Skip to main content

Interconnections Between the Thalamus and Retrosplenial Cortex in the Rodent Brain

  • Chapter
Neurobiology of Cingulate Cortex and Limbic Thalamus

Abstract

One of the most important concepts for understanding cortical function and structure has been the vertical compartmentaliza-tion of cortical cells and their connections. Based on extensive anatomical studies of cortical neurons, Lorente de Nó (1938) hypothesized that vertically linked groups of neurons are the elementary functional unit in the cerebral cortex. Subsequent electrophysiological studies by Mountcastle (1957) indicated that somatosensory cortex displays a columnar organization, with cells having similar functional properties arranged along the radial axis of the cortex from the pial surface to the white matter. Later morphological and functional studies have detailed the vertical organization of somatosensory (Woolsey and Van der Loos, 1970; Wise and Jones, 1978), visual (Hubel and Wiesel, 1962; Winkelmann et al., 1975), and auditory (Imig and Brugge, 1978; Vaughan, 1983) cortices. In these areas, the vertical compartments, or “columns, ” correspond to regularly spaced divisions of primary sensory input from the thalamus. These studies together with his own studies led Szentágo-thai (1975, 1978) to propose that the vertically oriented cortical module, the column, is the basic functional unit in the entire cerebral cortex.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Armstrong DM, Saper CB, Levey Al, Wainer BH, Terry RD (1983): Distribution of cholinergic neurons in rat brain: Demonstrated by the immunohistochemical localization of choline acetyltransferase. J Comp Neurol 216:53–68

    Google Scholar 

  • Barnes JM, Barnes NM, Costall B, Horovitz ZP, Ironside JW, Naylor RJ, Williams TJ (1990): Angiotensin II inhibits cortical cholinergic function: Implications for cognition. J Cardio-vasc Pharmacol 16:234–238

    Google Scholar 

  • Barnes JM, Barnes NM, Costall B, Horovitz ZP, Naylor RJ (1989): Angiotensin II inhibits the release of [3H] acetylcholine from rat entorhinal cortex in vitro. Brain Res 491:136–143

    Google Scholar 

  • Barnes NM, Cheng CHK, Costall B, Naylor RJ, Williams TJ, Wischik CM (1991): Angiotensin converting enzyme density is increased in temporal cortex from patients with Alzheimer’s disease. Eur J Pharmacol 200:289–292

    Google Scholar 

  • Bodian D (1939): Studies on the diencephalon of the Virginia opossum. Part I. The nuclear pattern in the adult. J Comp Neurol 71:259–323

    Google Scholar 

  • Bodian D (1942): Studies on the diencephalon of the Virginia opossum. Part III. The thalamocortical projection. J Comp Neurol 77:525–575

    Google Scholar 

  • Braak H, Braak E (1991): Alzheimer’s disease affects limbic nuclei of the thalamus. Acta Neuropathol 81:261–268

    Google Scholar 

  • Brodmann K (1909): Vergleichende Lokalisa-tionslehre der Grosshirnrinde in ihren Prinzipien dargestellt auf Grund des Zellenbaues. Leipzig: Barth

    Google Scholar 

  • Buckley NJ, Bonner TI, Brann MR (1988): Localization of a family of muscarinic receptor mRNAs in rat brain. J Neurosci 8:4646–4652

    Google Scholar 

  • Buzsáki G (1991): The thalamic clock: Emergent network properties. Neuroscience 41: 351–364

    Google Scholar 

  • Cadusseau J, Roger M (1991): Cortical and subcortical connections of the pars compacta of the anterior pretectal nucleus of the rat. Neurosci Res 12:83–100

    Google Scholar 

  • Carroll EW, Wong-Riley MTT (1984): Quantitative light and electron microscopic analysis of cytochrome oxidase-rich zones in the striate cortex of the squirrel monkey. J Comp Neurol 222:1–17

    Google Scholar 

  • Caviness VS Jr, Frost DO (1980): Tangential organization of thalamic projections to the neocortex in the mouse. J Comp Neurol 194:335–367

    Google Scholar 

  • Chen LL, McNaughton BL, Barnes CA, Ortiz ER (1990): Head-directional and behavioral correlates of posterior cingulate and medial pre-striate cortex neurons in freely-moving rats. Soc Neurosci Abstr 16:441

    Google Scholar 

  • Clarke PBS, Pert CB, Pert A (1984): Autoradiographic distribution of nicotinic receptors in rat brain. Brain Res 323:390–395

    Google Scholar 

  • Cotman CW, Hoff SF (1983): Synapse repair in the hippocampus: The effects of aging. Birth Defects, Orig Artic Ser 19:119–134

    Google Scholar 

  • Crino PB, Vogt BA, Volicer L, Wiley RG (1990): Cellular localization of serotonin 1A, IB and uptake sites in cingulate cortex of the rat. J Pharmacol Exp Ther 252:651–656

    Google Scholar 

  • Dascal N, Ifune C, Hopkins R, Snutch TP, Lubbert H, Davidson N, Simon MI, Lester HA (1986): Involvement of a GTP-binding protein in mediation of serotonin and acetylcholine responses in Xenopus oocytes injected with rat brain messenger RNA. Mol Brain Res 1:201–209

    Google Scholar 

  • Diamond IT, Jones EG, Powell TPS (1969): The projection of the auditory cortex upon the diencephalon and brain stem in the cat. Brain Res 15:205–340

    Google Scholar 

  • Domesick VB (1969): Projections from the cingulate cortex in the rat. Brain Res 12:296–320

    Google Scholar 

  • Domesick VB (1972): Thalamic relationships of the medial cortex in the rat. Brain Behav Evol 6:457–483

    Google Scholar 

  • Donogue JP, Wise SP (1982): The motor cortex of the rat: Cytoarchitecture and microstimulation mapping. J Comp Neurol 212:76–88

    Google Scholar 

  • Dörje F, Wess J, Lambrecht G, Tacke R, Mutschier E, Brann MR (1991): Antagonist binding profiles of five cloned human muscarinic receptor subtypes. J Pharmacol Exp Ther 256:727–733

    Google Scholar 

  • Finch DM, Derian EL, Babb TL (1984a): Afferent fibers to rat cingulate cortex. Exp Neurol 83:468–485

    Google Scholar 

  • Finch DM, Derian EL, Babb TL (1984b): Excitatory projection of the rat subicular complex to the cingulate cortex and synaptic integration with thalamic afferents. Brain Res 301:25–37

    Google Scholar 

  • Frost DO, Caviness VE Jr (1980): Radial organization of thalamic projections to the neocortex in the mouse. J Comp Neurol 194:369–393

    Google Scholar 

  • Gabriel M, Foster K, Orona E (1980): Interaction of the laminae of cingulate cortex and the anteroventral thalamus during behavioral learning. Science 208:1050–1052

    Google Scholar 

  • Gabriel M, Sparenborg S (1986): Anterior thalamic discriminative neuronal responses enhanced during learning in rabbits with subicular and cingulate cortical lesions. Brain Res 384:195–198

    Google Scholar 

  • Gabriel M, Sparenborg S (1987): Posterior cingulate cortical lesions eliminate learning-related unit activity in the anterior cingulate cortex. Brain Res 409:151–157

    Google Scholar 

  • Gabriel M, Sparenborg S, Kubota Y (1989): Anterior and medial thalamic lesions, discriminative avoidance learning, and cingulate cortical neuronal activity in rabbits. Exp Brain Res 76:441–457

    Google Scholar 

  • Gerfen CR, Sawchenko PE (1984): An anterograde neuroanatomical tracing method that shows the detailed morphology of neurons, their axons and terminals: Immunohistochem-ical localization of an axonally transported plant lectin, Phaseolus vulgaris leucoagglutinin (PHA-L). Brain Res 290:219–238

    Google Scholar 

  • Gurdjian ES (1927): The diencephalon of the albino rat. J Comp Neurol 43:1–114

    Google Scholar 

  • Herkenham M (1980): Laminar organization of thalamic projections to the rat neocortex. Science 207:532–535

    Google Scholar 

  • Hoover DB, Baisden RH (1980): Localization of putative cholinergic neurons innervating the anteroventral thalamus. Brain Res Bull 5:519–524

    Google Scholar 

  • Hoover DB, Muth EA, Jacobowitz DM (1978): A mapping of the distribution of acetylcholine, choline acetyltransferase and acetylcholinesterase in discrete areas of rat brain. Brain Res 153:295–306

    Google Scholar 

  • Hoyer D, Engel G, Kalkman HO (1985): Characterization of the 5-HT1B recognition site in rat brain: Binding studies with (-) [125I]iodo-cyanopindolol. Eur J Pharmacol 118:1–12

    Google Scholar 

  • Hubel DH, Wiesel TN (1962): Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. J Physiol (London) 160:106–154

    Google Scholar 

  • Imig TJ, Brugge JF (1978): Sources and terminations of callosal axons related to binaural and frequency maps in primary auditory cortex of the cat. J Comp Neurol 182:637–660

    Google Scholar 

  • Jacobson S, Trojanowski JQ (1975): Corticothalamic neurons and thalamocortical terminal fields: An investigation in rat using horseradish peroxidase and autoradiography. Brain Res 85:385–401

    Google Scholar 

  • Jones EG (1985): The Thalamus, New York: Plenum

    Google Scholar 

  • Jones EG, Burton H (1974): Cytoarchitecture and somatic sensory connectivity of thalamic nuclei other than the ventrobasal complex in the cat. J Comp Neurol 154:395–432

    Google Scholar 

  • Jones EG, Hendry SHC, Brandon C (1986): Cytochrome oxidase staining reveals functional organization of monkey somatosensory thalamus. Exp Brain Res 62:438–442

    Google Scholar 

  • Jones EG, Powell TPS (1968): The projection of the somatic sensory cortex upon the thalamus in the cat. Brain Res 10:369–391

    Google Scholar 

  • Kaitz SS, Robertson RT (1981): Thalamic connections with limbic cortex. II. Corticothalamic connections. J Comp Neurol 158:319–337

    Google Scholar 

  • Kimura H, McGeer PL, Peng JH, McGeer EG (1981): The central cholinergic system studied by choline acetyltransferase immunohistochem-istry in the cat. J Comp Neurol 200:151–201

    Google Scholar 

  • Krieg WJS (1946): Connections of the cerebral cortex. I. The albino rat. A. Topography of the cortical areas. J Comp Neurol 84:221–275

    Google Scholar 

  • Krieg WJS (1947): Connections of the cerebral cortex. I. The albino rat. C. Extrinsic connections. J Comp Neurol 86:267–394

    Google Scholar 

  • Lashley KS (1941): Thalamo-cortical connections of the rat brain. J Comp Neurol 75:67–121

    Google Scholar 

  • Le Gros Clark WE (1932): The structure and connections of the thalamus. Brain 55:406–470

    Google Scholar 

  • Le Gros Clark WE, Boggon RH (1933): On the connections of the anterior thalamic nucleus of the thalamus. J Anat 67:215–226

    Google Scholar 

  • Levey Al, Hallanger AE, Wainer BH (1987): Choline acetyltransferase immunoreactivity in the rat thalamus. J Comp Neurol 257:317–332

    Google Scholar 

  • Lewis ME, Pert A, Pert CB, Herkenham M (1983): Opiate receptor localization in rat cerebral cortex. J Comp Neurol 216:339–358

    Google Scholar 

  • Lewis PR, Shute CCD (1967): The cholinergic limbic system: Projections to hippocampal formation, medial cortex, nuclei of the ascending cholinergic reticular system and the subfornical organ and supra-optic crest. Brain 90:521–542

    Google Scholar 

  • Lipton SA, Kater SB (1989): Neurotransmitter regulation of neuronal outgrowth, plasticity and survival. Trends Neurosci 12:265–270

    Google Scholar 

  • Lorente de Nó R (1938): Cerebral cortex: Architecture, intracortical connections, motor projections. In: Physiology of the Nervous System, Fulton J, ed. Oxford: Oxford University Press, pp. 288–330

    Google Scholar 

  • Macchi G (1969): Introductory statement about thalamocortical connections. Arch Ital Biol 107:547–569

    Google Scholar 

  • Macchi G, Arduini A (1958): Organiazzione anatomo-funzionale dei rapporti talamo-corticali. I. Organiazzione morfologica delle connessioni talamo-corticali. Atti Conv Soc ItalAnat, 18th S66:25–151

    Google Scholar 

  • Markowska AL, Olton DS, Murray EA, Gaff an D (1989): A comparative analysis of the role of fornix and cingulate cortex in memory: Rats. Exp Brain Res 74:187–201

    Google Scholar 

  • Matsunami K, Kawashima T, Satake H (1989): Mode of [14C] 2-deoxy-D-glucose uptake into retrosplenial cortex and other memory-related structures of the monkey during a delayed response. Brain Res Bull 22:829–838

    Google Scholar 

  • McLean S, Rothman RB, Herkenham M (1986): Autoradiographic localization of mu and delta opiate receptors in the forebrain of the rat. Brain Res 378:49–60

    Google Scholar 

  • Mizumori SJY, Williams JD (1991): Mnemonic properties of visual-sensitive head direction cells in lateral dorsal thalamus. Soc Neurosci Abstr 17:482

    Google Scholar 

  • Mountcastle VB (1957): Modality and topographic properties of single neurons of cats somatic sensory cortex. J Neurophysiol 20:408–434

    Google Scholar 

  • Mulle C, Steriade M, Deschênes M (1985): Absence of spindle oscillations in the cat anterior thalamic nuclei. Brain Res 334:165–168

    Google Scholar 

  • Murray EA, Davidson M, Gaffan D, Olton DS, Suomi S (1989): Effects of fornix transaction and cingulate cortical ablation on spatial memory in rhesus monkeys. Exp Brain Res 74:173–186

    Google Scholar 

  • Nickolson VJ, Tarn SW, Myers MJ, Cook L (1990): DuP 996 (3, 3-bis(4-pyrindinylmethyl)-l-phenylindolin-2-one) enhances the stimulus-induced release of acetylcholine from rat brain in vitro and in vivo. Drug Dev Res 19:285–300

    Google Scholar 

  • Niimi M (1978): Cortical projections of the anterior thalamic nuclei in the cat. Exp Brain Res 31:403–416

    Google Scholar 

  • Niimi K, Niimi M, Okada Y (1978): Thalamic Afferents to the limbic cortex in the cat studied with the method of retrograde axonal transport of horseradish peroxidase. Brain Res 145:225–238

    Google Scholar 

  • Nissl F (1889): Die Kerne des Thalamus beim Kaninchen. Neurol Zentralbl 8:549–550

    Google Scholar 

  • Oderfeld-Nowak B, Simon JR, Chang L, Aprison MH (1980): Re-evaluation of conditions for inhibition of acetylcholinesterase by serotonin and evidence for a new inhibitor derived from this natural indoleamine. Gen Pharmacol 11:37–45

    Google Scholar 

  • Offord SJ, Ordway GA, Frazer A (1988): Application of [125I]iodocyanopindolol to measure 5-hydroxytryptamine-1B receptors in the brain of the rat. J Pharmacol Exp Ther 244:144–153

    Google Scholar 

  • Okamoto K, Aoki K (1963): Development of a strain of spontaneously hypertensive rat. Jpn Circ J 27:282–293

    Google Scholar 

  • O’Keefe J, Nadel L (1978): The Hippocampus as a Cognitive Map. Oxford: Clarendon Press

    Google Scholar 

  • Papez JW (1932): The thalamic nuclei of the nine-banded armadillo (Tatusia novemcincta). J Comp Neurol 56:49–103

    Google Scholar 

  • Paré D, Steriade M, Deschênes M, Oakson G (1987): Physiological characteristics of anterior thalamic nuclei, a group devoid of inputs from reticular thalamic nucleus. J Neurophysiol 57:1669–1685

    Google Scholar 

  • Parent A, Butcher LL (1976): Organization and morphologies of acetylcholinesterase-contain-ing neurons in the thalamus and hypothalamus of the rat. J Comp Neurol 170:205–226

    Google Scholar 

  • Powell EW (1973): Limbic projections to the thalamus. Exp Brain Res 17:394–401

    Google Scholar 

  • Rainbow TC, Parsons B, Wolfe BB (1984): Quantitative autoradiography of beta1 and beta2 adrenergic receptors in rat brain. Proc Natl Acad Sci USA 81:1585–1589

    Google Scholar 

  • Ramón y Cajal S (1911): Histologie du système nerveux de l’homme et des vertébrés. Paris: Maloine

    Google Scholar 

  • Robertson RT (1983): Efferents of the pretectal complex: Separate populations of neurons project to lateral thalamus and to inferior olive. Brain Res 258:91–95

    Google Scholar 

  • Robertson RT, Kaitz SS (1981): Thalamic connections with limbic cortex. I. Thalamocortical projections. J Comp Neurol 195:501–525

    Google Scholar 

  • Robertson RT, Thompson SM, Kaitz SS (1983): Projections from the pretectal complex to the thalamic lateral dorsal nucleus of the cat. Exp Brain Res 51:157–171

    Google Scholar 

  • Rose JE (1942): The thalamus of the sheep: Cellular and fibrous structure and comparison with pig, rabbit and cat. J Comp Neurol 77:469–523

    Google Scholar 

  • Rose JE, Woolsey CN (1948): Structure and relations of limbic cortex and anterior thalamic nuclei in rabbit and cat. J Comp Neurol 89:279–347

    Google Scholar 

  • Rose M (1927a): Der Allocortex bei Tier und Mensch. J Psychol Neurol 34:1–111

    Google Scholar 

  • Rose M (1927b): Gyrus limbicus anterior und Regio retrosplenialis (Cortex holoprotoptychos quinquestratificatus) Vergleichende Architektonik bei Tier und Mensch. J Psychol Neurol 35:65–173

    Google Scholar 

  • Ryszka A, Heger M (1979): Afferent connections of the laterodorsal thalamic nucleus in the rat. Neurosci Lett 15:61–64

    Google Scholar 

  • Satoh K, Fibiger HC (1986): Cholinergic neurons of the laterodorsal tegmental nucleus: Efferent and afferent connections. J Comp Neurol 253:277–302

    Google Scholar 

  • Scalia F (1972): The termination of retinal axons in the pretectal region of mammals. J Comp Neurol 145:223–258

    Google Scholar 

  • Scalia F, Arango V (1979): Topographic organization of the projections of the retina to the pretectal region in the rat. J Comp Neurol 186:271–292

    Google Scholar 

  • Schmued L, Kyriakidis K, Heimer L (1990): In vivo anterograde and retrograde axonal transport of the fluorescent rhodamine-dextran-amine, Fluororuby, within the CNS. Brain Res 526:127–134

    Google Scholar 

  • Seki M, Zyo K (1984): Anterior thalamic Afferents from the mammillary body and the limbic cortex in the rat. J Comp Neurol 229:242–256

    Google Scholar 

  • Siegel A, Troiano R, Royce A (1973): Differential projections of the anterior and posterior cingu-late gyrus to the thalamus in the cat. Exp Neurol 38:192–201

    Google Scholar 

  • Sif J, Meunier M, Messier C, Calas A, Destrade C (1989): Quantitative [14C]2-deoxyglucose study of a functional dissociation between anterior and posterior cingulate cortices in mice. Neu-rosci Lett 101:223–228

    Google Scholar 

  • Sikes RW, Vogt BA, Swadlow HA (1988): Neuronal responses in rabbit cingulate cortex linked to quick-phase eye movements during nystagmus. J Neurophysiol 59:922–936

    Google Scholar 

  • Sofroniew MV, Priestley JV, Consolazione A, Eckenstein F, Cuello AC (1985): Cholinergic projections from the midline and pons to the thalamus in the rat, identified by combined retrograde tracing and choline acetyltrans-ferase immunohistochemistry. Brain Res 329:213–223

    Google Scholar 

  • Somogyi G, Hajdu F, Tömböl T, Madarász M (1978): Limbic projections to the cat thalamus. A horseradish peroxidase study. Acta Anat 102:68–73

    Google Scholar 

  • Spiro T, Massopust LC, Young PA (1980): Efferent projections of the laterodorsal nucleus in the rat. Exp Neurol 68:171–184

    Google Scholar 

  • Sripanidkulchai K, Wyss JM (1986): Thalamic projections to retrosplenial cortex in the rat. J Comp Neurol 254:143–165

    Google Scholar 

  • Sripanidkulchai K, Wyss JM (1987): The laminar organization of efferent neuronal cell bodies in the retrosplenial granular cortex. Brain Res 406:255–269

    Google Scholar 

  • Steriade M (1984): The excitatory-inhibitory response sequence of thalamic and cortical neurons: State related changes and regulatory mechanisms. In: Dynamic Aspects of Neo-cortical Function, Edelman G, Gall WE, Cowan WM, eds. New York: Wiley, pp 107–157

    Google Scholar 

  • Steriade M, Deschênes M (1984): The thalamus as a neuronal oscillator. Brain Res Rev 8:1–63

    Google Scholar 

  • Steriade M, Deschênes M (1988): Intrathalamic and brainstem-thalamic networks involved in resting and alert states. In: Cellular Thalamic Mechanisms, Bentivoglio M. R., Spreafico R. eds. Amsterdam: Elsevier pp 37–62

    Google Scholar 

  • Steriade M, Parent A, Hada J (1984): Thalamic projections of nucleus reticularis thalami of cat: A study using retrograde transport of horseradish peroxidase and fluorescent tracers. J Comp Neurol 229:531–547

    Google Scholar 

  • Steriade M, Wyszinski P (1972): Cortically elicited activities in thalamic reticularis neurons. Brain Res 42:514–520

    Google Scholar 

  • Sutherland RJ, Rodriguez AJ (1989): The role of the fimbria/fornix and some related subcortical structures in place learning and memory. Behav Brain Res 32:265–277

    Google Scholar 

  • Sutherland RJ, Whishaw IQ, Kolb B (1988): Contributions of cingulate cortex to two forms of spatial learning and memory. J Neurosci 8:1863–1872

    Google Scholar 

  • Swaab DF (1991): Brain aging and Alzheimer’s disease, “wear and tear” versus “use it or lose it.” Neurobiol Aging 12:317–324

    Google Scholar 

  • Swanson LW, Simmons DM, Whiting PJ, Lindstrom J (1987): Immunohistochemical localization of neuronal nicotinic receptors in the rodent central nervous system. J Neurosci 7:3334–3342

    Google Scholar 

  • Swanson LW, Wyss JM, Cowan WM (1978): An autoradiographic study of the organization of intrahippocampal association pathways in the rat. J Comp Neurol 181:681–716

    Google Scholar 

  • Szentágothai J (1975): The “module concept” in cerebral cortex architecture. Brain Res 95:475–496

    Google Scholar 

  • Szentágothai J (1978): The neuron network of the cerebral cortex: A functional interpretation. Proc R Soc London, Ser B 201:219–248

    Google Scholar 

  • Takahashi T (1985): The organization of the lateral thalamus of the hooded rat. J Comp Neurol 231:281–309

    Google Scholar 

  • Taube JS, Muller RU, Ranck JB Jr (1990a): Head-direction cells recorded from the postsu-biculum in freely moving rats. I. Description and quantitative analysis. J Neurosci 10:420–435

    Google Scholar 

  • Taube JS, Muller RU, Ranck JB Jr (1990b): Head-direction cells recorded from the postsubiculum in freely moving rats. II. Effects of environmental manipulations. J Neurosci 10:436–447

    Google Scholar 

  • Thompson SM, Robertson TT (1987a): Organization of subcortical pathways for sensory projections to the limbic cortex. I. Subcortical projections to the medial limbic cortex in the rat. J Comp Neurol 265:175–188

    Google Scholar 

  • Thompson SM, Robertson TR (1987b): Organization of subcortical pathways for sensory projections to the limbic cortex. II. Afferent projections to the thalamic lateral dorsal nucleus in the rat. J Comp Neurol 265:189–202

    Google Scholar 

  • Valenstein E, Bowers D, Verfaellie M, Heilman KM, Day A, Watson RT (1987): Retrosplenial amnesia. Brain 110:1631–1646

    Google Scholar 

  • van Groen T, Wyss JM (1988): The distribution of projections from the anterior thalamic nuclei to the subicular cortex. Soc Neurosci Abstr 14:921

    Google Scholar 

  • van Groen T, Wyss JM (1990a): The connections of presubiculum and parasubiculum in the rat. Brain Res 518:227–243

    Google Scholar 

  • van Groen T, Wyss JM (1990b): The postsubic-ular cortex in the rat: Characterization of the fourth region of the subicular cortex and its connections. Brain Res 529:165–177

    Google Scholar 

  • van Groen T, Wyss JM (1990c): Connections of the retrosplenial granular a cortex in the rat. J Comp Neurol 300:593–606

    Google Scholar 

  • van Groen T, Wyss JM (1991): Projections from the laterodorsal nucleus of the thalamus to the limbic and visual cortices. Soc Neurosci Abstr 17:1583

    Google Scholar 

  • van Groen T, Wyss JM (1992a): Connections of the retrosplenial dysgranular cortex in the rat. J Comp Neurol 315:200–216

    Google Scholar 

  • van Groen T, Wyss JM (1992b): Projections from the laterodorsal nucleus of the thalamus to the limbic and visual cortices in the rat. J Comp Neurol 324:427–448

    Google Scholar 

  • van Groen T, Wyss JM (1992c): Decreased learning and memory in mature spontaneously hypertensive rats: Effects of DuP 996. Clin Res 39:834A

    Google Scholar 

  • Vaughan DW (1983): Thalamic and callosal connections of the rat auditory cortex. Brain Res 260:181–189

    Google Scholar 

  • Vogt BA (1984): Afferent specific localization of muscarinic acetylcholine receptors in cingulate cortex. J Neurosci 4:2191–2199

    Google Scholar 

  • Vogt BA (1985): Cingulate cortex. In: Cerebral Cortex, Peters A, Jones EG, eds. New York: Plenum Press, pp 89–149

    Google Scholar 

  • Vogt BA, Burns DL (1988): Experimental localization of muscarinic receptor subtypes to cingulate cortical Afferents and neurons. J Neu-rosci 8:643–652

    Google Scholar 

  • Vogt BA, Crino PB, Jensen EL (1992): Multiple heteroreceptors on limbic thalamic axons: M2 acetylcholine, serotonin1B, beta2 adrenoceptors, mu opioid and neurotensin. Synapse 10:44–53

    Google Scholar 

  • Vogt BA, Miller MW (1983): Cortical connections between rat cingulate cortex and visual, motor, and postsubicular cortices. J Comp Neurol 216:192–210

    Google Scholar 

  • Vogt BA, Peters A (1981): Form and distribution of neurons in rat cingulate cortex: Areas 32, 24, and 29. J Comp Neurol 195:603–625

    Google Scholar 

  • Vogt BA, Rosene DL, Peters A (1981): Synaptic termination of thalamic and callosal Afferents in cingulate cortex of the rat. J Comp Neurol 201:265–283

    Google Scholar 

  • Walker AE (1936): An experimental study of the thalamocortical projection of the macaque monkey. J Comp Neurol 64:1–39

    Google Scholar 

  • Walker AE (1938): The Primate Thalamus. Chicago: University of Chicago Press

    Google Scholar 

  • Waller WH (1934): Topographical relations of cortical lesions to thalamic nuclei in the albino rat. J Comp Neurol 60:237–269

    Google Scholar 

  • Waller WH, Barris RW (1937): Relationship of thalamic nuclei to the cerebral cortex in the cat. J Comp Neurol 67:317–341

    Google Scholar 

  • Winkelmann E, Brauer K, Berger U (1975): Zur columnaren Organization von Pyramidenzellen im visuellen Cortex der Albinoratte. Z Mikrosk-Anat Forsch 89:239–256

    Google Scholar 

  • Wise SP, Jones EG (1978): Developmental studies of thalamocortical and commissural connections in the rat somatic sensory cortex. J Comp Neurol 178:187–208

    Google Scholar 

  • Wong-Riley MTT (1979): Changes in the visual system of monocularly sutured or enucleated cats demonstrable with cytochrome oxidase histochemistry. Brain Res 171:11–28

    Google Scholar 

  • Wong-Riley MTT (1989): Cytochrome oxidase: An endogenous metabolic marker for neuronal activity. Trends Neurosci 12:94–101

    Google Scholar 

  • Wong-Riley MTT, Merzenich MM, Leake PA (1978): Changes in endogenous enzymatic reactivity to DAB induced by neuronal inactivity. Brain Res 141:185–192

    Google Scholar 

  • Wong-Riley MTT, Riley DA (1983): The effect of impulse blockage on cytochrome oxidase activity in the cat visual system. Brain Res 261:185–193

    Google Scholar 

  • Woolsey TA, Van der Loos H (1970): The structural organization of layer IV in the somatosensory region (SI) of mouse cerebral cortex. Brain Res 17:205–242

    Google Scholar 

  • Wyss JM, Fisk G, van Groen T (1991): Impaired learning and memory in mature, spontaneously hypertensive rats. Hypertension (Dallas) 18:420

    Google Scholar 

  • Wyss JM, Sripanidkulchai K (1984): The topography of the mesencephalic and pontine projections from the cingulate cortex of the rat. Brain Res 293:1–15

    Google Scholar 

  • Wyss JM, Swanson LW, Cowan WM (1979): A study of subcortical Afferents to the hippo-campal formation in the rat. Neuroscience 4:463–476

    Google Scholar 

  • Wyss JM, van Groen T (1988): Topography of anterior thalamic Afferents from the posterior limbic cortex and the contralateral anteroven-tral nucleus. Soc Neurosci Abstr 14:921

    Google Scholar 

  • Wyss JM, van Groen T (1992): Early breakdown of dendritic bundles in the retrosplenial granular cortex of hypertensive rats: Prevention by antihypertensive therapy. Cereb. Cortex 2:468–476

    Google Scholar 

  • Wyss JM, van Groen T, Sripanidkulchai K (1990): Dendritic bundling in layer I of granular retrosplenial cortex: Intracellular labeling and selectivity of innervation. J Comp Neurol 295:33–42

    Google Scholar 

  • Young WS III, Kuhar MJ (1981): Neurotensin receptor localization by light microscopic autoradiography in rat brain. Brain Res 206:273–285

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

van Groen, T., Vogt, B.A., Wyss, J.M. (1993). Interconnections Between the Thalamus and Retrosplenial Cortex in the Rodent Brain. In: Vogt, B.A., Gabriel, M. (eds) Neurobiology of Cingulate Cortex and Limbic Thalamus. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4899-6704-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-6704-6_4

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4899-6706-0

  • Online ISBN: 978-1-4899-6704-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics