Skip to main content

On the Many Faces of Transition

  • Conference paper
Viscous Drag Reduction

Abstract

For a given shear-layer geometry the high-Reynolds-numbers turbulent flows possess strong, stable in-the-large, nearly universal features associated with the large number of degrees of freedom in the flows. These features include a range of scales of dominant energetic motion, a range of operating intensity levels, and average three-dimensional phase relations which, together, somehow insure the maintenance of a self-regenerative process. In seeking a rational approach to the bewildering variety of transitional behavior (Ref. 1), the author conjectures that many instability paths to turbulence are admissible and that their effectiveness hinges on whether the given mechanism supplies the proper scales, intensity level, and 3D phase relations needed for self-regeneration.

Conceptual lessons are drawn from a recently completed critical survey of the literature on transition to turbulence, and a number of unifying conjectures are advanced for subsonic speeds. In particular, the roles of linear amplification, nonlinear limiting, and secondary instability inducted by unsteady nonlinear effects are discussed. These mechanisms are illustrated for a number of transitional flows, including those in presence of roughness and streamwise vorticity. A clarification is advanced for the question of fast versus slow transition raised at the recent Institute on Transition. (Ref. 2) Finally, an overall model of the linear and nonlinear processes leading to transition is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Morkovin, M. V., “Critical Evaluation of Transition from Tsaminar to Turbulent Shear Layers with Emphasis on Hypersonically Traveling Bodies”, forthcoming AFFDL Tech. Rept., early 1969

    Google Scholar 

  2. NATO Advanced Study Institute on “Transition from Laminar to Turbulent Flow”, M. J. Lighthill, Director, Imperial College, London, July 1968

    Google Scholar 

  3. Faller, A. J. and R. E. Kaylor, “Investigations of Stability and Transition in Rotating Boundary Layers”, p. 309, Dynamics of Fluids and Plasmas: Academic Press, New York, 1961

    Google Scholar 

  4. Morkovin, M. V., “Notes on Instability and Transition to Turbulence”, Von Karman Institute for Fluid Dynamics, Brussels, Belgium, 1968

    Google Scholar 

  5. Spangler, J. G. and C. S. Wells, Jr., “Effect of Freestream Disturbances on Boundary-layer Transition”, AIAA Jour., 6, 543, 1968

    Article  Google Scholar 

  6. Gill, A. E., “A Mechanism for Instability of Plane Couette Flow and of Poiseuille Flow in a Pipe”, Jour. Fluid Mech., 21, 503, 1965

    Article  MATH  Google Scholar 

  7. Tani, I., H. Komoda, Y. Komatsu and M. Iuchi, “Boundary-layer Transition by Isolated Roughness”, Aero. Res. Inst. Tokyo, Rept. No. 375, 1962

    Google Scholar 

  8. Klebanoff, P. and K. D. Tidstrom, “Evolution of Amplified Wave Leading to Transition in a Boundary Layer with Zero Pressure Gradient”, NASA Tech. Note D-195, 1959

    Google Scholar 

  9. Neumann, R. D., “Thermal Design of Hypersonic Cruise Vehicles-Problem Areas for Consideration”, AIAA Paper No. 68–1087, Oct 1968

    Google Scholar 

  10. Plank, P. P. and I. F. Sakata, “Wing Structure Requirements for a Typical Hypersonic Cruise Vehicle”, AIAA Paper No. 68–1089, Oct 1968

    Google Scholar 

  11. Schadt, G. H., “Aerodynamic Heating Problems and Their Influence on RArth Orbit Lifting Entry Spacecraft”, AIAA Paper No. 68–1126, Oct 1968

    Google Scholar 

  12. Kline, S. J., M. V. Morkovin, G. Sovran and D. J. Cockrell, Calculation of Turbulent Boundary Layers - 1968 AFOSR-IFPStanford Conference. Proceedings, available from Mech. Eng. Dept., Stanford University

    Google Scholar 

  13. Abramovich, G. N., The Theory of Turbulent Jets: M. I. T. Press, Cambridge, Mass. 1963

    Google Scholar 

  14. Inference from presentations of A. Townsend and L. S. G. Kovasznay in (Ref. 2)

    Google Scholar 

  15. Hinze, J. O., Turbulence: McGraw-Hill Co., New York, 1959

    Google Scholar 

  16. Townsend, A., The Structure of Turbulent Shear Flow: Cambridge Univ. Press, 1956

    MATH  Google Scholar 

  17. Grant, H. L., “The Large Eddies of Turbulent Motion”, Jour. Fluid Mech., 4, 149, 1958

    Article  Google Scholar 

  18. Favre, A. J., “Review on Space-time Correlations in Turbulent Fluids”, Jour. Applied Mech., Series E of Transactions of the ASME, 35, 241, 1965

    Article  Google Scholar 

  19. Hall, G. R., “Interaction of the Wake from Bluff Bodies with an Initially Laminar Boundary Layer”, AIAA Jour., 5, 1386, 1967

    Article  Google Scholar 

  20. Betchov, R. and Wm. O. Criminale, Jr., Stability of Parallel Flows: Chapter VIII, Academic Press, New York, 1967

    Google Scholar 

  21. Lighthill, M. J., “Aerodynamic Background”, Chapter 2 (especially pp. 47–59, 67–72, and 86–102) of Laminar Boundary Layers, L. Rosenhead, Editor: Oxford University Press, 1963

    Google Scholar 

  22. Stuart J. T., “Hydrodynamic Stability”, Chapter 9 of Laminar Boundary Layers, L. Rosenhead, Editor: Oxford University Press, 1963. Also presentation in (Ref. 2)

    Google Scholar 

  23. Sato, H. and K. Kuriki, “The Mechanism of Transition in the Wake of a Thin Flat Plate Placed Parallel to a Uniform Flow”, Jour. Fluid Mech., 11, 321, 1961

    Article  MATH  Google Scholar 

  24. Freymuth, P., “On Transition in a Separated Laminar Boundary Layer”, Jour. Fluid Mech. 23, 683, 1965

    Google Scholar 

  25. Sato, H., “The Stability and Transition in a Two-Dimensional Jet”, Jour. Fluid Mech., 7, 53, 1960. Also, presentation in (2)

    Google Scholar 

  26. Morkovin, M. V., “Flow Around Circular Cylinder-A Kaleidoscope of Challenging Fluid Phenomena”, Symposium on Fully Separated Flows, p. 102 (ASME Publ., 1964 )

    Google Scholar 

  27. Knapp, C. F. and P. J. Roache, “A Combined Visual and Hot-wire Anemometer Investigation of Boundary-layer Transition”, AIAA Jour., 6, 29, 1968

    Article  Google Scholar 

  28. Berger, E., “Suppression of Vortex Shedding and Turbulence behind Oscillating Cylinders”, Physics of Fluids Supplement, p. 5191, Nov 1967. Also p. 168 of Jahrbuch der Wissen. Gesell. fur Luft and Raumfahrt, 1964.

    Google Scholar 

  29. Lin, C. C., “On the Stability of Two-dimensional Parallel Flows”, Proc. Nat. Acad. Sci. U. S., 30, 316, 19Ií

    Google Scholar 

  30. Schubauer, G. B. and H. K. Skramstad, “Laminar- Boundary-layer Oscillations and Transition on a Flat Plate”, NACA Adv. Conf. Rept., April 1943, later Tech. Rept. No. 909

    Google Scholar 

  31. Elder, J. W., “An Experimental Investigation of Turbulent Spots and Breakdown to Turbulence”, Jour. Fluid Mech., 2, 235, 1960

    Article  Google Scholar 

  32. Klebanoff, P. S., K. D. Tidstrom and L. M. Sargent, “The Three-dimensional Nature of Boundary-layer Instability”, Jour. Fluid Mech., 12, 1, 1962

    Article  MATH  Google Scholar 

  33. Kovasznay, L. S. G. K., H. Komodo. and B. R. Vasudeva, “Detailed Flow Field in Transition”, Proc. 1962 Heat Transfer and Fluid Mech. Institute, Stanford Univ. Press, 1962

    Google Scholar 

  34. Tani, I. and H. Komoda, “Boundary-layer Transition in the Presence of Streamwise Vortices”, Jour. Aerosp. Sci., 29, 110, 1962

    Google Scholar 

  35. Charters, A., “Transition Between Laminar and Turbulent Flow by Transverse Contamination”, NACA T. N. 891, 1943

    Google Scholar 

  36. Gaster, M., “On the Flow along Swept Leading Edges”, Aero Quart., 18, 165, 1967. Also Jour. Roy. Aero Soc. 62, 788, 1965

    Google Scholar 

  37. Pfenninger, W., “Some Results from the X-21 Program; Part I: Flow Phenomena at the Leading Edge of Swept Wings”, L. R. Powell, and P. P. Antonatos, “Part II: Laminar Flow Control Flight Test Results on the X-21A”, AGARDograph 97, 1965

    Google Scholar 

  38. Liepmann, H. W., “Investigation of Boundary Layer Transition on Concave Walls”, NACA W-87 Rept., 1945

    Google Scholar 

  39. Smith, A. M. O. and N. Gamberoni, “Transition, Pressure Gradient, and Stability Theory”, Douglas Aircraft Co. (El Segundo) Rept. No. ES 26388, 1956

    Google Scholar 

  40. Tani, I., “Boundary-layer Transition”, Annual Reviews of Fluid Mechanics, Vol. 1, Acad. Press, 1969

    Google Scholar 

  41. Gregory, N., and W. S. Walker, “The Effect on Transition of Isolated Surface Excrescences in the Boundary Layer”, British ARC, Res. Memo. No. 2779, 1956

    Google Scholar 

  42. Mochizuki, M., “Hot-wire Investigations of Smoke Patterns Caused by Spherical Roughness Element”, Natural Sci. Reports, Ochanomizu Univ., Tokyo, Japan, Vol. 12, No. 2, 1961

    Google Scholar 

  43. Mochizuki, M., “Smoke Observation on Boundary-layer Transition Caused by a Spherical Element”, Jour. Phys. Soc., Japan, 16, 955, 1961

    Google Scholar 

  44. Bennett, H. W., “An Experimental Study of Boundary Layer Transition”, Kimberley-Clark Corp. Report, Neenah, Wisconsin, 1953

    Google Scholar 

  45. Obremski, H. J. and M. V. Morkovin, “Application of a Quasi steady Stability Model to Periodic Boundary Layers”, submitted to AIAA Jour.

    Google Scholar 

  46. Greenspan, H. P. and D. J. Benney, “On Shear-layer Instability, Breakdown, and Transition”, Jour. Fluid Mech., 15, 133, 1963

    Article  MATH  MathSciNet  Google Scholar 

  47. Kline, S. J., W. C. Reynolds, F. A. Schraub and P. W. Runstadler, “The Structure of Turbulent Boundary Layers”, Jour. Fluid Mech., 30, 71+1, 1967

    Google Scholar 

  48. Hama, F. and J. Nutant, “Detailed Flow-field Observations in the Transition Process in a Thick Boundary Layer”, Proc. 1963 Heat Transfer and Fluid Mech. Institute, Stanford Univ. Press

    Google Scholar 

  49. : Batchelor, G. K., The Theory of Homogeneous Turbulence: Cambridge Univ. Press, 1953

    Google Scholar 

  50. Fage, A. and J. H. Preston, “On Transition from Laminar to Turbulent Flow”, Proc. Roy. Soc. A. 178, 205, 1941

    Google Scholar 

  51. Schubauer, G. B. and P. S. Klebanoff, “Contribution on the Mechanics of Boundary-layer Transition”, NACA Tech. Rept. No. 1289, 1956

    Google Scholar 

  52. Klebanoff, P., Paper presented partially at the 11th International Congress of Applied Mechanics, Munich, 1964; extra details by private communication.

    Google Scholar 

  53. Wazzan, A. R., T. T. Okamura and A. M. O. Smith, “Spatial and Temporal Stability Charts for the Falkner-Skan Boundary-layer Profiles”, Douglas Aircraft Co., Report No. DAC-67086, 1968

    Google Scholar 

  54. Lin, C. C., “On the Stability of the Laminar Mixing Region between Two Parallel Streams in a Gas”, NACA Tech. Note No. 2887, 1953

    Google Scholar 

  55. Browand, F. K., “An Experimental Investigation of an Incompressible, Separated Shear Layer”, Jour. Fluid Mech., 26, 281, 1966

    Article  Google Scholar 

  56. Wille, R., “Beitrage zur Phänomenologie der Freistrahlen”, Z. Flugwiss. 11, 222, 1963

    Google Scholar 

  57. Kelly, R. E., “On the Resonant Interaction of Neutral Disturbances in Two Inviscid Shear Flows”, Jour. Fluid Mech., 31, 789, 1968

    Article  MATH  Google Scholar 

  58. Komoda H., “Nonlinear Development of Disturbance in a Laminar Boundary Layer”, Physics of Fluids Supplement, p. S87, 1967

    Google Scholar 

  59. Brown, W. B., “A Stability Criterion for Three-dimensional Laminar Boundary Layers”, P. 913 of Vol. II, Boundary Layer and Flow Control, Lachmann, G. V., Editor, Pergamon Press, 1961

    Google Scholar 

  60. Gregory, N., J. T. Stuart and W. S. Walker, “On the Stability of Three-dimensional Boundary Layers with Application to the Flow Due to a Rotating Disk”, Phil. Trans. (A), 248, 155, 1955

    Article  MATH  MathSciNet  Google Scholar 

  61. Boltz, F. W., G. C. Kenyon and C. Q. Allen, “Effects of Sweep Angle on the Boundary Stability Characteristics of an Untapered Wing at Low Speeds”, NASA TN D-338, 1960

    Google Scholar 

  62. Tatro, P. R. and E. L. Mollo-Christensen, “Experiments on Ekman Layer Instability”, Jour. Fluid Mech., 28, 531, 1967

    Article  Google Scholar 

  63. Lilly, D. K., “On the Instability of Ekman Boundary Flow”, Jour. Atmospheric Sci., 23, 481, 1966

    Article  Google Scholar 

  64. Pate. S. R. and C. J. Schueler, “An Investigation of Radiated Aerodynamic Noise Effects on Boundary-layer Transition in Supersonic and Hypersonic Wind Tunnels”, AIAA Paper 68–375, 1968

    Google Scholar 

  65. Potter, J. L., “Observations on the Influence of Ambient Pressure on Boundary-layer Transition”, AIAA Jour., 6, 1907, 1968

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1969 Springer Science+Business Media New York

About this paper

Cite this paper

Morkovin, M.V. (1969). On the Many Faces of Transition. In: Wells, C.S. (eds) Viscous Drag Reduction. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-5579-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-5579-1_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-5581-4

  • Online ISBN: 978-1-4899-5579-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics