Skip to main content

Part of the book series: NATO ASI Series ((NSSB,volume 285))

Abstract

Following the past two decade evolutionary path in the inter-disciplinary research of semiconductor superlattices and quantum wells, significant milestones are presented with emphasis on electric field-induced effects in the frontier of semiconductor physics associated with technological advances.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. Esaki and R. Tsu, “Superlattice and negative conductivity in semiconductors,” IBM Research Note RC-2418 (1969).

    Google Scholar 

  2. L. Esaki and R. Tsu, “Superlattice and negative differential conductivity in semiconductors,” IBM J. Res. Develop.14: 61 (1970).

    Article  Google Scholar 

  3. D. Bohm, “Quantum Theory:” (Prentice Hall, Englewood Cliffs, N.J. 1951), p.283.

    Google Scholar 

  4. L. Esaki, “A bird’s-eye view on the evolution of semiconductor superlattices and quantum wells,” IEEE J. Quantum Electron., QE-22: 1611 (1986).

    Article  Google Scholar 

  5. A. C. Gossard, “Growth of microstructures by molecular beam epitaxy,” IEEE J. Quantum Electron., QE-22: 1649 (1986)

    Article  Google Scholar 

  6. M. Razeghi, “The MOCVD challenge,” (Adam Hilger, Bristol and Philadelphia, 1989).

    Google Scholar 

  7. R. Tsu and L. Esaki, “Tunneling in a finite superlattice,” Appl. Phys. Lett.22: 562(1973).

    Article  Google Scholar 

  8. L.L. Chang, L. Esaki, and R. Tsu, “Resonant tunneling in semiconductor double barriers,” Appl. Phys. Lett.24: 593 (1974).

    Article  Google Scholar 

  9. F. Capasso, K. Mohammed and A. Y. Cho, “Resonant tunneling through double barriers,” IEEE J. Quantum Electron., QE-22: 1853 (1986).

    Article  Google Scholar 

  10. E.E. Mendez, W.I. Wang, B. Ricco, and L. Esaki, “Resonant tunneling of holes in AlAS-GaAs-AlAS heterostructures,” Appl. Phys. Lett.47: 415 (1985).

    Article  Google Scholar 

  11. V.J. Goldman, D.C. Tsui and J.E. Cunningham, “Evidence for LO-phonon-emission-assisted tunneling in double-barrier heterostructures,” Phys. Rev.B36: 7635 (1987).

    Article  Google Scholar 

  12. W. Cai, T.F. Zheng, P. Hu, B. Yudanin and M. Lax, “Model of phonon-associated electron tunneling through a semiconductor double barrier,” Phys. Rev. Lett.63: 418 (1989).

    Article  Google Scholar 

  13. E.E. Mendez, L. Esaki and W.I. Wang, “Resonant magneto-tunneling in GaAlAs-GaAs-GaAlAs heterostructures,” Phys. Rev.B33: 2893 (1986).

    Article  MathSciNet  Google Scholar 

  14. M.L. Leadbeater, E.S. Alves, L. Eaves, M. Henini, O.H. Hughes, A. Celeste, J.C. Portal, G. Hill and M.A. Pate, “Magnetic field studies of elastic scattering and optic-phonon emission in resonant-tunneling devies,” Phys. Rev.B39: 3438 (1989).

    Article  Google Scholar 

  15. G.S. Boelinger, A.F. Levi, S. Schmitt-Rink, A. Passner, L.N. Pfeiffer and K.W. West, “Direct observation of two-dimensional magnetopolarons in a resonant tunnel junction” Phys. Rev. Lett.65: 235 (1990).

    Article  Google Scholar 

  16. J.F. Young, B.M. Wood, G.C. Aers, R.L.. Devine, H.C. Liu, D. Landheer and M. Buchanan, “Determination of charge accumulation and its characteristic time in double-barrier resonant tunneling structures using steady-state photoluminescence,” Phys. Rev. Lett.60: 2085 (1988).

    Article  Google Scholar 

  17. H. Yoshimura, J.N. Schulman and H. Sakaki, “Charge accululation in a double-barrier resonant-tunneling structure studied by photoluminescence and photoluminescence-excitation spectroscopy,” Phys. Rev. Lett.64: 2422 (1990).

    Article  Google Scholar 

  18. A. Tackeuchi, T. Inata, S. Muto and E. Miyauchi, “Picosecond characterization of InGaAs/InAlAs resonant tunneling banier diode by electro-optic sampling,” Jpn. J. Appl. Phys.28: L750 (1989).

    Article  Google Scholar 

  19. L.F. Luo, R. Beresford and W.I. Wang, “Resonant tunneling in AlSb/InAs/AlSb double-barrier heterostructures,” Appl. Phys. Lett.53:2320(1988).

    Article  Google Scholar 

  20. L. Esaki, L.L. Chang and E.E. Mendez, “Polytype superlattices and multi-heterojunctions,” Jpn. J. Appl. Phys.20: L529 (1981).

    Article  Google Scholar 

  21. H. Takaoka, Chin-An Chang, E.E. Mendez, L.L. Chang and L. Esaki, “GaSb-AlSb-InAs multi-heterojunctions,” Physica 117B & 118B: 741 (1983).

    Google Scholar 

  22. L.F. Luo, R. Beresford and W.I. Wang, “Interband tunneling in polytype GaSb/AlSb/InAs heterostructures”, App. Phys. Lett 55: 2023 (1989);

    Article  Google Scholar 

  23. R. Beresford, L.F. Luo, K.F. Longenbach and W.I. Wang, “Resonant interband tunneling through a 110 nm InAs quantum well,” Appl. Phys. Lett. 56: 551 (1990);

    Article  Google Scholar 

  24. R. Beresford, L.F. Luo, K.F. Longenbach and W.I. Wang “Interband tunneling in single-barrier InAs/AlSb/GaSb heterostructures,” Appl. Phys. Lett.56: 952 (1990);

    Article  Google Scholar 

  25. E.E. Mendez, H. Ohno, L. Esaki and W.I. Wang, “Resonant interband tunneling via Landau levels in polytype heterostructures,” Phys. Rev.B43: 5196 (1991).

    Article  Google Scholar 

  26. J.R. Soderstrom, D.H. Chow and T.C. McGill, “New negative differential resistance device based on resonant interband tunneling” App. Phys. Lett.55: 1094 (1989).

    Article  Google Scholar 

  27. J.F. Whitaker, G.A. Mourou, T.C.L.G. Sollner and W.D. Goodhue, “Picosecond switching time measurement of a resonant tunnel diode,” Appl. Phys. Lett.53: 385 (1988).

    Article  Google Scholar 

  28. E.R. Brown, T.C.L.G. Sollner, CD. Parker, W.D. Goodhue and CL. Chen, “Oscillations up to 420 GHz in GaAs/AlAs resonant tunneling diodes,” Appl. Phys. Lett.55: 1777 (1989).

    Article  Google Scholar 

  29. R. Tsu and L. Esaki, “Stark quantization in superlattices,” Phys. Rev. B43: 5204 (1991).

    Article  Google Scholar 

  30. G.H. Wannier, “Wave functions and effective Hamiltonian for Bloch electrons in an electric field,” Phys. Rev.117:432 (1960).

    Article  MathSciNet  MATH  Google Scholar 

  31. H.M. James, “Electronic states in perturbed periodic Systems,” Phys. Rev.76:1611 (1949).

    Article  MATH  Google Scholar 

  32. A. Rabinovitch and J. Zac, “Electrons in crystals in a finite-range electric field,” Phys. Rev.B4:2358 (1971).

    Article  Google Scholar 

  33. W. Shockley, “Stark ladders for finite, one-dimensional models of crystals,” Phys. Rev. Lett.28:349 (1972).

    Article  Google Scholar 

  34. A.G. Chynoweth, G.H. Wannier, R.A. Logan and D.E. Thomas, “Observation of Stark splitting of energy bands by means of tunneling transitions,” Phys. Rev. Lett.5:57 (1960).

    Article  Google Scholar 

  35. S. Maekawa, “Nonlinear conduction of ZnS in strong electric fields,” Phys. Rev. Lett.24:1175 (1970).

    Article  Google Scholar 

  36. R.W. Koss, “Experimental observation of Wannier levels in semi-insulating GaAs,” Phys. Rev.B5:1479 (1972).

    Article  Google Scholar 

  37. R. Tsu and G. Döhler, “Hopping conduction in a superlattice,” Phys. Rev.B12: 680 (1975).

    Article  Google Scholar 

  38. M. Artaki and K. Hess, “Monte Carlo calculations of electron transport in GaAs/AlGaAs superlattices,” Superlatt. Microstruct.1:489(1985)

    Article  Google Scholar 

  39. L. Esaki, L.L. Chang, W.E. Howard, and V.L. Rideout, “Transport properties of a GaAs-GaAlAs superlattice,” Proc. 11th Int. Conf. on the Physics of Semiconductors, Warsaw, Poland, 1972, (PWN-Polish Scientific Publishers, Warsaw, Poland), p. 431.

    Google Scholar 

  40. L. Esaki and L. L. Chang, “New transport phenomenon in a semiconductor superlattice,” Phys. Rev. Lett.33: 495 (1974).

    Article  Google Scholar 

  41. R. Tsu, L.L. Chang, G.A. Sai-Halasz, and L. Esaki, “Effects of quantum states on the photocurrent in a superlattice,” Phys. Rev. Lett.34: 1509 (1975).

    Article  Google Scholar 

  42. B. Deveaud, J. Shah, T. C. Damen, B. Lambert and A. Regreny, “Bloch transport of electrons and holes in superlattice minibands: direct measurement by subpicosecond luminescence spectroscopy,” Phys. Rev. Lett.58: 2582 (1987).

    Article  Google Scholar 

  43. H. Schneider, W.W. Rühle, K. v.Klitzing and K. Ploog, “Electrical and optical time-of-flight experiments in GaAs/AlAs superlattices,” Appl. Phys. Lett.54: 2656 (1989).

    Article  Google Scholar 

  44. M. Helm, P. England, E. Colas, F. DeRosa, and S.J. Allen, Jr., “Intersubband emission from semiconductor superlattices excited by sequential resonant tunneling,” Phys. Rev. Lett.63: 74 (1989).

    Article  Google Scholar 

  45. M.C. Tatham and J.F. Ryan, “Time-resolved raman measurements of intersubband relaxation in GaAs quantum wells,” Phys. Rev. Lett.63: 1637 (1989).

    Article  Google Scholar 

  46. A. Sibille, J.F. Palmier, H. Wang and F. Mollot, “Observation of Esaki-Tsu negative differential velocity in GaAs/AlAs superlattices,” Phys. Rev. Lett. 64: 52 (1990);

    Article  Google Scholar 

  47. A. Sibille, J. F. Palmier, H. Wang, J. C. Esnaul and F. Mollot, “dc and microwave negative differential differential conductance in GaAs/AlAs superlattices,” Appl. Phys. Lett. 56: 256 (1990);

    Article  Google Scholar 

  48. A. Sibille, J. F. Palmier, F. Mott, H. Wang and J. C. Esnault, “Negative differential conductance in GaAs/AlAs superlattices,” Phys. Rev. B39: 6272 (1989),

    Article  Google Scholar 

  49. M. Hadjazi, A. Sibille, J. F. Palmier and F. Mollot, “Negative differential conductance in GaAs/AlAs superlattices,” Electronics Lett.27: 1101 (1991).

    Article  Google Scholar 

  50. H.T. Grahn, H. Schneider, W.W. Rühle, K. von Klitzing and K. Ploog, “Nonthermal occupation of higher subbands in semiconductor superlattices via sequential resonant tunneling,” Phys. Rev. Lett.64: 2426 (1990).

    Article  Google Scholar 

  51. G. Brozak, M. Helm, F. DeRosa, C.H. Perry, M. Koza, R. Bhat and S.J. Allen, Jr., “Thermal saturation of band transport in a superlattice,” Phys. Rev. Lett.64: 3163 (1990).

    Article  Google Scholar 

  52. F. Beltram, F. Capasso, D.L. Sivco, A.L. Hutchinson, S.N.G. Chu, and A. Cho, “Scattering-controlled transmission resonances and negative differential conductance by field-induced localization in superlattices,” Phys. Rev. Lett.64: 3167 (1990).

    Article  Google Scholar 

  53. A.S. Vengurlekar, F. Capasso, A.L. Hutchinson and W.T. Tsang, “Miniband conduction of minority electrons and negative transconductance by quantum reflection in a superlattice transistor,” Appl. Phys. Lett.56: 262 (1990)

    Article  Google Scholar 

  54. X.L. Lei, N.J.M. Horing and H.L. Cui, “Theory of negative differential conductivity in a superlattice miniband,” Phys. Rev. Lett.66: 3277 (1991).

    Article  Google Scholar 

  55. A. Zaslavsky, D.C. Tsui, M. Santos and M. Shayegan, “Observation of high-field negative differential resistance in an edge-regrown superlattice,” to be published in Appl. Phys. Lett.

    Google Scholar 

  56. E.E. Mendez, G Bastard, L.L. Chang, and L. Esaki, “Effect of an electric field on the luminescence of GaAs quantum wells,” Phys. Rev.B26: 7101 (1982).

    Article  Google Scholar 

  57. L. Vina, R. T. Collins, E. E. Mendez and W. I. Wang, “Excitonic coupling in GaAs/GaAIAs quantum wells in an electric field,” Phys. Rev. Lett.58: 832 (1987).

    Article  Google Scholar 

  58. D.S. Chemla, T.C. Damen, D.A.B. Miller, A.C. Gossard, and W. Wiegmann, “Electroabsorption by Stark effect on room-temperature excitons in GaAs/GaAlAs multiple quantum well structures,” Appl. Phys. Lett.42: 864 (1983).

    Article  Google Scholar 

  59. D.A.B. Miller, J.S. Weiner, and D.S. Chemla, “Electric-field dependence of linear optical properties in quantum well structures,” IEEE J. Quantum Electron., QE-22: 1816 (1987).

    Article  Google Scholar 

  60. J. Bleuse, G. Bastard and P. Voison, “Electric-field-induced localization and oscillatory electro-optical properties of semiconductor superlattices,” Phys. Rev. Lett.60: 220 (1988).

    Article  Google Scholar 

  61. E.E. Mendez, F. Agullo-Rueda and J.M. Hong, “Stark localization in GaAs-GaAlAs superlattices under an electric field,,” Phys. Rev. Lett.60: 2426 (1988).

    Article  Google Scholar 

  62. F. Agullo-Rueda, E.E. Mendez and J.M. Hong, “Quantum coherence in semiconductor superlattices,” Phys. Rev.B40: 1357 (1989).

    Article  Google Scholar 

  63. E.E. Mendez, F. Agullo-Rueda and J.M. Hong, “Temperature dependence of the electronic coherence of GaAs-GaAlAs superlattices,” Appl. Phys. Lett.56: 2545 (1990).

    Article  Google Scholar 

  64. P. Voisin and J. Bleuse, “Observation of the Wannier-Stark quantization in a semiconductor superlattice,” Phys. Rev. Lett.61: 1639 (1988).

    Article  Google Scholar 

  65. M.M. Dignam and J.E. Sipe, “Exciton stark ladder in GaAs/Ga1-xAlxAs superlattices” Phys. Rev. Lett.64: 1797 (1990).

    Article  Google Scholar 

  66. H. Ohno, E.E. Mendez, J.A. Brum, J.M. Hong, F. Agullo-Rueda, L.L. Chang and L. Esaki, “Observation of ‘Tamm States’ in superlattices,” Phys. Rev. Lett.64: 2555 (1990).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Esaki, L. (1991). Implications of Semiconductor Superlattice Research. In: Esaki, L. (eds) Highlights in Condensed Matter Physics and Future Prospects. NATO ASI Series, vol 285. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-3686-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-3686-8_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-3688-2

  • Online ISBN: 978-1-4899-3686-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics