Skip to main content

Chemistry of Isolated Invertebrate Neurons

  • Chapter
Handbook of Neurochemistry

Abstract

In neurobiology, perhaps more than in any other field of biology, there are. considerable advantages in dealing with “simpler” systems and with “model” systems. Even in the lower invertebrates the degree of organization and differentiation of the nervous system is sufficiently high for the fundamental mechanisms of transmission, conduction, and integration to be studied. However, some scientists still hesitate to compare the properties of neurons of the vertebrate central nervous system with those of the invertebrate nervous system.

This chapter is dedicated to the memory of the late Professor K. Linderstrøm-Lang of the Carlsberg Laboratory, Copenhagen, who, by contributing to the development of most precise and sensitive methods of quantitative cytochemistry, made these cellular investigations possible.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. O. H. Lowry, The quantitative histochemistry of the brain, J. Histochem. Cytochem. 1: 420–427 (1953).

    Article  PubMed  CAS  Google Scholar 

  2. E. M. Eisenstein and G. H. Krasilovsky, in Invertebrate Nervous Systems (C. A. G. Wiersma, ed.), pp. 329–332, The University of Chicago Press, Chicago (1967).

    Google Scholar 

  3. N. Chalazonitis, Chémopotentiels des neurones géants fonctionnellement différenciés, Arch. Sci. Physiol. 13 (1): 1–38 (1959).

    Google Scholar 

  4. N. Chalazonitis and M. Gola, Analyses microspectrophotométriques relatives à quelques catalyseurs respiratoires dans le neurone isolé (Helix pomatia), Arch. Sci. Physiol. 158: 1908 (1964).

    CAS  Google Scholar 

  5. Th. H. Bullock and G. A. Horridge, Structure and Function in the Nervous Systems of Invertebrates, W. H. Freeman, San Francisco (1965).

    Google Scholar 

  6. E. Giacobini, in Second International Meeting of Pharmacology (Prague), Symposium on Drugs and Enzymes (B. B. Brodie, ed.), Vol. 1, pp. 55–63, Pergamon Press, New York (1965).

    Google Scholar 

  7. E. Giacobini, Metabolism and function studied in single neurons, Annal. Inst. Super. Sanità 1: 500–520 (1965).

    CAS  Google Scholar 

  8. E. Giacobini, in Neurosciences Research (S. Ehrenpreis and O. Solnitsky, Eds.), Vol. 1, Academic Press, New York (1968).

    Google Scholar 

  9. St. W. Kuflier and J. G. Nicholls, The Physiology of Neuroglial Cells, Springer Verlag, Berlin (1966).

    Google Scholar 

  10. D. H. Hubel and T. N. Wiesel, Receptive fields and functional architecture in two non-striate visual areas (18 and 19) of the cat, J. Neurophysiol. 28: 229–289 (1965).

    PubMed  CAS  Google Scholar 

  11. E. Giacobini, E. Handelman, and C. A. Terzuolo, An isolated neuron preparation for studies of metabolic events at rest and during impulse activity, Science 140: 74–75 (1963).

    Article  PubMed  CAS  Google Scholar 

  12. C. A. Terzuolo, B. Chance, E. Handelman, L. Rossini, and P. Schmelzer, Measurements of reduced pyridine nucleotides in a single neuron, Biochim. Biophys. Acta 126: 361–372 (1966).

    Article  PubMed  CAS  Google Scholar 

  13. N Chalazonitis and A. Arvanitaki, Chromoprotéides et succinoxydase dans divers grains isolables du protoplasme neuronique, Arch. Sci. Physiol. 10: 291–319 (1956).

    CAS  Google Scholar 

  14. J. S. Alexandrowitz, Muscle receptor organs in the abdomen of Homarus vulgaris and Palinurus vulgaris, Quart. J. Microscop. Sci. 92: 163–199 (1951).

    Google Scholar 

  15. B. Chance, P. Cohen, F. Jobsis, and B. Schoener, Intracellular oxidation-reduction states in vivo, Science 137: 499–508 (1962).

    Article  PubMed  CAS  Google Scholar 

  16. B. Chance and A. V. Legallais, A spectrofluorometer for recording of intracellular oxidation-reduction states, IEEE Trans. Biomed. Electron. 10: 40 (1963).

    CAS  Google Scholar 

  17. J. E. Treherne, The Neurochemistry of Arthropods, Cambridge University Press, Cambridge (1966).

    Google Scholar 

  18. W. Grampp and J. E. Edström, The effect of nervous activity on ribonucleic acid of the crustacean receptor neuron, J. Neurochem. 10: 725–731 (1963).

    Article  PubMed  CAS  Google Scholar 

  19. J. E. Edström and W. Grampp, Nervous activity and metabolism of ribonucleic acids in the crustacean stretch receptor neuron, J. Neurochem. 12: 735–741 (1965).

    Article  PubMed  Google Scholar 

  20. H. Hydén, in The Cell (J. Brachet and A. Mirsky, Eds.), Vol. IV, p. 215, Academic Press, New York (1960).

    Google Scholar 

  21. J. E. Edström, D. Eichner, and A. Edström, The ribonucleic acid of axons and myelin sheaths from Mauthner neurons, Biochem. Biophys. Acta 61: 178–184 (1962).

    PubMed  Google Scholar 

  22. G. Toschi and E. Giacobini, Puromycin and the impulse activity of crayfish stretch receptor neuron, Life Sci. 4: 1831–1834 (1965).

    Article  PubMed  CAS  Google Scholar 

  23. E. Giacobini, The effect of metabolic and ion transport inhibitors on the impulse activity and the oxygen uptake of an isolated crustacean neurone, Acta Physiol. Scand. 66: 34–48 (1966).

    Article  PubMed  CAS  Google Scholar 

  24. E. Giacobini, S. Hovmark, and Z. Kometiani, Intracellular variations of Na+ and K+ in isolated nerve cells. Acta Physiol. Scand. 71: 391–400 (1967).

    Article  PubMed  CAS  Google Scholar 

  25. B. G. Wallin, Intracellular ion concentrations in single crayfish axons, Acta Physiol. Scand. 70: 419–430 (1967).

    Article  PubMed  CAS  Google Scholar 

  26. M. G. Larrabee, Oxygen consumption of excised sympathetic ganglia at rest and in activity, J. Neurochem. 2: 81–101 (1958).

    Article  PubMed  CAS  Google Scholar 

  27. P. F. Cranefield, F. Brink, and D. W. Bronk, The oxygen uptake of the peripheral nerve of the rat, J. Neurochem. 1: 245–249 (1957).

    Article  PubMed  CAS  Google Scholar 

  28. E. Giacobini, Neurophysiological and biochemical correlations in isolated nerve cell preparations at rest and during impulse activity, Abst. 2nd Intern. Meeting Pharmacol. (Prague), Suppl. 12, 107 (1963).

    Google Scholar 

  29. J. M. Ritchie, The oxygen consumption of mammalian non-myelinated nerve fibers at rest and during activity, J. Physiol. 188: 309–329 (1967).

    PubMed  CAS  PubMed Central  Google Scholar 

  30. B. C. Abbott, A. V. Hill, and J. V. Howarth, The positive and negative heat production associated with a nerve impulse, Proc. Roy. Soc. B148: 149–187 (1958).

    Article  CAS  Google Scholar 

  31. S. S. Kety and C. F. Schmidt, The nitrous oxide method for the quantitative determination of cerebral blood flow in man: Theory, procedure and normal values, J. Clin. Invest. 27: 476–483 (1948).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  32. K. A. C. Elliott and I. H. Heller, in Metabolism of the Nervous System (D. Richter, ed.), p. 286, Pergamon Press, London (1958).

    Google Scholar 

  33. S. R. Korey and M. Orchen, Relative respiration of neuronal and glial cells, J. Neurochem. 3: 277–285 (1959).

    Article  PubMed  CAS  Google Scholar 

  34. Giacobini, The distribution and localization of cholinesterases in nerve cells. Academic dissertation, Acta Physiol. Scand. 45: Suppl. 156 (1959).

    Google Scholar 

  35. A. Hamberger, Oxidation of tricarboxylic acid cycle intermediates by nerve cell bodies, J. Neurochem. 8: 31–35 (1961).

    Article  PubMed  CAS  Google Scholar 

  36. H. Hydén and P. W. Lange, The steady state and endogenous respiration in neuron and glia, Acta Physiol. Scand. 64: 6–14 (1965).

    Article  PubMed  Google Scholar 

  37. M. H. Epstein and J. S. O’Connor, Respiration of single cortical neurons and of surrounding neuropile, J. Neurochem. 12: 389–395 (1965).

    Article  PubMed  CAS  Google Scholar 

  38. Ch. Edwards, C. A. Terzuolo, and Y. Washizu, The effect of changes of the ionic environment upon an isolated crustacean sensory neuron, J. Neurophysiol. 26: 948–957 (1963).

    PubMed  CAS  Google Scholar 

  39. C. Eyzaguirre and S. W. Kufiier, Processes of excitation in the dendrites and in the soma of single isolated sensory nerve cells of the lobster and crayfish, J. Gen. Physiol. 39: 87–119 (1955).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  40. O. H. Lowry, J. V. Passonneau, F. X. Hasselberger, and D. W. Schulz, Effect of ischemia on known substrates and cofactors of the glycolytic pathway in brain, J. Biol. Chem. 239: 18–30 (1964).

    PubMed  CAS  Google Scholar 

  41. E. Giacobini and A. Grasso, Variations of glycolytic intermediates, phosphate compounds and pyridine nucleotides after prolonged stimulation of an isolated crustacean neurone, Acta Physiol. Scand. 66: 49–57 (1966).

    Article  PubMed  CAS  Google Scholar 

  42. E. Giacobini, in Neurosciences Research (S. Ehrenpreis and O. Solnitsky, Eds.), Vol. 2, Academic Press, New York (1969).

    Google Scholar 

  43. C. A. Terzuolo, G. Bonewell, E. Giacobini, E. Handelman, and S. Lin, Metabolic studies in a single isolated nerve cell, Federation Proc. Abstr. 23: 130 (1964).

    Google Scholar 

  44. L. Rossini, H. P. Cohen, E. Handelman, S. Lin, and C. A. Terzuolo, Measurements of oxidoreduction processes and ATP levels in an isolated crustacean neuron, Ann. N.Y. Acad. Sci. 137: 864–876 (1966).

    Article  PubMed  CAS  Google Scholar 

  45. N. Chalazonitis, M. Gola, and A. Arvanitaki, Oscillations lentes du potentiel de membrane neuronique, fonction de la pOZ intracellulaire. Neurones autoactifs d’Aplysia depilans, Compt. Rend. Soc. Biol. 159: 2451 (1965).

    Google Scholar 

  46. N. Chalazonitis, M. Gola, and A. Arvanitaki, Microspectrophotométrie différentielle sur des neurones géants in vivo (Aplysia depilans). Measure de la diffusibilité de l’oxygène, Compt. Rend. Soc. Biol. 159: 2440 (1965).

    CAS  Google Scholar 

  47. N. Chalazonitis and M. Gola, Enregistrements simultanés de la p°2 intracellulaire et de l’autoactivité électrique du neurone géant (Aplysia depilans). Comps. Rend. Soc. Biol. 159: 1770 (1965).

    Google Scholar 

  48. N. Chalazonitis and H. Takeuchi, Variations de l’excitabilité directe somatique, en hyperoxie (neurones géants d’Aplysia fasciata et Helix pomatia), Compt. Rend. Soc. Biol. 1588: 2400 (1964).

    Google Scholar 

  49. E. Florey, Chemical transmission and adaptation, J. Gen. Physiol. 40: 533–545 (1957).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  50. C. A. G. Wiersma, E. Furshpan, and E. Florey, Physiological and pharmacological observations on muscle receptor organs of the crayfish, cambarus clarkii girard, J. Exptl. Biol. 30: 136–150 (1953).

    CAS  Google Scholar 

  51. H. McLennan and D. H. York, Cholinoceptive receptors of crayfish stretch receptor neurones, Comp. Biochem. Physiol. 17: 327–333 (1966).

    Article  Google Scholar 

  52. E. A. Maynard and D. M. Maynard, Cholinesterase in the crustacean muscle receptor organ, J. Histochem. Cytochem. 8: 376–379 (1960).

    Article  PubMed  CAS  Google Scholar 

  53. D. Nachmansohn, Chemical and Molecular Basis of Nerve Activity, Academic Press, New York (1959).

    Google Scholar 

  54. H. Hydén and A. Pigon, A cytophysiological study of the functional relationship between oligodendroglial cells and nerve cells of Deiters’ nucleus, J. Neurochem. 6: 57–72 (1960).

    Article  PubMed  Google Scholar 

  55. D. H. Burrin and R. B. Beechey, Cytochrome oxidase and cytochromes a and a3 in crab mitochondria, Biochem. J. 87: 48–53 (1963).

    PubMed  CAS  PubMed Central  Google Scholar 

  56. H. Hydén and P. W. Lange, A kinetic study of the neuron-glial relationship, J. Cell Biol. 13: 233–237 (1962).

    Article  PubMed  PubMed Central  Google Scholar 

  57. A. Hamberger and H. Hydén, Inverse enzymatic changes in neurons and glia during increased function and hypoxia, J. Cell Biol. 16: 521–525 (1963).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  58. A. Hamberger and J. Sjöstrand, Respiratory enzyme activities in neurons and glial cells of the hypoglossal nucleus during nerve regeneration, Acta Physiol. Scand. 67: 76–88 (1966).

    Article  PubMed  CAS  Google Scholar 

  59. Z. P. Kometiani, Free radicals and active ion transport, Biophysics 10: 389 (1965).

    Google Scholar 

  60. Z. Kometiani and R. H. Cagan, An electron spin resonance signal in brain microsomes, Biochim. Biophys. Acta 135: 1083–1086 (1967).

    Article  PubMed  CAS  Google Scholar 

  61. M. Gola and N. Chalazonitis, Measures spectrophotométriques de la saturation en oxygéne de l’hémoprotéine d’Aplysia depilans, Compt. Rend. Soc. Biol. 159: 1777 (1965).

    CAS  Google Scholar 

  62. E. Giacobini and J. F. Jongkind, The physiological significance of the pentose shunt in invertebrate neurons, Acta Physiol. Scand. 73: 255–256 (1968).

    Article  PubMed  CAS  Google Scholar 

  63. J. Katz and R. Rongstad, The labeling of pentose phosphate from glucose-’4C and estimation of the rates of transaldolase, transketolase, the contribution of the pentose cycle, and ribose phosphate synthesis, Biochemistry 6: 2227–2247 (1967).

    Article  PubMed  CAS  Google Scholar 

  64. M. A. McWhinnie and J. D. O’Connor, Metabolism and low temperature acclimation in the temperate crayfish, Orconectes virilis, Comp. Biochem. Physiol. 20: 131–145 (1967).

    Article  CAS  Google Scholar 

  65. J. A. Riegel, Blood glucose in crayfishes in relation to moult and handling, Nature 186: 727 (1960).

    Article  Google Scholar 

  66. R. L. Puyear, C. H. Wang, and A. W. Pritchard, Catabolic pathways of carbohydrate in the intermolt crayfish, Pacifastacus leniusculus, Comp. Biochem. Physiol. 14: 145–153 (1965).

    Article  PubMed  CAS  Google Scholar 

  67. E. Giacobini and P. C. Marchisio, lsyruvate, glutamate and tricarboxylic acid intermediates in the crustacean stretch receptor neurone after prolonged impulse activity, Acta Physiol. Scand. 66: 248–248 (1966).

    Google Scholar 

  68. E. Giacobini and P. C. Marchisio, The action of tricarboxylic acid cycle intermediates and glutamate on the impulse activity and respiration of the crayfish stretch receptor neurone, Acta Physiol. Scand. 66: 58–66 (1966).

    Article  PubMed  CAS  Google Scholar 

  69. E. Giacobini and P. C. Marchisio, Glutamate and the slow adapting stretch receptor neuron of the crayfish (SRN): Its effect on impulse activity and respiration, and its level before and after physiological stimulation, IV Intern. Meet. Neurobiol. (Stockholm) (C. Euler, S. Skoglund, and V. Siderberg, Eds.), pp. 395–399, Pergamon Press, New York (1968).

    Google Scholar 

  70. H. Waelsch, S. Berl, C. A. Rossi, D. D. Clarke, and D. P. Purpura, Quantitative aspects of CO2 fixation in mammalian brain in vivo, J. Neurochem. 11: 717–728 (1964).

    Article  PubMed  CAS  Google Scholar 

  71. L. J. Coté, S. C. Cheng, and H. Waelsch, CO2 fixation in the nervous system, J. Neurochem. 13: 721–729 (1966).

    Article  Google Scholar 

  72. A. L. Hodgkin and R. D. Keynes, Movements of cations during recovery in nerve. Symp. Soc. Exptl. Biol. 8: 423 (1954).

    CAS  Google Scholar 

  73. A. M. Shanes and D. E. S. Brown, The effect of metabolic inhibitors on the resting potential of frog nerve, J. Cell. Comp. Physiol. 19: 1–13 (1942).

    Article  CAS  Google Scholar 

  74. P. C. Caldwell, The phosphorus metabolism of squid axons and its relationship to the active transport of sodium, J. Physiol. 152: 545–560 (1960).

    PubMed  CAS  PubMed Central  Google Scholar 

  75. P. C. Caldwell, A. L. Hodgkin, R. D. Keynes, and T. I. Shaw, The effects of injecting “energy-rich” phosphate compounds on the active transport of ions in the giant axons of loligo, J. Physiol. 152: 561–590 (1960).

    PubMed  CAS  PubMed Central  Google Scholar 

  76. P. C. Caldwell and R. D. Keynes, Phosphagen break-down and lactic acid formation on stimulation of the electric organ of Electrophorus, J. Physiol. 169: 37P - 38P (1963).

    Google Scholar 

  77. X. Aubert, B. Chance, and R. D. Keynes, Optical studies of biochemical events in the electric organ of Electrophorus, Proc. Roy. Soc. 160: 211–245 (1964).

    Article  CAS  Google Scholar 

  78. P. K. Maitra, A. Ghosh, B. Schoener, and B. Chance, Transients in glycolytic metabolism following electrical activity in electrophorus, Biochim. Biophys. Acta 88: 112–119 (1964).

    PubMed  CAS  Google Scholar 

  79. R. W. Gerard, Nerve metabolism, Physiol. Rev. 12: 469–592 (1932).

    CAS  Google Scholar 

  80. W. D. Dettbarn and F. C. G. Hoskin, Changes of glucose metabolism during lobster-nerve activity, Biochim. Biophys. Acta 50: 568–570 (1961).

    Article  PubMed  CAS  Google Scholar 

  81. B. Carlsson, B. E. Giacobini, and S. Hovmark, A modified microflamephotometric technique for Na+ and K+ determinations in individual somatic cells (Abstr. Scand. Physiol. Congr., Abo 1966), Acta Physiol. Scand. Suppl. 277, 68: 32 (1966).

    Google Scholar 

  82. E. Giacobini, Energy metabolism and ion transport studied in single neurons (Proc. Symp. Biophys. Physiol. Biol. Transport, Rome), Protoplasma 63: 52–55 (1967).

    Article  PubMed  CAS  Google Scholar 

  83. B. Carlsson, E. Giacobini, and S. Hovmark, Measurement of intracellular Na’ and K+ in single cells by means of a modified microflamephotometric technique, Acta Physiol. Scand. 71: 379–390 (1967).

    Article  PubMed  CAS  Google Scholar 

  84. J. Villegas, L. Villegas, and R. Villegas, Sodium, potassium and chloride concentrations in the Schwann cell and axon of the squid nerve fiber, J. Gen. Physiol. 49: 1–7 (1965).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  85. T. L. D’Yakonova, B. N. Veprintsev, A. F. Chapas, and V. Ya. Brodskii, Induction of RNA synthesis in neurons by electrical activity, Biofizika 10: 826 (1965).

    Google Scholar 

  86. A. B. Kogan and S. L. Zaguskin, Relationship between ribonucleic acid patterns and electrical activity of single stretch neuron of crayfish muscle during excitation and inhibition, J. Evol. Biol. Physiol. 1: 59–66 (1965).

    Google Scholar 

  87. H. Hydén, Protein metabolism in the nerve cell during growth and function, Acta Physiol. Scand. Suppl. 17, 6: 1–136 (1943).

    Google Scholar 

  88. M. J. Cohen, in Invertebrate Nervous Systems (C. A. G. Wiersma, ed.), pp. 65–78, The University of Chicago Press, Chicago (1967).

    Google Scholar 

  89. D. R. Curtis, J. W. Phillis, and J. C. Watkins, The depression of spinal neurones by y-aminon-butyric acid and -alanine, J. Physiol. 146: 185–203 (1959).

    PubMed  CAS  PubMed Central  Google Scholar 

  90. C. Edwards and S. W. Kuffler, The blocking effect of y-aminobutyric acid (GABA) and the action of related compounds on single nerve cells, J. Neurochem. 4: 19–30 (1959).

    Article  PubMed  CAS  Google Scholar 

  91. K. Krnjevic and J. W. Phillis, The action of certain amino acids on cortical neurones, J. Physiol. (London) 159: 62–63 (1961).

    Google Scholar 

  92. J. S. Coombs, J. C. Eccles, and P. Fatt, The specific ionic conductances and the ionic movement across the motoneuronal membrane that produce the inhibitory postsynaptic potential, J. Physiol. 130: 326–373 (1955).

    PubMed  CAS  PubMed Central  Google Scholar 

  93. F. Brink, D. W. Bronk, and M. G. Larrabee, Chemical excitation of nerve, Ann. N.Y. Acad. Sci. 47: 457–485 (1946).

    Article  CAS  Google Scholar 

  94. B. Falck and Ch. Owman, A detailed methodological description of the fluorescence method for the cellular demonstration of biogenic amines, Acta Univ. Lund, Sect. II (7), 1–23 (1965).

    Google Scholar 

  95. E. Giacobini, The effect of metabolic inhibitors on the respiration of an isolated neuron preparation (Abstr. XI Scand. Physiol. Congr., Copenhagen), Acta. Physiol. Scand. Suppl. 213, 59: 48 (1963).

    Google Scholar 

  96. A. M. Pappenheimer and C. M. Williams, Cytochrome b 5 and the dihydrocoenzyme I-oxidase system in the Cecropia silkworm, J. Biol. Chem. 209: 915–929 (1954).

    PubMed  CAS  Google Scholar 

  97. A. G. M. Mattisson, The pattern of cellular respiration and its relation to the ultrastructure of the cell. A comparative study on invertebrate muscles, Thesis, University of Lund (1962).

    Google Scholar 

  98. E. M. Lieberman, Structural and functional sites of action of ultraviolet radiations in crab nerve fibers. II. Localization of the sites of action of UV radiation by experiments with Cat+ and ouabain, Exceptl. Cell Res. 47: 508–517 (1967).

    Article  CAS  Google Scholar 

  99. G. A. Kerkut, in Invertebrate Nervous Systems (C. A. G. Wiersma, ed.), pp. 5–37, The University of Chicago Press, Chicago (1967).

    Google Scholar 

  100. C. A. G. Wiersma, in Invertebrate Nervous Systems (C. A. G. Wiersma, ed.), pp. 363–364, The University of Chicago Press, Chicago (1967).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1969 Springer Science+Business Media New York

About this chapter

Cite this chapter

Giacobini, E. (1969). Chemistry of Isolated Invertebrate Neurons. In: Lajtha, A. (eds) Handbook of Neurochemistry. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-7321-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-7321-4_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-7301-6

  • Online ISBN: 978-1-4899-7321-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics