Skip to main content

Ice Dynamics

  • Chapter
The Geophysics of Sea Ice

Part of the book series: NATO ASI Series

Abstract

Sea ice dynamics deals with the way momentum is transferred through the sea ice system. The essential features of this transfer may be characterized by equations representing the following elements: 1) a momentum balance describing ice drift including air and water stresses, Coriolis force, internal ice stress, inertial forces, and ocean current effects; 2) an ice rheology which relates the ice stress to the ice deformation and strength; and 3) an ice strength determined primarily as a function of the ice thickness distribution. In discussing these components it is implicitly assumed that a description of sea ice as a two-dimensional continuum is possible. Such a continuum description does not, however, rule out using these equations to represent rapidly changing ice conditions as occur, for example, near the ice margin. This can be accomplished by allowing various quantities (e.g., ice mass, ice strength, water stress) to vary rapidly in space. Also, most present-day treatments of ice dynamics employ highly nonlinear rheologies which can, as will be demonstrated later, introduce discontinuities into the ice velocity field, even though the forcing and mass fields may be rather smooth.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ackley, S. F. (1980) Mass balance aspects of the Wed dell Sea pack ice. J Glaciol., 24: 391–405.

    Google Scholar 

  • Ackley, S. F., A. J. Gow, K. R. Buck and K. M. Golden (1980) Sea ice studies in the Weddell Sea aboard USCGC Polar Sea. Ant J US., 15 (5): 84–86.

    Google Scholar 

  • Andreas, E. L., C. A. Paulson, R. M. Williams, R. W. Lindsay and J. A. Businger (1979) The turbulent heat flux from arctic leads. Bound-Layer Met., 17: 57–91.

    Article  Google Scholar 

  • Brown, R. A. (1980) Planetary boundary layer modeling for AIDJEX. In Sea Ice Processes and Models ( R. S. Pritchard, Ed.), University of Washington Press, Seattle, Washington, p. 387–401.

    Google Scholar 

  • Bryan, K. (1969) A numerical method for the study of the circulation of the world oceans. J Comput Physics, 4: 347–376.

    Article  Google Scholar 

  • Campbell, W. J. (1965) The wind-driven circulation of ice and water in a polar ocean. J Geophys Res., 70: 3279–3301.

    Article  Google Scholar 

  • Colony, R. and D. A. Rothrock (1980) A perspective of the time-dependent response of the AIDJEX model. In Sea Ice Processes and Models ( R. S. Pritchard, Ed.), University of Washington Press, Seattle, Washington, p. 124–133.

    Google Scholar 

  • Coon, M. D. (1974) Mechanical behavior of compacted arctic ice floes. J Petrol Tech., 26: 466–470.

    Google Scholar 

  • Doronin, Yu. P. (1970) On a method of calculating the compactness and drift of ice floes. Trudy Arkt. Antarkt. Nauch. Issled. Inst., 291: 5–17. (English translation, AIDJEX Bulletin, 3: 22–39, 1971.)

    Google Scholar 

  • Egorov, K. L. (1970) Theory of drift of ice floes in a horizontally heterogeneous wind field. Probl. Arkt. Antarkt., 34: 71–78. (English translation, AIDJEX Bulletin, 6: 37–45, 1971.)

    Google Scholar 

  • Glen, J. W. (1970) Thoughts on a viscous model for sea ice. AIDJEX Bulletin, 2: 18–27.

    Google Scholar 

  • Gordon, A., E. Molinelli and T. Baker (1978) Large scale relative dynamic topography of the southern ocean. J Geophys Res., 83: 3023–3032.

    Article  Google Scholar 

  • Gow, A. J., S. F. Ackley, W. F. Weeks and J. Govoni (1982) Physical and structural characteristics of Antarctic sea ice. Ann Glaciol., 3: 113–117.

    Google Scholar 

  • Hibler, W. D. Ill (1974) Differential sea ice drift. II: Comparison of mesoscale strain measurements to linear drift theory predictions. J Glaciol., 13: 457–471.

    Google Scholar 

  • Hibler, W. D. Ill (1977) A viscous sea ice law as a stochastic average of plasticity. J Geophys Res., 82: 3932–3938.

    Article  Google Scholar 

  • Hibler, W. D. Ill (1979) A dynamic thermodynamic sea ice model. J Phys Oceanogr., 9: 815–846.

    Article  Google Scholar 

  • Hibler, W. D. Ill (1980a) Modeling a variable thickness sea ice cover. Mon Wea Rev., 108: 1943–1973.

    Article  Google Scholar 

  • Hibler, W. D. III (1980b) Documentation for a two-level dynamic thermodynamic sea ice model. U.S.A. Cold Regions Research and Engineering Laboratory Special Report 80–8, 35 p.

    Google Scholar 

  • Hibler, W. D. Ill, S. F. Ackley, W. K. Crowder, H. W. McKim, and D. M. Anderson (1974a) Analysis of shear zone ice deformation in the Beaufort Sea using satellite imagery. In The Coast and Shelf of the Beaufort Sea (J. C. Reed and J. E. Sater, Ed. ), Arctic Institute of North America, p. 285–296.

    Google Scholar 

  • Hibler, W. D. Ill, S. J. Mock and W. B. Tucker (1974b) Classification and variation of sea ice ridging in the western Arctic Basin. J Geophys Res., 79: 2735–2743.

    Article  Google Scholar 

  • Hibler, W. D. Ill and W. B. Tucker (1979) Some results from a linear viscous model of the Arctic ice cover. J Glaciol., 22: 293–304.

    Google Scholar 

  • Hibler, W. D. Ill, I. Udin and A. Ullerstig (1981) On modeling mesoscale ice dynamics using a viscous plastic constitutive law. In POAC 81: Proceedings, Sixth International Conference on Port and Ocean Engineering Under Arctic Conditions, Laval University, Quebec City, Quebec, Canada, p. 1317–1328.

    Google Scholar 

  • Hibler, W. D. Ill and S. F. Ackley (1982) On modeling the Weddell Sea pack ice. Ann Glaciol., 3: 125–130.

    Google Scholar 

  • Hibler, W. D. Ill and J. E. Walsh (1982) On modeling seasonal and interannual fluctuations of Arctic sea ice. J Phys Oceanogr., 12: 1514–1523.

    Article  Google Scholar 

  • Hibler, W. D. Ill and S. F. Ackley (1983) Numerical simulation of the Weddell Sea pack ice. J Geophys Res., 33: 2873–2878.

    Article  Google Scholar 

  • Hibler, W. D. Ill, I. Udin and A. Ullerstig (1983) On forecasting mesoscale ice dynamics and buildup. Ann Glaciol., 4: 110–115.

    Google Scholar 

  • Hibler, W. D. Ill and K. Bryan (1984) Ocean circulation: Its effects on seasonal sea-ice simulations. Science, 224: 489–492.

    Google Scholar 

  • Hunkins, K. (1975) The oceanic boundary layer and stress beneath a drifting ice floe. J Geophys Res., 80: 3425–3433.

    Article  Google Scholar 

  • Idso, S. and R. D. Jackson (1969) Thermal radiation from the atmosphere. J Geophys Res., 74: 5397–5403.

    Article  Google Scholar 

  • Kovacs, A. (1972) On pressured sea ice. In Sea Ice: Proceedings of an International Conference. National Research Council, Reykjavik, Iceland, p. 276–295.

    Google Scholar 

  • Kovacs, A. and M. Mellor (1974) Sea ice morphology and ice as a geologic agent in the southern Beaufort Sea. In The Coast and Shelf of the Beaufort Sea (J. L. Reed and J. E. Sater, Ed. ), Arctic Institute of North America, p. 113–161.

    Google Scholar 

  • Laikhtman, D. L. (1964) Physics of the boundary layer of the atmosphere. (Translated by U.S. Dept. of Commerce, Washington, D.C., 200 pp.)

    Google Scholar 

  • Leavitt, E. (1980) Surface-based air stress measurements made during AIDJEX. In Sea Ice Processes and Models (R. S. Pritchard, Ed. ), University of Washington Press, p. 419–429.

    Google Scholar 

  • Lepparanta, M. (1980) On the drift and deformation of sea ice fields in the Bothnian Bay. Winter Navigation Research Board, Helsinki, Finland, Research Report 29.

    Google Scholar 

  • Levitus, S. (1982) Climatological atlas of the world ocean. NOAA Professional Paper 13, 173 p.

    Google Scholar 

  • Malvern, L. E. (1969) Introduction to the Mechanics of a Continuous Media. Prentice Hall, Englewood Cliffs, New Jersey.

    Google Scholar 

  • Manabe, J., K. Bryan and M. J. Spelman (1979) A global ocean-atmosphere climate model with seasonal variation for future studies of climate sensitivity. Dyn Atmos Ocean., 3: 393–426.

    Article  Google Scholar 

  • Maykut, G. A. (1978) Energy exchange over young sea ice in the central Arctic. J Geophys Res., 83: 3646–3658.

    Article  Google Scholar 

  • McPhee, M. G. (1979) The effect of the oceanic boundary layer on the mean drift of pack ice: Application of a simple model. J Phys Oceanogr., 9: 388–400.

    Google Scholar 

  • McPhee, M. G. (1980) An analysis of pack ice drift in summer. In Sea Ice Processes and Models ( R. S. Pritchard, Ed.), University of Washington Press, Seattle, Washington, p. 62–75.

    Google Scholar 

  • McPhee, M. G. (1982) Sea ice drag laws and simple boundary layer concepts, including application to rapid melting, U.S.A. Cold Regions Research and Engineering Laboratory Report 82–4.

    Google Scholar 

  • Nikiforov, Y. G. (1957) A change in the concentration of the ice cover in connection with its dynamics. Problemy Arktiki, 2: 59–71. (Translated by American Meteorological Society.)

    Google Scholar 

  • Nye, J. F. (1973) Is there any physical basis for assuming linear viscous behavior for sea ice? AIDJEX Bulletin, 21: 18–19.

    Google Scholar 

  • Omstedt, A. and J. Sahlberg (1977) Some results from a joint Swedish-Finnish sea ice experiment, March 1977. Winter Navigation Research Board, Norrkoping, Sweden, Research Report 26.

    Google Scholar 

  • Parkinson, C. L. and W. M. Washington (1979) A large-scale numerical model of sea ice. J Geophys Res., 84: 311–337.

    Article  Google Scholar 

  • Parmerter, R. R. and M. D. Coon (1972) Model of pressure ridge formation in sea ice. J Geophys Res., 77: 6565–6575.

    Article  Google Scholar 

  • Pritchard, R. S. (1975) An elastic-plastic constitutive law for sea ice. J Appl Mech, 43E: 379–384.

    Article  Google Scholar 

  • Pritchard, R. S., M. D. Coon and M. G. McPhee (1977) Simulation of sea ice dynamics during AIDJEX. J Press Vess Tech., 99J: 491–497.

    Article  Google Scholar 

  • Roed, L. P., and J. J. O’Brien (1981) Geostrophic adjustment in highly dispersive media: An application to the marginal ice zone. J. Geophys Astrophys Fluid Dyn., 18: 263–27 8.

    Google Scholar 

  • Rothrock, D. A. (1975a) The mechanical behavior of pack ice. Ann Rev Earth Planet. Sci., 3: 317–342.

    Google Scholar 

  • Rothrock, D. A. (1975b) The energetics of the plastic deformation of pack ice by ridging. J Geophys Res., 80: 4514–4519.

    Article  Google Scholar 

  • Semtner, A. J, Jr. (1976) A model for the thermodynamic growth of sea ice in numerical investigations of climate. J Phys Oceanogr., 6: 379–389.

    Article  Google Scholar 

  • Sodhi, D. S. and W. D. Hibler III (1980) Nonsteady ice drift in the Strait of Belle Isle. In Sea Ice Processes and Models (R. S. Pritchard, Ed.), University of Washington Press, Seattle, Washington, p. 177–186. Thorndike, A. S., D. A, Rothrock, G. A. Maykut and R. Colony

    Google Scholar 

  • The thickness distribution of sea ice. J Geophys Res., 80: 4501–4513.

    Google Scholar 

  • Thorndike, A. S. and R. Colony (1982) Sea ice motion in response to geostrophic winds. J Geophys Res., 87: 5845–5852.

    Article  Google Scholar 

  • Tucker, W. B. Ill and W. D. Hibler III (1981) Preliminary results of ice modeling in the East Greenland area. In POAC 81: Proceedings, Sixth International Conference on Port and Ocean Engineering Under Arctic Conditions, Laval University, Quebec City, Quebec, Canada, p. 867–878.

    Google Scholar 

  • Tucker, W. B. Ill and J. W. Govoni (1981) Morphological investigations of first-year sea ice pressure ridge sails. Cold Reg Sci Tech., 5: 1–12.

    Article  Google Scholar 

  • Tucker, W. B. Ill, W. F. Weeks and M. Frank (1979) Sea ice ridging over the Alaskan continental shelf. J Geophys Res., 84: 4885–4897.

    Article  Google Scholar 

  • Van Loon, H. (1972) Cloudiness and precipitation in the Southern Hemisphere. In Meteorology of the Southern Hemisphere (C. W. Newton, Ed.), Meteorological Monographs 13, p. 101–111. Wadhams, P. (1981) Sea ice topography of the Arctic Ocean in the region 70°W to 25°E. Phil Trans Roy Soc London, A302: 1464–1504.

    Google Scholar 

  • Washington, W. M., A. J. Semtner, C. Parkinson and L. Morrison (1976) On the development of a seasonal change sea-ice model. J Phys Oceanogr., 6: 679–685.

    Article  Google Scholar 

  • Weeks, W. F., A. Kovacs and W. D. Hibler III (1971) Pressure ridge characteristics in the arctic coastal environment. In Proceedings, First International Conference on Port and Ocean Engineering Under Arctic Conditions, Technical University of Norway, Trondheim, Norway, Vol. 1, p. 152–193.

    Google Scholar 

  • Zillmann, J. W. (1972) Solar radiation and air-sea interaction south of Australia. In Antarctic Oceanology. II: The Australian-New Zealand Sector (D. E. Haynes, Ed.), AGU Antarctic Research Series, Vol. 19, p. 11–40.

    Google Scholar 

  • Zubov, N. N. (1943) L’dy Arktiki (Arctic Ice). Izdatel’stvo Glavsevmorputi, Moscow, 360 p. (U.S. Navy Hydrographie Office, Translation 217, 1963; available as AD426972 from NTIS, Springfield, Va. )

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hibler, W.D. (1986). Ice Dynamics. In: Untersteiner, N. (eds) The Geophysics of Sea Ice. NATO ASI Series. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-5352-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-5352-0_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-5354-4

  • Online ISBN: 978-1-4899-5352-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics