Skip to main content

Neurogenesis and Gliogenesis in the Postnatal Hypothalamus: A New Level of Plasticity for the Regulation of Hypothalamic Function?

  • Chapter
  • First Online:
Endogenous Stem Cell-Based Brain Remodeling in Mammals

Part of the book series: Stem Cell Biology and Regenerative Medicine ((STEMCELL))

Abstract

Plasticity is a fundamental property of the mature brain. An extreme case of structural plasticity is provided by neurogenesis and gliogenesis, in which new neurons and glial cells differentiate from neural stem/progenitor cells and functionally integrate into existing cellular networks and contribute to their functions. Besides the two well-established neurogenic areas of the mammalian brain, the subventricular zone of the lateral ventricles and the subgranular zone of the hippocampal dentate gyrus, the ability of other brain regions to generate new cells, particularly neurons, has been viewed with skepticism. Nevertheless, the last 15 years have seen an accumulation of studies that consistently report the generation of new cells within the hypothalamus, a small brain structure that is key to the homeostatic control of several vital physiological functions. Here, we review current data showing that the mammalian hypothalamus maintains its neurogenic and gliogenic activity throughout postnatal life. More importantly, newly generated hypothalamic neurons appear to functionally integrate into neuronal circuits and actively participate in the regulation of a major hypothalamic function, the central control of feeding and metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AgRP:

Agouti-related peptide

APC:

Adenomatosis polyposis coli

Ara-C:

Cytosine-β-d-arabinofuranoside

ARC:

Arcuate nucleus of the hypothalamus

AVPV:

Anteroventral periventricular nucleus of the hypothalamus

BDNF:

Brain-derived neurotrophic factor

BLBP:

Brain lipid-binding protein

BrdU:

5-bromo-2′-deoxyuridine

CNPase:

2′,3′-cyclic nucleotide 3′-phosphodiesterase

CNTF:

Ciliary neurotrophic factor

CVOs:

Circumventricular organs

Dcx:

Doublecortin

DMH:

Dorsomedial hypothalamus

E:

Embryonic day

EdU:

5-Ethynyl-2′-deoxyuridine

EGF:

Epidermal growth factor

FACS:

Fluorescence-activated cell sorting

FGF2:

Fibroblast growth factor 2

FGF10:

Fibroblast growth factor 10

GalC:

Galactocerebrosidase

GFAP:

Glial fibrillary acidic protein

GFP:

Green fluorescent protein

GLAST:

Glutamate/aspartate transporter

GnRH:

Gonadotropin-releasing hormone

Gpr50:

G-protein-coupled receptor 50

HFD:

High-fat diet

i.c.v.:

Intracerebroventricular

IGF-I:

Insulin-like growth factor I

IKKβ:

IκB kinase β

IL-1β:

Interleukin 1β

LHA:

Lateral hypothalamic area

Lhx2:

LIM homeobox 2

MAP2:

Microtubule-associated protein 2

ME:

Median eminence

MSG:

Monosodium glutamate

NeuN:

Neuron-specific nuclear protein

NF-κB:

Nuclear factor-κB

NPY:

Neuropeptide Y

OVLT:

Organum vasculosum of the lamina terminalis

PCNA:

Proliferating cell nuclear antigen

PCR:

Polymerase chain reaction

PLP:

Myelin proteolipid protein

POMC:

Pro-opiomelanocortin

Rax:

Retina and anterior neural fold homeobox

SDN:

Sexually dimorphic nucleus of the preoptic area

SGZ:

Subgranular zone

STAT3:

Signal transducer and activator of transcription 3

SVZ:

Subventricular zone

TNFα:

Tumor necrosis factor α

TrkB:

The high-affinity receptor for BDNF

TUNEL:

Terminal deoxynucleotidyl transferase-mediated biotinylated UTP nick end labeling

VMH:

Ventromedial hypothalamus

YFP:

Yellow fluorescent protein

References

  • Ahmed EI, Zehr JL, Schulz KM, Lorenz BH, DonCarlos LL, Sisk CL (2008) Pubertal hormones modulate the addition of new cells to sexually dimorphic brain regions. Nat Neurosci 11:995–997

    CAS  PubMed Central  PubMed  Google Scholar 

  • Allet C, Beauvillain JC, Ojeda SR, Prevot V (2006) Multipotent progenitor cells are present in the postnatal hypothalamus and may be involved in the neuroendocrine control of puberty in the female rat. Front Neuroendocrinol 27:100–102

    Google Scholar 

  • Alvarez-Buylla A, Lim DA (2004) For the long run: maintaining germinal niches in the adult brain. Neuron 41:683–686

    CAS  PubMed  Google Scholar 

  • Alvarez-Buylla A, Garcia-Verdugo JM, Tramontin AD (2001) A unified hypothesis on the lineage of neural stem cells. Nat Rev Neurosci 2:287–293

    CAS  PubMed  Google Scholar 

  • Anacker C, Cattaneo A, Luoni A, Musaelyan K, Zunszain PA, Milanesi E, Rybka J, Berry A, Cirulli F, Thuret S, Price J, Riva MA, Gennarelli M, Pariante CM (2013) Glucocorticoid-related molecular signaling pathways regulating hippocampal neurogenesis. Neuropsycho-pharmacology 38:872–883

    CAS  Google Scholar 

  • Baroncini M, Allet C, Leroy D, Beauvillain JC, Francke JP, Prevot V (2007) Morphological evidence for direct interaction between gonadotrophin-releasing hormone neurones and astroglial cells in the human hypothalamus. J Neuroendocrinol 19:691–702

    CAS  PubMed  Google Scholar 

  • Batailler M, Mullier A, Sidibe A, Delagrange P, Prevot V, Jockers R, Migaud M (2012) Neuroanatomical distribution of the orphan GPR50 receptor in adult sheep and rodent brains. J Neuroendocrinol 24:798–808

    CAS  PubMed  Google Scholar 

  • Bauer S, Patterson PH (2005) The cell cycle-apoptosis connection revisited in the adult brain. J Cell Biol 171:641–650

    CAS  PubMed  Google Scholar 

  • Becskei C, Lutz TA, Riediger T (2010) Reduced fasting-induced activation of hypothalamic arcuate neurons is associated with hyperleptinemia and increased leptin sensitivity in obese mice. Am J Physiol Regul Integr Comp Physiol 299:R632–R641

    CAS  PubMed  Google Scholar 

  • Bennett L, Yang M, Enikolopov G, Iacovitti L (2009) Circumventricular organs: a novel site of neural stem cells in the adult brain. Mol Cell Neurosci 41:337–347

    CAS  PubMed Central  PubMed  Google Scholar 

  • Berger UV, Hediger MA (2001) Differential distribution of the glutamate transporters GLT-1 and GLAST in tanycytes of the third ventricle. J Comp Neurol 433:101–114

    CAS  PubMed  Google Scholar 

  • Bernhardt R, Matus A (1984) Light and electron microscopic studies of the distribution of microtubule-associated protein 2 in rat brain: a difference between dendritic and axonal cytoskeletons. J Comp Neurol 226:203–221

    CAS  PubMed  Google Scholar 

  • Brown JP, Couillard-Despres S, Cooper-Kuhn CM, Winkler J, Aigner L, Kuhn HG (2003) Transient expression of doublecortin during adult neurogenesis. J Comp Neurol 467:1–10

    CAS  PubMed  Google Scholar 

  • Cai D (2013) Neuroinflammation and neurodegeneration in overnutrition-induced diseases. Trends Endocrinol Metab 24:40–47

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cameron HA, McKay RD (2001) Adult neurogenesis produces a large pool of new granule cells in the dentate gyrus. J Comp Neurol 435:406–417

    CAS  PubMed  Google Scholar 

  • Caron E, Sachot C, Prevot V, Bouret SG (2010) Distribution of leptin-sensitive cells in the postnatal and adult mouse brain. J Comp Neurol 518:459–476

    CAS  PubMed  Google Scholar 

  • Cooper-Kuhn CM, Kuhn HG (2002) Is it all DNA repair? Methodological considerations for detecting neurogenesis in the adult brain. Brain Res Dev Brain Res 134:13–21

    CAS  PubMed  Google Scholar 

  • Cotsarelis G, Cheng SZ, Dong G, Sun TT, Lavker RM (1989) Existence of slow-cycling limbal epithelial basal cells that can be preferentially stimulated to proliferate: implications on epithelial stem cells. Cell 57:201–209

    CAS  PubMed  Google Scholar 

  • Couillard-Despres S, Winner B, Schaubeck S, Aigner R, Vroemen M, Weidner N, Bogdahn U, Winkler J, Kuhn HG, Aigner L (2005) Doublecortin expression levels in adult brain reflect neurogenesis. Eur J Neurosci 21:1–14

    PubMed  Google Scholar 

  • Czupryn A, Zhou YD, Chen X, McNay D, Anderson MP, Flier JS, Macklis JD (2011) Transplanted hypothalamic neurons restore leptin signaling and ameliorate obesity in db/db mice. Science 334:1133–1137

    CAS  PubMed Central  PubMed  Google Scholar 

  • Doetsch F, Caille I, Lim DA, Garcia-Verdugo JM, Alvarez-Buylla A (1999a) Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell 97:703–716

    CAS  PubMed  Google Scholar 

  • Doetsch F, Garcia-Verdugo JM, Alvarez-Buylla A (1999b) Regeneration of a germinal layer in the adult mammalian brain. Proc Natl Acad Sci U S A 96:11619–11624

    CAS  PubMed Central  PubMed  Google Scholar 

  • Emsley JG, Mitchell BD, Kempermann G, Macklis JD (2005) Adult neurogenesis and repair of the adult CNS with neural progenitors, precursors, and stem cells. Prog Neurobiol 75:321–341

    CAS  PubMed  Google Scholar 

  • Enriori PJ, Evans AE, Sinnayah P, Jobst EE, Tonelli-Lemos L, Billes SK, Glavas MM, Grayson BE, Perello M, Nillni EA, Grove KL, Cowley MA (2007) Diet-induced obesity causes severe but reversible leptin resistance in arcuate melanocortin neurons. Cell Metab 5:181–194

    CAS  PubMed  Google Scholar 

  • Ettinger MP, Littlejohn TW, Schwartz SL, Weiss SR, McIlwain HH, Heymsfield SB, Bray GA, Roberts WG, Heyman ER, Stambler N, Heshka S, Vicary C, Guler HP (2003) Recombinant variant of ciliary neurotrophic factor for weight loss in obese adults: a randomized, dose-ranging study. JAMA 289:1826–1832

    CAS  PubMed  Google Scholar 

  • Evans J, Sumners C, Moore J, Huentelman MJ, Deng J, Gelband CH, Shaw G (2002) Characterization of mitotic neurons derived from adult rat hypothalamus and brain stem. J Neurophysiol 87:1076–1085

    PubMed  Google Scholar 

  • Fitzsimons CP, van Hooijdonk LW, Schouten M, Zalachoras I, Brinks V, Zheng T, Schouten TG, Saaltink DJ, Dijkmans T, Steindler DA, Verhaagen J, Verbeek FJ, Lucassen PJ, de Kloet ER, Meijer OC, Karst H, Joels M, Oitzl MS, Vreugdenhil E (2013) Knockdown of the glucocorticoid receptor alters functional integration of newborn neurons in the adult hippocampus and impairs fear-motivated behavior. Mol Psychiatry 18(9):993–1005

    CAS  PubMed  Google Scholar 

  • Fowler CD, Liu Y, Ouimet C, Wang Z (2002) The effects of social environment on adult neurogenesis in the female prairie vole. J Neurobiol 51:115–128

    PubMed  Google Scholar 

  • Fowler CD, Johnson F, Wang Z (2005) Estrogen regulation of cell proliferation and distribution of estrogen receptor-alpha in the brains of adult female prairie and meadow voles. J Comp Neurol 489:166–179

    CAS  PubMed  Google Scholar 

  • Frayling C, Britton R, Dale N (2011) ATP-mediated glucosensing by hypothalamic tanycytes. J Physiol 589:2275–2286

    CAS  PubMed  Google Scholar 

  • Gilyarov AV (2008) Nestin in central nervous system cells. Neurosci Behav Physiol 38:165–169

    CAS  PubMed  Google Scholar 

  • Gould E (2007) How widespread is adult neurogenesis in mammals? Nat Rev Neurosci 8:481–488

    CAS  PubMed  Google Scholar 

  • Gropp E, Shanabrough M, Borok E, Xu AW, Janoschek R, Buch T, Plum L, Balthasar N, Hampel B, Waisman A, Barsh GS, Horvath TL, Bruning JC (2005) Agouti-related peptide-expressing neurons are mandatory for feeding. Nat Neurosci 8:1289–1291

    CAS  PubMed  Google Scholar 

  • Gross CG (2000) Neurogenesis in the adult brain: death of a dogma. Nat Rev Neurosci 1:67–73

    CAS  PubMed  Google Scholar 

  • Haan N, Hajihosseini MK (2009) Fgf10 is a putative marker of quiescent neural stems cells in the adult hypothalamus. Mech Dev 126:S271–S284

    Google Scholar 

  • Haan N, Goodman T, Najdi-Samiei A, Stratford CM, Rice R, El Agha E, Bellusci S, Hajihosseini MK (2013) Fgf10-expressing tanycytes add new neurons to the appetite/energy-balance regulating centers of the postnatal and adult hypothalamus. J Neurosci 33:6170–6180

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hourai A, Miyata S (2013) Neurogenesis in the circumventricular organs of adult mouse brains. J Neurosci Res 91:757–770

    CAS  PubMed  Google Scholar 

  • Hu L, Fernstrom JD, Goldsmith PC (1998) Exogenous glutamate enhances glutamate receptor subunit expression during selective neuronal injury in the ventral arcuate nucleus of postnatal mice. Neuroendocrinology 68:77–88

    CAS  PubMed  Google Scholar 

  • Huang L, DeVries GJ, Bittman EL (1998) Photoperiod regulates neuronal bromodeoxyuridine labeling in the brain of a seasonally breeding mammal. J Neurobiol 36:410–420

    CAS  PubMed  Google Scholar 

  • Kokoeva MV, Yin H, Flier JS (2005) Neurogenesis in the hypothalamus of adult mice: potential role in energy balance. Science 310:679–683

    CAS  PubMed  Google Scholar 

  • Kokoeva MV, Yin H, Flier JS (2007) Evidence for constitutive neural cell proliferation in the adult murine hypothalamus. J Comp Neurol 505:209–220

    PubMed  Google Scholar 

  • Kuan CY, Schloemer AJ, Lu A, Burns KA, Weng WL, Williams MT, Strauss KI, Vorhees CV, Flavell RA, Davis RJ, Sharp FR, Rakic P (2004) Hypoxia-ischemia induces DNA synthesis without cell proliferation in dying neurons in adult rodent brain. J Neurosci 24:10763–10772

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lambert PD, Anderson KD, Sleeman MW, Wong V, Tan J, Hijarunguru A, Corcoran TL, Murray JD, Thabet KE, Yancopoulos GD, Wiegand SJ (2001) Ciliary neurotrophic factor activates leptin-like pathways and reduces body fat, without cachexia or rebound weight gain, even in leptin-resistant obesity. Proc Natl Acad Sci U S A 98:4652–4657

    CAS  PubMed Central  PubMed  Google Scholar 

  • Langlet F, Mullier A, Bouret SG, Prevot V, Dehouck B (2013a) Tanycyte-like cells form a blood-cerebrospinal fluid barrier in the circumventricular organs of the mouse brain. J Comp Neurol 521:3389–3405

    Google Scholar 

  • Langlet F, Levin BE, Luquet S, Mazzone M, Messina A, Dunn-Meynell AA, Balland E, Lacombe A, Mazur D, Carmeliet P, Bouret SG, Prevot V, Dehouck B (2013b) Tanycytic VEGF-A boosts blood-hypothalamus barrier plasticity and access of metabolic signals to the arcuate nucleus in response to fasting. Cell Metab 17:607–617

    CAS  PubMed  Google Scholar 

  • Lee MK, Rebhun LI, Frankfurter A (1990) Posttranslational modification of class III beta-tubulin. Proc Natl Acad Sci U S A 87:7195–7199

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lee DA, Bedont JL, Pak T, Wang H, Song J, Miranda-Angulo A, Takiar V, Charubhumi V, Balordi F, Takebayashi H, Aja S, Ford E, Fishell G, Blackshaw S (2012) Tanycytes of the hypothalamic median eminence form a diet-responsive neurogenic niche. Nat Neurosci 15:700–702

    CAS  PubMed Central  PubMed  Google Scholar 

  • Li J, Tang Y, Cai D (2012) IKKbeta/NF-kappaB disrupts adult hypothalamic neural stem cells to mediate a neurodegenerative mechanism of dietary obesity and pre-diabetes. Nat Cell Biol 14:999–1012

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lledo PM, Alonso M, Grubb MS (2006) Adult neurogenesis and functional plasticity in neuronal circuits. Nat Rev Neurosci 7:179–193

    CAS  PubMed  Google Scholar 

  • Luquet S, Perez FA, Hnasko TS, Palmiter RD (2005) NPY/AgRP neurons are essential for feeding in adult mice but can be ablated in neonates. Science 310:683–685

    CAS  PubMed  Google Scholar 

  • Markakis EA, Palmer TD, Randolph-Moore L, Rakic P, Gage FH (2004) Novel neuronal phenotypes from neural progenitor cells. J Neurosci 24:2886–2897

    CAS  PubMed Central  PubMed  Google Scholar 

  • Marusich MF, Furneaux HM, Henion PD, Weston JA (1994) Hu neuronal proteins are expressed in proliferating neurogenic cells. J Neurobiol 25:143–155

    CAS  PubMed  Google Scholar 

  • Matsuzaki K, Katakura M, Hara T, Li G, Hashimoto M, Shido O (2009) Proliferation of neuronal progenitor cells and neuronal differentiation in the hypothalamus are enhanced in heat-acclimated rats. Pflugers Arch 458:661–673

    CAS  PubMed  Google Scholar 

  • McNay DE, Pelling M, Claxton S, Guillemot F, Ang SL (2006) Mash1 is required for generic and subtype differentiation of hypothalamic neuroendocrine cells. Mol Endocrinol 20:1623–1632

    CAS  PubMed  Google Scholar 

  • McNay DE, Briancon N, Kokoeva MV, Maratos-Flier E, Flier JS (2012) Remodeling of the arcuate nucleus energy-balance circuit is inhibited in obese mice. J Clin Invest 122:142–152

    CAS  PubMed Central  PubMed  Google Scholar 

  • Migaud M, Batailler M, Segura S, Duittoz A, Franceschini I, Pillon D (2010) Emerging new sites for adult neurogenesis in the mammalian brain: a comparative study between the hypothalamus and the classical neurogenic zones. Eur J Neurosci 32:2042–2052

    PubMed  Google Scholar 

  • Migaud M, Batailler M, Pillon D, Franceschini I, Malpaux B (2011) Seasonal changes in cell proliferation in the adult sheep brain and pars tuberalis. J Biol Rhythms 26:486–496

    PubMed  Google Scholar 

  • Ming GL, Song H (2005) Adult neurogenesis in the mammalian central nervous system. Annu Rev Neurosci 28:223–250

    CAS  PubMed  Google Scholar 

  • Miranda-Angulo A, Byerly MS, Mesa J, Wang H, Blackshaw S (2013) Rax regulates hypothalamic tanycyte differentiation and barrier function in mice. J Comp Neurol. doi:10.1002/cne.23451

    Google Scholar 

  • Mirzadeh Z, Merkle FT, Soriano-Navarro M, Garcia-Verdugo JM, Alvarez-Buylla A (2008) Neural stem cells confer unique pinwheel architecture to the ventricular surface in neurogenic regions of the adult brain. Cell Stem Cell 3:265–278

    CAS  PubMed Central  PubMed  Google Scholar 

  • Morita S, Ukai S, Miyata S (2013) VEGF-dependent continuous angiogenesis in the median eminence of adult mice. Eur J Neurosci 37:508–518

    CAS  PubMed  Google Scholar 

  • Morshead CM, Reynolds BA, Craig CG, McBurney MW, Staines WA, Morassutti D, Weiss S, van der Kooy D (1994) Neural stem cells in the adult mammalian forebrain: a relatively quiescent subpopulation of subependymal cells. Neuron 13:1071–1082

    CAS  PubMed  Google Scholar 

  • Morton GJ, Cummings DE, Baskin DG, Barsh GS, Schwartz MW (2006) Central nervous system control of food intake and body weight. Nature 443:289–295

    CAS  PubMed  Google Scholar 

  • Mullen RJ, Buck CR, Smith AM (1992) NeuN, a neuronal specific nuclear protein in vertebrates. Development 116:201–211

    CAS  PubMed  Google Scholar 

  • Mullier A, Bouret SG, Prevot V, Dehouck B (2010) Differential distribution of tight junction proteins suggests a role for tanycytes in blood-hypothalamus barrier regulation in the adult mouse brain. J Comp Neurol 518:943–962

    CAS  PubMed Central  PubMed  Google Scholar 

  • Myers MG Jr (2013) How is the hungry brain like a sieve? Cell Metab 17:467–468

    CAS  PubMed  Google Scholar 

  • Myers MG Jr, Olson DP (2012) Central nervous system control of metabolism. Nature 491:357–363

    CAS  PubMed  Google Scholar 

  • Ojeda SR, Skinner MK (2006) Puberty in the rat. In: Neill JD (ed) Knobil and Neill’s physiology of reproduction. Academic, San Diego, pp 2026–2126

    Google Scholar 

  • Ojeda SR, Lomniczi A, Sandau US (2008) Glial-gonadotrophin hormone (GnRH) neurone interactions in the median eminence and the control of GnRH secretion. J Neuroendocrinol 20:732–742

    CAS  PubMed  Google Scholar 

  • Ojeda SR, Lomniczi A, Sandau U (2010) Contribution of glial-neuronal interactions to the neuroendocrine control of female puberty. Eur J Neurosci 32:2003–2010

    PubMed Central  PubMed  Google Scholar 

  • Padilla SL, Carmody JS, Zeltser LM (2010) Pomc-expressing progenitors give rise to antagonistic neuronal populations in hypothalamic feeding circuits. Nat Med 16:403–405

    CAS  PubMed Central  PubMed  Google Scholar 

  • Paxinos G, Watson C (1982) The rat brain in stereotaxic coordinates. Academic, Sydney

    Google Scholar 

  • Pelling M, Anthwal N, McNay D, Gradwohl G, Leiter AB, Guillemot F, Ang SL (2011) Differential requirements for neurogenin 3 in the development of POMC and NPY neurons in the hypothalamus. Dev Biol 349:406–416

    CAS  PubMed  Google Scholar 

  • Pencea V, Bingaman KD, Wiegand SJ, Luskin MB (2001) Infusion of brain-derived neurotrophic factor into the lateral ventricle of the adult rat leads to new neurons in the parenchyma of the striatum, septum, thalamus, and hypothalamus. J Neurosci 21:6706–6717

    CAS  PubMed  Google Scholar 

  • Perez-Martin M, Cifuentes M, Grondona JM, Lopez-Avalos MD, Gomez-Pinedo U, Garcia-Verdugo JM, Fernandez-Llebrez P (2010) IGF-I stimulates neurogenesis in the hypothalamus of adult rats. Eur J Neurosci 31:1533–1548

    CAS  PubMed  Google Scholar 

  • Peterson DA (2002) Stem cells in brain plasticity and repair. Curr Opin Pharmacol 2:34–42

    CAS  PubMed  Google Scholar 

  • Pierce AA, Xu AW (2010) De novo neurogenesis in adult hypothalamus as a compensatory mechanism to regulate energy balance. J Neurosci 30:723–730

    CAS  PubMed Central  PubMed  Google Scholar 

  • Potten CS, Morris RJ (1988) Epithelial stem cells in vivo. J Cell Sci Suppl 10:45–62

    CAS  PubMed  Google Scholar 

  • Prevot V, Hanchate NK, Bellefontaine N, Sharif A, Parkash J, Estrella C, Allet C, de Seranno S, Campagne C, de Tassigny X, Baroncini M (2010) Function-related structural plasticity of the GnRH system: a role for neuronal-glial-endothelial interactions. Front Neuroendocrinol 31:241–258

    CAS  PubMed  Google Scholar 

  • Rakic P (2002) Adult neurogenesis in mammals: an identity crisis. J Neurosci 22:614–618

    PubMed  Google Scholar 

  • Rankin SL, Partlow GD, McCurdy RD, Giles ED, Fisher KR (2003) Postnatal neurogenesis in the vasopressin and oxytocin-containing nucleus of the pig hypothalamus. Brain Res 971:189–196

    CAS  PubMed  Google Scholar 

  • Rao MS, Shetty AK (2004) Efficacy of doublecortin as a marker to analyse the absolute number and dendritic growth of newly generated neurons in the adult dentate gyrus. Eur J Neurosci 19:234–246

    PubMed  Google Scholar 

  • Reynolds BA, Weiss S (1992) Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science 255:1707–1710

    CAS  PubMed  Google Scholar 

  • Reynolds BA, Weiss S (1996) Clonal and population analyses demonstrate that an EGF-responsive mammalian embryonic CNS precursor is a stem cell. Dev Biol 175:1–13

    CAS  PubMed  Google Scholar 

  • Robins SC, Stewart I, McNay DE, Taylor V, Giachino C, Goetz M, Ninkovic J, Briancon N, Maratos-Flier E, Flier JS, Kokoeva MV, Placzek M (2013) alpha-Tanycytes of the adult hypothalamic third ventricle include distinct populations of FGF-responsive neural progenitors. Nat Commun 4:2049

    CAS  PubMed  Google Scholar 

  • Rodriguez EM, Blazquez JL, Pastor FE, Pelaez B, Pena P, Peruzzo B, Amat P (2005) Hypothalamic tanycytes: a key component of brain-endocrine interaction. Int Rev Cytol 247:89–164

    CAS  PubMed  Google Scholar 

  • Sakurai T, Amemiya A, Ishii M, Matsuzaki I, Chemelli RM, Tanaka H, Williams SC, Richardson JA, Kozlowski GP, Wilson S, Arch JR, Buckingham RE, Haynes AC, Carr SA, Annan RS, McNulty DE, Liu WS, Terrett JA, Elshourbagy NA, Bergsma DJ, Yanagisawa M (1998) Orexins and orexin receptors: a family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior. Cell 92:573–585

    CAS  PubMed  Google Scholar 

  • Scholzen T, Gerdes J (2000) The Ki-67 protein: from the known and the unknown. J Cell Physiol 182:311–322

    CAS  PubMed  Google Scholar 

  • Seri B, Garcia-Verdugo JM, McEwen BS, Alvarez-Buylla A (2001) Astrocytes give rise to new neurons in the adult mammalian hippocampus. J Neurosci 21:7153–7160

    CAS  PubMed  Google Scholar 

  • Sharif A, Baroncini M, Prevot V (2013) Role of glia in the regulation of gonadotropin-releasing hormone neuronal activity and secretion. Neuroendocrinology 98:1–15

    CAS  PubMed  Google Scholar 

  • Sidibe A, Mullier A, Chen P, Baroncini M, Boutin JA, Delagrange P, Prevot V, Jockers R (2010) Expression of the orphan GPR50 protein in rodent and human dorsomedial hypothalamus, tanycytes and median eminence. J Pineal Res 48:263–269

    CAS  PubMed  Google Scholar 

  • Simerly RB (2008) Hypothalamic substrates of metabolic imprinting. Physiol Behav 94:79–89

    CAS  PubMed Central  PubMed  Google Scholar 

  • Suh H, Consiglio A, Ray J, Sawai T, D’Amour KA, Gage FH (2007) In vivo fate analysis reveals the multipotent and self-renewal capacities of Sox2+ neural stem cells in the adult hippocampus. Cell Stem Cell 1:515–528

    CAS  PubMed Central  PubMed  Google Scholar 

  • Thaler JP, Yi CX, Schur EA, Guyenet SJ, Hwang BH, Dietrich MO, Zhao X, Sarruf DA, Izgur V, Maravilla KR, Nguyen HT, Fischer JD, Matsen ME, Wisse BE, Morton GJ, Horvath TL, Baskin DG, Tschop MH, Schwartz MW (2012) Obesity is associated with hypothalamic injury in rodents and humans. J Clin Invest 122:153–162

    CAS  PubMed Central  PubMed  Google Scholar 

  • Vaisse C, Halaas JL, Horvath CM, Darnell JE Jr, Stoffel M, Friedman JM (1996) Leptin activation of Stat3 in the hypothalamus of wild-type and ob/ob mice but not db/db mice. Nat Genet 14:95–97

    CAS  PubMed  Google Scholar 

  • Waters EM, Simerly RB (2009) Estrogen induces caspase-dependent cell death during hypothalamic development. J Neurosci 29:9714–9718

    CAS  PubMed  Google Scholar 

  • Wei LC, Shi M, Chen LW, Cao R, Zhang P, Chan YS (2002) Nestin-containing cells express glial fibrillary acidic protein in the proliferative regions of central nervous system of postnatal developing and adult mice. Brain Res Dev Brain Res 139:9–17

    CAS  PubMed  Google Scholar 

  • Weiss S, Dunne C, Hewson J, Wohl C, Wheatley M, Peterson AC, Reynolds BA (1996) Multipotent CNS stem cells are present in the adult mammalian spinal cord and ventricular neuroaxis. J Neurosci 16:7599–7609

    CAS  PubMed  Google Scholar 

  • Williams KW, Elmquist JK (2012) From neuroanatomy to behavior: central integration of peripheral signals regulating feeding behavior. Nat Neurosci 15:1350–1355

    CAS  PubMed Central  PubMed  Google Scholar 

  • Xu Y, Tamamaki N, Noda T, Kimura K, Itokazu Y, Matsumoto N, Dezawa M, Ide C (2005a) Neurogenesis in the ependymal layer of the adult rat 3rd ventricle. Exp Neurol 192:251–264

    CAS  PubMed  Google Scholar 

  • Xu AW, Kaelin CB, Morton GJ, Ogimoto K, Stanhope K, Graham J, Baskin DG, Havel P, Schwartz MW, Barsh GS (2005b) Effects of hypothalamic neurodegeneration on energy balance. PLoS Biol 3:e415

    PubMed Central  PubMed  Google Scholar 

  • Zeltser LM, Seeley RJ, Tschop MH (2012) Synaptic plasticity in neuronal circuits regulating energy balance. Nat Neurosci 15:1336–1342

    CAS  PubMed  Google Scholar 

  • Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM (1994) Positional cloning of the mouse obese gene and its human homologue. Nature 372:425–432

    CAS  PubMed  Google Scholar 

  • Zhang G, Li J, Purkayastha S, Tang Y, Zhang H, Yin Y, Li B, Liu G, Cai D (2013) Hypothalamic programming of systemic ageing involving IKK-beta, NF-kappaB and GnRH. Nature 497:211–216

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by the Institut National de la Santé et de la Recherche Médicale (Inserm, France) Grant U837, the Fondation pour la Recherche Médicale (Equipe FRM 2005 and DEQ20130326524), the Agence Nationale de la Recherche (ANR) grant ANR-09-BLAN-0267, the Université Lille 2, and the IFR114, in addition to a grant from the National Science Foundation (NSF, grant IOS1121691) to SRO. We thank Dr. S. Rasika for the editing of our manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ariane Sharif or Vincent Prevot .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sharif, A., Ojeda, S.R., Prevot, V. (2014). Neurogenesis and Gliogenesis in the Postnatal Hypothalamus: A New Level of Plasticity for the Regulation of Hypothalamic Function?. In: Junier, MP., Kernie, S. (eds) Endogenous Stem Cell-Based Brain Remodeling in Mammals. Stem Cell Biology and Regenerative Medicine. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-7399-3_6

Download citation

Publish with us

Policies and ethics