell migration: integrating signals from front to back. Science. 2003;302(5651):1704–9. doi:10.1126/science.1092053302/5651/1704 [pii].

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez OC, Schaefer AW, Mandato CA, Forscher P, Bement WM, Waterman-Storer CM. Conserved microtubule-actin interactions in cell movement and morphogenesis. Nat Cell Biol. 2003;5(7):599–609. doi:10.1038/ncb0703-599 ncb0703-599 [pii].

    Article  PubMed  CAS  Google Scholar 

  • Rorth P. Collective guidance of collective cell migration. Trends Cell Biol. 2007;17(12):575–9. doi:S0962-8924(07)00246-2 [pii] 10.1016/j.tcb.2007.09.007.

    Article  PubMed  CAS  Google Scholar 

  • Rorth P. Whence directionality: guidance mechanisms in solitary and collective cell migration. Dev Cell. 2011;20(1):9–18. doi:S1534-5807(10)00595-2 [pii] 10.1016/j.devcel.2010.12.014.

    Article  PubMed  CAS  Google Scholar 

  • Scotton CJ, Wilson JL, Milliken D, Stamp G, Balkwill FR. Epithelial cancer cell migration: a role for chemokine receptors? Cancer Res. 2001;61(13):4961–5.

    PubMed  CAS  Google Scholar 

  • Smith PG, Deng L, Fredberg JJ, Maksym GN. Mechanical strain increases cell stiffness through cytoskelet al filament reorganization. Am J Physiol Lung Cell Mol Physiol. 2003;285(2): L456–63. doi:10.1152/ajplung.00329.2002 00329.2002 [pii].

    Article  PubMed  CAS  Google Scholar 

  • Sniadecki NJ, Chen CS. Microfabricated silicone elastomeric post arrays for measuring traction forces of adherent cells. Methods Cell Biol. 2007;83:313–28. doi:S0091-679X(07)83013-5 [pii]10.1016/S0091-679X(07)83013-5.

    Article  PubMed  CAS  Google Scholar 

  • Sollich P. Rheological constitutive equation for a model of soft glassy materials. Phys Rev E. 1998;58:738–59.

    Article  CAS  Google Scholar 

  • Sollich P, Lequeneux F, Hebraud P, Cates ME. Rheology of soft glassy materials. Phys Rev Lett. 1997;78:2020–3.

    Article  CAS  Google Scholar 

  • Steward Jr RL, Cheng CM, Wang DL, Leduc PR. Probing cell structure responses through a shear and stretching mechanical stimulation technique. Cell Biochem Biophys. 2009;56(2–3): 115–24. doi:10.1007/s12013-009-9075-2.

    Google Scholar 

  • Tambe DT, Hardin CC, Angelini TE, Rajendran K, Park CY, Serra-Picamal X, Zhou EH, Zaman MH, Butler JP, Weitz DA, Fredberg JJ, Trepat X. Collective cell guidance by cooperative intercellular forces. Nat Mater. 2011;10(6):469–75. doi:nmat3025 [pii] 10.1038/nmat3025.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Thompson DAW. On growth and form. Abridged ed. Cambridge: Cambridge University Press; 1961.

    Google Scholar 

  • Trepat X, Fredberg JJ. Plithotaxis and emergent dynamics in collective cellular migration. Trends Cell Biol. 2011;21(11):638–46. doi:S0962-8924(11)00127-9 [pii] 10.1016/j.tcb.2011.06.006.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Trepat X, Deng L, An SS, Navajas D, Tschumperlin DJ, Gerthoffer WT, Butler JP, FredbergJJ. Universal physical responses to stretch in the living cell. Nature. 2007;447(7144):592–5. doi:nature05824 [pii]10.1038/nature05824.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Trepat X, Wasserman MR, Angelini TE, Millet E, Weitz DA, Butler JP, Fredberg JJ. Physical forces during collective migration. Nat Phys. 2009;5:426–30.

    Article  CAS  Google Scholar 

  • Vasilyev A, Liu Y, Mudumana S, Mangos S, Lam PY, Majumdar A, Zhao J, Poon KL, Kondrychyn I, Korzh V, Drummond IA. Collective cell migration drives morphogenesis of the kidney nephron. PLoS Biol. 2009;7(1):e9. doi:08-PLBI-RA-2396 [pii] 10.1371/journal.pbio.1000009.

    Article  PubMed  Google Scholar 

  • Vogel V, Sheetz M. Local force and geometry sensing regulate cell functions. Nat Rev Mol Cell Biol. 2006;7(4):265–75. doi:nrm1890 [pii]10.1038/nrm1890.

    Article  PubMed  CAS  Google Scholar 

  • von Wichert G, Haimovich B, Feng GS, Sheetz MP. Force-dependent integrin-cytoskeleton linkage formation requires downregulation of focal complex dynamics by Shp2. EMBO J. 2003;22(19):5023–35. doi:10.1093/emboj/cdg492.

    Article  Google Scholar 

  • Wang JH, Thampatty BP. An introductory review of cell mechanobiology. Biomech Model Mechanobiol. 2006;5(1):1–16. doi:10.1007/s10237-005-0012-z.

    Article  PubMed  CAS  Google Scholar 

  • Wang N, Butler JP, Ingber DE. Mechanotransduction across the cell surface and through the cytoskeleton. Science. 1993;260(5111):1124–7.

    Article  PubMed  CAS  Google Scholar 

  • Weber GF, Bjerke MA, DeSimone DW. A mechanoresponsive cadherin-keratin complex directs polarized protrusive behavior and collective cell migration. Dev Cell. 2012;22(1):104–15. doi:S1534-5807(11)00465-5 [pii] 10.1016/j.devcel.2011.10.013.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Yoshigi M, Hoffman LM, Jensen CC, Yost HJ, Beckerle MC. Mechanical force mobilizes zyxin from focal adhesions to actin filaments and regulates cytoskelet al reinforcement. J Cell Biol. 2005;171(2):209–15. doi:jcb.200505018 [pii]10.1083/jcb.200505018.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Zheng Y, Olson MF, Hall A, Cerione RA, Toksoz D. Direct involvement of the small GTP-binding protein Rho in lbc oncogene function. J Biol Chem. 1995;270(16):9031–4.

    Article  PubMed  CAS  Google Scholar 

  • Zhou EH, Trepat X, Park CY, Lenormand G, Oliver MN, Mijailovich SM, Hardin C, Weitz DA, Butler JP, Fredberg JJ. Universal behavior of the osmotically compressed cell and its analogy to the colloidal glass transition. Proc Natl Acad Sci U S A. 2009;106(26):10632–7. doi:0901462106 [pii] 10.1073/pnas.0901462106.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Zhu C, Bao G, Wang N. Cell mechanics: mechanical response, cell adhesion, and molecular deformation. Annu Rev Biomed Eng. 2000;2:189–226. doi:2/1/189 [pii] 10.1146/annurev.bioeng.2.1.189.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey J. Fredberg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Steward, R.L., Rosner, S.R., Fredberg, J.J. (2016). Emergent Behaviors in Cell Mechanics. In: Kassab, G., Sacks, M. (eds) Structure-Based Mechanics of Tissues and Organs. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-7630-7_3

Download citation

Publish with us

Policies and ethics