Skip to main content

Homeotic Genes of the Red Flour Beetle, Tribolium castaneum

  • Chapter
Molecular Insect Science

Abstract

The powerful combination of genetic, developmental and molecular methodologies available for Drosophila melanogaster has made it the premier insect experimental system for studies in many areas. Although there is no doubt that D. melanogaster should continue to be the first choice for investigations of many fundamental phenomena, there is also a strong rationale in many contexts for a comparative approach utilizing other insect systems. For example, D. melanogaster is highly specialized with respect to the events of segmentation and many aspects of anterior development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abbott, M. K. and Kaufman, T. C. 1986. The relationship between the functional complexity and the molecular organization of the Antennapedia locus of Drosophila melanogaster. Genetics 114: 919–942.

    PubMed  CAS  Google Scholar 

  • Akam, M. 1987. The molecular basis for metameric pattern in the Drosophila embryo. Development. 101: 1–22.

    PubMed  CAS  Google Scholar 

  • Akam, I., Dawson, I., and Tear, G. 1988. Homeotic genes and the control of segment diversity. Development 104 (suppl.): 123–133.

    Google Scholar 

  • Beeman, R. W. 1987. A homoeotic gene cluster in the red flour beetle. Nature 327: 247–249.

    Article  Google Scholar 

  • Beeman, R. W., Stuart, J. J., Haas, M. S., and Denell, R. E. 1989. Genetic analysis of the homeotic gene complex (HOM-C) in the beetle Tribolium castaneum. Dev. Biol. 133: 196–209.

    Article  PubMed  CAS  Google Scholar 

  • Brown, S. J., Henry, J. K., Black, W. C. IV, and Denell, R. E. Molecular genetic manipulation of the red flour beetle: Genome organization and cloning of a ribosomal protein gene. Insect Biochem. (in press).

    Google Scholar 

  • Carroll, S. B., DiNardo, S., O’Farrell, P. H., White, R. A. H. and Scott, M. P. 1988. Temporal and spatial relationships between segmentation and homeotic gene expression in Drosophila embryos: Distributions of the fushi tarazu, engrailed, Sex combs reduced, Antennapedia, and Ultrabithorax proteins. Genes Dev. 2: 350–360.

    Article  PubMed  CAS  Google Scholar 

  • Desplan, C., Theis, J. and O’Farrell, P. H. 1988. The sequence specificity of homeodomain- DNA interaction. Cell 75: 1081–1090.

    Article  Google Scholar 

  • DiNardo, S. and O’Farrell, P. H. 1987. Establishment and refinement of segmental pattern in the Drosophila embryo: spatial control of engrailed expression by pair-rule genes. Genes Dev. 1: 1212–1225.

    Article  PubMed  CAS  Google Scholar 

  • Duboule, D. and Dollé, P. 1989. The structural and functional organization of the murine HOX gene family resembles that of Drosophila homeotic genes. Embo. J. 8: 1497–1505.

    PubMed  CAS  Google Scholar 

  • Duncan, I. 1987. The Bithorax complex. Ann. Rev. Genet. 21: 285–319.

    Article  PubMed  CAS  Google Scholar 

  • Glicksman, M. A. and Brower, D. L. 1988. Misregulation of homeotic gene expression in Drosophila larvae resulting from mutations at the extra sex combs locus. Dev. Biol. 126: 219–229.

    Article  PubMed  CAS  Google Scholar 

  • Graham, A., Papalopulu, N., and Krumlauf, R. 1989. The murine and Drosophila homeobox gene complexes have common features of organization and expression. Cell 57: 367–378.

    Article  PubMed  CAS  Google Scholar 

  • Ingham, P. W. 1988. The molecular genetics of embryonic pattern formation in Drosophila. Nature 335: 25–34.

    Article  PubMed  CAS  Google Scholar 

  • Karr, T. L., Weir, M. P., Ali, Z. and Kornberg, T. 1989. Patterns of engrailed protein in early Drosophila embryos. Development 105: 605–612.

    PubMed  CAS  Google Scholar 

  • Kaufman, T. C. and Olsen, G. 1990. The homeotic genes of the Antennapedia gene complex of Drosophila melanogaster. Amer. Nat. (in press).

    Google Scholar 

  • Lawrence, P. A. 1988. The present status of the parasegment. Development 104(supp.): 61–64.

    Google Scholar 

  • Lewis, E. B. 1963. Genes and developmental pathways. Am. Zool. 3: 33–56.

    Google Scholar 

  • Lewis, E.B. 1978. A gene complex controlling segmentation in Drosophila. Nature 276: 565–570.

    Article  PubMed  CAS  Google Scholar 

  • Martinez-Arias, A. 1986. The Antennapedia gene is required and expressed in parasegments 4 and 5 of the Drosophila embryo. EMBO J. 5: 135–141.

    PubMed  CAS  Google Scholar 

  • Martinez-Arias, A. and Lawrence, P. A. 1985. Parasegments and compartments in the Drosophila embryo. Nature 313: 639–642.

    Article  PubMed  CAS  Google Scholar 

  • Patel, N. H., Kornberg, T. B. and Goodman, C. S. 1989. Expression of engrailed during segmentation in grasshopper and crayfish. Development 107: 201–213.

    PubMed  CAS  Google Scholar 

  • Sander, K. 1976. Specification of the basic body pattern in insect embryogenesis. Adv. Insect Physiol. 12: 125–238.

    Article  Google Scholar 

  • Sokoloff, A. 1972. “The Biology of Tribolium.” vol. 1. Oxford Press, London. pp 300.

    Google Scholar 

  • Struhl, G. 1981. A homeotic mutation transforming leg to antenna in Drosophila. Nature 292: 635–638.

    Article  PubMed  CAS  Google Scholar 

  • Tazima, Y. 1964. “The Genetics of the Silkworm.” Academic Press, London.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer Science+Business Media New York

About this chapter

Cite this chapter

Beeman, R.W., Brown, S.J., Stuart, J.J., Denell, R.E. (1990). Homeotic Genes of the Red Flour Beetle, Tribolium castaneum . In: Hagedorn, H.H., Hildebrand, J.G., Kidwell, M.G., Law, J.H. (eds) Molecular Insect Science. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-3668-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-3668-4_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-3670-7

  • Online ISBN: 978-1-4899-3668-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics