Skip to main content

The Cerebrospinal Fluid

  • Chapter
Handbook of Neurochemistry

Abstract

The cerebrospinal fluid is contained within, and surrounds, the brain and spinal cord (Fig. 1). Thus, the internal fluid is contained within the ventricles —a set of intercommunicating cavities—while the external fluid occupies the subarachnoid spaces, i.e., the spaces on the surface of the brain and cord contained by the pia, internally, and the arachnoid membrane, externally. The internal fluid connects with the external fluid by way of one or more foramina. Thus, in man the principal connection is by way of the foramen of Magendie, which is essentially a gap in the roof of the IVth ventricle that permits flow out of this into the large adjacent subarachnoid space, the cisterna magna. In lower animals this foramen is not present, so that connection is made through the two foramina of Luschka, which are holes in the lateral recesses of the IVth ventricle opening into the subarachnoid spaces at the base of the brain. Each foramen is situated in the angle between the pons and medulla and opens into the cisterna pontis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. A. Bering and O. Sato, Hydrocephalus: changes in formation and absorption of cerebrospinal fluid within the cerebral ventricles, J. Neurosurg. 20: 1050–1063 (1963).

    PubMed  Google Scholar 

  2. M. Pollay and F. Curl, Secretion of cerebrospinal fluid by the ventricular ependyma of the rabbit, Am. J. Physiol. 213: 1031–1038 (1967).

    PubMed  CAS  Google Scholar 

  3. K. Welch and V. Friedman, The cerebrospinal fluid valves, Brain 83: 454–469 (1960).

    PubMed  CAS  Google Scholar 

  4. H. Cserr, Potassium exchange between cerebrospinal fluid, plasma, and brain, Am. J. Physiol. 209: 1219–1226 (1965).

    PubMed  CAS  Google Scholar 

  5. M. Segal and H. Dayson (in preparation).

    Google Scholar 

  6. M. G. Farquhar and G. E. Palade, Junctional complexes in various epithelia, J. Cell Biol. 17: 375–412 (1963).

    PubMed  CAS  PubMed Central  Google Scholar 

  7. D. P. Rall, W. W. Oppelt, and C. S. Patlak, Extracellular space of brain as determined by diffusion of inulin from the ventricular system, Life Sci. 2: 43–48 (1962).

    Google Scholar 

  8. M. W. Brightman, The distribution within the brain of ferritin injected into cerebrospinal fluid compartments-I, J. Cell Biol. 26: 99–123 (1965).

    PubMed  CAS  PubMed Central  Google Scholar 

  9. K. Fleischhauer, Regional differences in the structure of the ependyma and subependymal layers of the cerebral ventricles of the cat, in Regional Neurochemistry (S. S. Kety and J. Elkes, Eds.), pp. 279 to 283, Pergamon Press, London (1961).

    Google Scholar 

  10. E. Nelson, K. Blinzinger, and H. Hager, Electron microscopic observations on subarachnoid and perivascular spaces of the Syrian hamster brain, Neurology 11: 285–295 (1961).

    PubMed  Google Scholar 

  11. J. D. Waggener and J. Beggs, The membranous coverings of neural tissues: an electron microscopy study, J. Neuropathol. 26: 412–426 (1967).

    CAS  Google Scholar 

  12. L. A. Rodriguez, Experiments on the histologic locus of the hemato-encephalic barrier, J. Comp. Neurol. 102: 27–45 (1955).

    PubMed  CAS  Google Scholar 

  13. M. Shakib and J. C. Cunha-Vaz, Studies on the permeability of the blood-retinal-barrier. IV. Junctional complexes of the retinal vessels and their role in the permeability of the blood-retinal-barrier, Exptl. Eye Res. 5: 229–234 (1966).

    CAS  Google Scholar 

  14. a.T. S. Reese and M. J. Karnovsky, Fine structural localization of a blood-brain barrier to exogenous peroxidase, J. Cell Biol. 34: 207–217 (1967).

    PubMed  CAS  PubMed Central  Google Scholar 

  15. b.T. S. Bodenheimer and M. W. Brightman, A blood-brain barrier to peroxidase in capillaries surrounded by perivascular spaces, Am. J. Anat. 122: 249–267 (1968).

    PubMed  CAS  Google Scholar 

  16. N. C. Hill, B. F. McKenzie, W. F. McGuckin, N. P. Goldstein, and H. J. Svien, Proteins, glycoproteins and lipoproteins in the serum and cerebrospinal fluid of healthy subjects, Proc. Mayo Clinic 33: 686–698 (1958).

    CAS  Google Scholar 

  17. C. M. Plum and T. Fog, Studies in multiple sclerosis, Acta Psychiat. Neurol. Scand. 34, Suppl. 128 (1959).

    Google Scholar 

  18. H. Dayson, Physiology of Cerebrospinal Fluid, Churchill, London (1967).

    Google Scholar 

  19. H. H. Lieschke, Uber Bestandspotentiale im Gebiete der Medulla oblongata, Pfluegers Arch. Ges. Physiol. 262: 517–531 (1956).

    Google Scholar 

  20. H. J. Mottschall and H. H. Loeschke, Messungen des transmeningealen Potentials der Katze bei Anderung des CO2- Drucks and der H-Ionen-Konzentration im Blut, Pflugers Arch. Ges. Physiol. 277: 662–670 (1963).

    CAS  Google Scholar 

  21. D. Held, V. Fend, and J. R. Pappenheimer, Electrical potential of cerebrospinal fluid, J. Neurophysiol. 27: 775–781 (1964).

    Google Scholar 

  22. H. H. Loeschke, Uber den Einfluss von CO2 auf die Nestandspotentiale der Hirnhaute, Pfluegers Arch. Ges. Physiol. 262: 532–536 (1956).

    Google Scholar 

  23. J. Bekaert and G. Demeester, The influence of glucose and insulin upon the potassium concentration of serum and cerebrospinal fluid, Arch. Intern. Physiol. 59: 262–264 (1951).

    CAS  Google Scholar 

  24. J. Bekaert and G. Demeester, The influence of the infusion of potassium chloride on the cerebrospinal fluid concentration of potassium, Arch. Intern. Physiol. 59: 393–394 (1951).

    CAS  Google Scholar 

  25. E. S. Cooper, E. Lechner, and S. Bellet, Relations between serum and cerebrospinal fluid electrolytes under normal and abnormal conditions, Am. J. Med. 18: 613–621 (1955).

    PubMed  CAS  Google Scholar 

  26. M. W. B. Bradbury and C. R. Kleeman, Stability of the potassium content of cerebrospinal fluid and brain, Am. J. Physiol. 213: 519–528 (1967).

    PubMed  CAS  Google Scholar 

  27. H. Cohen, The magnesium content of the cerebrospinal and other body fluids, Quart. J. Med. 20: 173–186 (1927).

    CAS  Google Scholar 

  28. G. Hunter and H. V. Smith, Calcium and magnesium in human cerebrospinal fluid, Nature 186: 161–162 (1960).

    PubMed  CAS  Google Scholar 

  29. M. W. B. Bradbury, Magnesium and calcium in cerebrospinal fluid and in the extracellular fluid of brain, J. Physiol. 179: 67–68 (1965).

    Google Scholar 

  30. F. K. Herbert, The total and diffusible calcium of serum and the calcium of cerebrospinal fluid in human cases of hypocalcaemia and hypercalcaemia, Biochem. J. 27: 1978–1991 (1933).

    PubMed  CAS  PubMed Central  Google Scholar 

  31. P. H. Leiderman and R. Katzman, Effect of adrenalectomy, desoxycorticosterone and cortisone on brain potassium exchange, Am. J. Physiol. 175: 271–275 (1953).

    PubMed  CAS  Google Scholar 

  32. R. Katzman and P. H. Leiderman, Brain potassium exchange in normal adult and immature rats, Am. J. Physiol. 175: 263–270 (1953).

    PubMed  CAS  Google Scholar 

  33. R. Katzman, L. Graziani, R. Kaplan, and A. Escriva, Exchange of cerebrospinal fluid potassium with blood and brain, Arch. Neurol. 13: 513–524 (1963).

    Google Scholar 

  34. F. R. Domer, Transport of 42K from blood to cerebrospinal fluid in cats, J. Physiol. 158: 366–373 (1961).

    PubMed  CAS  PubMed Central  Google Scholar 

  35. F. R. Domer and M. Whitcomb, Studies of 42K movement between the blood and the cerebrospinal fluid of cats, J. Pharmacol. 145: 52–57 (1964).

    CAS  Google Scholar 

  36. M. W. B. Bradbury and H. Dayson, The transport of potassium between blood, cerebrospinal fluid and brain, J. Physiol. 181: 151–174 (1965).

    PubMed  CAS  PubMed Central  Google Scholar 

  37. L. Graziani, A. Escriva, and R. Katzman, Exchange of calcium between blood, brain, and cerebrospinal fluid, Am. J. Physiol. 208: 1058–1064 (1965).

    PubMed  CAS  Google Scholar 

  38. V. Fend, T. B. Miller, and J. R. Pappenheimer, Studies on the respiratory response to disturbances of acid-base balance, with deductions concerning the ionic composition of cerebral interstitial fluid, Am. J. Physiol. 210: 459–472 (1966).

    Google Scholar 

  39. L. Z. Bito and H. Dayson, Local variations in cerebrospinal fluid composition and its relationship to the composition of the extracellular fluid of the cortex, Exptl. Neurol. 14: 264–280 (1966).

    CAS  Google Scholar 

  40. J. De Rougemont, A. Ames, F. B. Nesbitt, and H. F. Hofmann, Fluid formed by choroid plexus, J. Neurophysiol. 23: 485–495 (1960).

    PubMed  Google Scholar 

  41. A. Ames, M. Sakanoue, and S. Endo, Na, K, Ca, Mg and Cl concentrations in choroid plexus fluid and cisternal fluid compared with plasma ultrafiltrate, J. Neurophysiol. 27: 672–681 (1964).

    PubMed  Google Scholar 

  42. A. Ames, K. Higashi, and F. B. Nesbett, Relation of potassium concentration in choroid plexus fluid to that in plasma, J. Physiol. 181: 506–515 (1965).

    PubMed  CAS  PubMed Central  Google Scholar 

  43. J. R. Pappenheimer, S. R. Heisey, E. F. Jordan, and J. De C. Downer, Perfusion of the cerebral ventricular system in unanesthetized goats, Am. J. Physiol. 203: 763–774 (1962).

    Google Scholar 

  44. E. C. Zuckermann and G. H. Glaser, Hippocampal epileptic activity induced by localized ventricular perfusion with high-potassium cerebrospinal fluid, Exptl. Neurol. 20: 87–110 (1968).

    CAS  Google Scholar 

  45. W. H. Olendorf and H. Dayson, Brain extracellular space and the sink action of cerebrospinal fluid, Arch. Neurol. 17: 196–205 (1967).

    Google Scholar 

  46. H. Dayson and E. Spaziani, The blood-brain barrier, J. Physiol. 149: 135–143 (1959).

    Google Scholar 

  47. H. Dayson and M. Bradbury, The extracellular space of the brain, Progr. Brain Res. 15: 124–134 (1965).

    Google Scholar 

  48. H. Dayson, The cerebrospinal fluid, Ergeb. Physiol. 52: 21–73 (1963).

    Google Scholar 

  49. D. J. Reed and D. M. Woodbury, Kinetics of movement of iodine, sucrose, inulin and radio-iodinated serum albumin in the central nervous system and cerebrospinal fluid of the rat, J. Physiol. 169: 816–850 (1963).

    PubMed  CAS  PubMed Central  Google Scholar 

  50. L. Z. Bito, M. W. B. Bradbury, and H. Dayson, Factors affecting the distribution of iodide and bromide in the central nervous system, J. Physiol. 185: 323–354 (1966).

    PubMed  CAS  PubMed Central  Google Scholar 

  51. D. L. Woodward, D. J. Reed, and D. M. Woodbury, Extracellular space of rat cerebral cortex, Am. J. Physiol. 212: 367–370 (1967).

    PubMed  CAS  Google Scholar 

  52. G. B. Wallace and B. B. Brodie, The distribution of iodide, thiocyanate, bromide and chloride in the central nervous system and spinal fluid, J. Pharmacol. 65: 220–226 (1939).

    CAS  Google Scholar 

  53. H. Dayson, A comparative study of the aqueous humour and cerebrospinal fluid in the rabbit, J. Physiol. 129: 111–133 (1955).

    Google Scholar 

  54. H. Dayson, The rates of disappearance of substances injected into the subarachnoid space of rabbits, J. Physiol. 128: 52–53 (1955).

    Google Scholar 

  55. J. R. Pappenheimer, S. R. Heisey, and E. F. Jordan, Active transport of Diodrast and phenolsulfonphthalein from cerebrospinal fluid to blood, Am. J. Physiol. 200: 1–10 (1961).

    PubMed  CAS  Google Scholar 

  56. M. Pollay and H. Dayson, The passage of certain substances out of the cerebrospinal fluid, Brain 86: 137–150 (1963).

    PubMed  CAS  Google Scholar 

  57. K. Welch, Concentration of thiocyanate by the choroid plexus of the rabbit in vitro, Proc. Soc. Exptl. Biol. N.Y. 109: 953–954 (1962).

    CAS  Google Scholar 

  58. K. Welch, Active transport of iodide by choroid plexus of the rabbit in vitro, Am. J. Physiol. 202: 757–760 (1962).

    PubMed  CAS  Google Scholar 

  59. B. Becker, Cerebrospinal fluid iodide, Am. J. Physiol. 201: 1149–1151 (1961).

    PubMed  CAS  Google Scholar 

  60. L. S. Schanker, L. D. Prockop, J. Schou, and P. Sisodia, Rapid efflux of some quaternary ammonium compounds from cerebrospinal fluid, Life Sci. 10: 515–521 (1962).

    Google Scholar 

  61. Y. Tochino and L. S. Schanker, Active transport of quaternary ammonium compounds by the choroid plexus in vitro, Am. J. Physiol. 208: 666–673 (1965).

    PubMed  CAS  Google Scholar 

  62. Y. Tochino and L. S. Schanker, Transport of serotonin and norepinephrine by the rabbit choroid plexus in vitro, Biochem. Pharmacol. 14: 1557–1566 (1965).

    PubMed  CAS  Google Scholar 

  63. Y. Tochino and L. S. Schanker, Serum and tissue factors that inhibit amine transport by the choroid plexus in vitro, Am. J. Physiol. 210: 1229–1233 (1966).

    PubMed  CAS  Google Scholar 

  64. M. Pollay, Cerebrospinal fluid transport and the thiocyanate space of the brain, Am. J. Physiol. 210: 275–279 (1966).

    PubMed  CAS  Google Scholar 

  65. K. G. Wakim and G. A. Fleisher, The effect of experimental cerebral infarction on transaminase activity in serum, cerebrospinal fluid and infarcted tissue, Proc. Mayo Clinic 31: 391–399 (1956).

    CAS  Google Scholar 

  66. J. B. Green, H. A. Oldewurtel, D. S. O’Doherty, F. M. Forster, and L. P. Sanchez-Longo, Cerebrospinal fluid glutamic oxalacetic transaminase activity in neurologic disease, Neurology 7: 313–322 (1957).

    PubMed  CAS  Google Scholar 

  67. J. Lieberman, O. Daiber, S. I. Dulkin, O. E. Lobstell, and M. R. Kaplan, Glutamic oxalacetic transminase in serum and cerebrospinal fluid of patients with cerebrovascular accidents, New Engl. J. Med. 257: 1201–1207 (1957).

    PubMed  CAS  Google Scholar 

  68. R. Katzman, R. A. Fishman, and E. S. Goldensohn, Glutamic-oxalacetic transaminase activity in spiral fluid, Neurology 7: 833–855 (1957).

    Google Scholar 

  69. S. M. Aronson, A. Saifer, G. Perle, and B. W. Volk, Cerebrospinal fluid enzymes in central nervous system lipidoses, Proc. Soc. Exptl. Biol. N. Y. 97: 331–334 (1958).

    CAS  Google Scholar 

  70. E. A. Maynard, R. L. Schultz, and D. C. Pease, Electron microscopy of the vascular bed of the rat cerebral cortex, Am. J. Anat. 100: 409–433 (1957).

    PubMed  CAS  Google Scholar 

  71. C. E. Lumsden, The cytology and cell physiology of the neuroglia and of the connective tissue in the brain with reference to the blood-brain barrier, Excerpta Med. VIII 8: 832–834 (1955).

    Google Scholar 

  72. R. Edstrom, An explanation of the blood-brain barrier phenomenon, Acta Psychiat. Kbhandl. 33: 403–416 (1958).

    CAS  Google Scholar 

  73. E. E. Goldmann, Die aussere und innere Sekretion des gesunden und kranken Organismus im Lichte der “vitalen Farbung,” Beitr. Klin. Chirurg. 64: 192–265 (1909).

    Google Scholar 

  74. E. E. Goldmann, Vitalfarbung am Zentralnervensystem, Abhandl. Preuss. Akad. Wiss., Phys: Math. KI(1), 1–60 (1913).

    Google Scholar 

  75. L. Bakay, The Blood-Brain Barrier with Special Regard to the Use of Isotopes, Charles C. Thomas, Springfield, Illinois (1956).

    Google Scholar 

  76. H. Dayson, Physiology of the Ocular and Cerebrospinal Fluids, Churchill, London (1956).

    Google Scholar 

  77. H. M. Gerschenfeld, F. Wald, J. A. Zadunaisky, and E. D. P. De Robertis, Function of astroglia in the water-ion metabolism of the central nervous system. An electron microscope study, Neurology 9: 412–425 (1959).

    PubMed  CAS  Google Scholar 

  78. E. Horstmann and H. Meves, Die Feinstruktur des molekularen Rindengraues und ihre physiologische Bedeutung, Z. Zellforsch. 49: 569–604 (1959).

    Google Scholar 

  79. H. Dayson, C. R. Kleeman, and E. Levin, The blood-brain barrier, in Drugs and Membrames (C. A. M. Hogben and P. Lindgren, Eds.), pp. 71–94, Pergamon Press, Oxford (1963).

    Google Scholar 

  80. A. Van Harreveld, J. Crowell, and S. K. Malhotra, A study of extracellular space in central nervous tissue by freeze-substitution, J. Cell Biol. 25: 117–137 (1965).

    PubMed Central  Google Scholar 

  81. A. Van Harreveld and S. K. Malhotra, Extracellular space in the cerebral cortex of the mouse, J. Anat. 101 (2): 197–207 (1967).

    PubMed  PubMed Central  Google Scholar 

  82. K. Chevassut, Glycolysis in cerebrospinal fluid and its clinical significance, Quart. J. Med. 21: 91–106 (1927).

    CAS  Google Scholar 

  83. C. Crone, Om diffusionen of Nogle Organiske Nonelektrolyter fra Bold til Hjernevaev, Ejnar Munksgaard, Kobenhavn (1961).

    Google Scholar 

  84. C. Crone, Facilitated transfer of glucose from blood into brain tissue, J. Physiol. 181: 103–113 (1965).

    PubMed  CAS  PubMed Central  Google Scholar 

  85. G. G. Myers and M. G. Netsky, Relation of blood and cerebrospinal fluid glucose, Arch. Neurol. 6: 18–26 (1962).

    PubMed  CAS  Google Scholar 

  86. J. E. Sifontes, R. D. B. Williams, E. M. Lincoln, and H. Clemons, Observations on the effect of induced hyperglycaemia on the glucose cohtent.of the cerebrospinal fluid in patients with tuberculous meningitis, Am. Rev. Tuberc. 67: 732–754 (1953).

    PubMed  CAS  Google Scholar 

  87. R. A. Fishman, Carrier transport of glucose between blood and cerebrospinal fluid, Am. J. Physiol. 206: 836–844 (1964).

    PubMed  CAS  Google Scholar 

  88. E. Eidelberg, J. Fishman, and M. L. Hams, Penetration of sugars across the blood-brain barrier, J. Physiol. 191: 47–57 (1967).

    PubMed  CAS  PubMed Central  Google Scholar 

  89. L. Bito, H. Dayson, E. Levin, M. Murray, and N. Snider, The concentrations of amino acids and other electrolytes in, cerebrospinal fluid, in vivo dialysate of brain and blood plasma of the dog, J. Neurochem. 13: 1057–1067 (1966).

    PubMed  CAS  Google Scholar 

  90. P. Wiechert, Uber den Einfluss von Aminosauren auf die Permeabilitat der Blut-LiquorSchranke, Acta Biol. Med. Ger. 11: 68–76 (1963).

    PubMed  CAS  Google Scholar 

  91. A. Lajtha, and J. Toth, Uptake and transport of amino acids by the brain, J. Neurochem. 8: 216–225 (1961).

    PubMed  CAS  Google Scholar 

  92. A. Lajtha and J. Toth, The efflux of intracerebrally administered amino acids from the brain, J. Neurochem. 9: 199–212 (1962).

    PubMed  CAS  Google Scholar 

  93. A. Lajtha and J. Toth, The brain barrier system. V. Stereospecificity of amino acid uptake, exchange and efflux, J. Neurochem. 10: 909–920 (1963).

    PubMed  CAS  Google Scholar 

  94. E. Levin, G. J. Nogueira, and C. A. G. Argiz, Ventriculo-cisternal perfusion of amino acids in cat brain. I. Rates of disappearance from the perfusate, J. Neurochem. 13: 761–767 (1966).

    PubMed  CAS  Google Scholar 

  95. G. J. Noguiera, C. A. G. Argiz, and E. Levin, Disappearance of different substances in contact with the external surface of the brain, Scientia 21: 734–735 (1965).

    Google Scholar 

  96. I. Klatzo and F. Seitelberger (eds.), Brain Edema. Proceedings of the Symposium, September 11–13, 1965, Vienna, Springer-Verlag, Vienna (1967).

    Google Scholar 

  97. L. Bakay and J. C. Lee, Ultrastructural changes in the edematous central nervous system. III. Edema in shark brain, Arch. Neurol. 14: 644–660 (1966).

    PubMed  CAS  Google Scholar 

  98. L. Bakay and I. U. Hague, Morphological and chemical studies in cerebral edema. I. Cold induced edema, J. Neuropathol. 23: 393–418 (1964).

    CAS  Google Scholar 

  99. A. Hirano, H. M. Zimmerman, and S. Levine, Fine structure of cerebral fluid accumulation. IV, Arch. Neurol. 12: 189–196 (1965).

    PubMed  CAS  Google Scholar 

  100. E. Streicher, P. J. Ferris, J. D. Prokop, and I. Klatzo, Brain volume and thiocyanate space in local cold injury, Arch. Neurol. 11: 44448 (1964).

    Google Scholar 

  101. H. M. Pappius and L. A. Dayes, Hypertonic urea, Arch. Neurol. 13: 395–402 (1965).

    PubMed  CAS  Google Scholar 

  102. M. W. B. Bradbury and R. V. Coxon, The penetration of urea into the central nervous system at high blood levels, J. Physiol. 163: 423–435 (1962).

    PubMed  CAS  PubMed Central  Google Scholar 

  103. C. R. Kleeman, H. Dayson, and E. Levin, Urea transport in the central nervous system, Am. J. Physiol. 203: 739–747 (1962).

    PubMed  CAS  Google Scholar 

  104. M. Javid and P. Settlage, Effect of urea on cerebrospinal fluid pressure in human subjects, J. Am. Med. Assoc. 160: 943–949 (1956).

    PubMed  CAS  Google Scholar 

  105. D. J. Reed and D. M. Woodbury, Effect of hypertonic urea on cerebrospinal fluid pressure and brain volume, J. Physiol. 164: 252–264 (1962).

    PubMed  CAS  PubMed Central  Google Scholar 

  106. F. Fremont-Smith, Pathogenesis of the changes in the cerebrospinal fluid in meningitis, Arch. Neurol. Psychiat. 25: 206–208 (1932).

    Google Scholar 

  107. S. Salminen and K. Luomanmaki, Distribution of sodium and potassium in serum, cerebrospinal fluid, and serum ultrafiltrate in some diseases, Scand. J. Clin. Lab. Invest. 14: 425–429 (1962).

    PubMed  CAS  Google Scholar 

  108. G. Hunter, H. V. Smith, and L. M. Taylor, On the bromide list of permeability of the barrier between blood and cerebrospinal fluid-an assessment, Biochem. J. 56: 588–597 (1954).

    PubMed  CAS  PubMed Central  Google Scholar 

  109. R. D. Bradley and S. J. G. Semple, A comparison of certain acid-base characteristics of arterial blood, jugular venous blood and cerebrospinal fluid in man, and the effect on them of some acute and chronic acid-base disturbances, J. Physiol. 160: 381–391 (1962).

    PubMed  CAS  PubMed Central  Google Scholar 

  110. F. Ragazzini, Variazioni dei livelli emato-liquorali del fosforo inorganico e del potassio in corso di meningite tubercolare, Riv. Clin. Pediat. 50: 381–388 (1952).

    PubMed  CAS  Google Scholar 

  111. E. B. Hendry, The osmotic pressure and chemical composition of human body fluids, Clin. Chem. 8: 246–265 (1962).

    PubMed  CAS  Google Scholar 

  112. J. W. Millen and D. H. M. Woollam, The Anatomy of the Cerebrospinal Fluid, Oxford University Press, London (1962).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1969 Springer Science+Business Media New York

About this chapter

Cite this chapter

Davson, H. (1969). The Cerebrospinal Fluid. In: Lajtha, A. (eds) Handbook of Neurochemistry. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-7321-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-7321-4_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-7301-6

  • Online ISBN: 978-1-4899-7321-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics