Skip to main content

Molecular Properties, Functions and Developmentally Regulated Biosynthesis of Arylphorin in Calliphora vicina

  • Chapter
Molecular Insect Science

Abstract

The pioneering work of Munn and colleagues (Munn and Greville, 1969) was the first tangible indication that the larvae of holometabolous insects synthesize large amounts of unusual proteins which accumulate in their hemolymph. These proteins, generally referred to as larval serum proteins (LSPs) or storage proteins, have many common characteristics. They are synthesized by the fat body of actively feeding larvae and their concentrations increase enormously in the last larval instar, making up the major component of the whole larval soluble proteins. They form hexamers in the 5 × 105 Dalton range and dissociate into polypeptides of 7.2 – 9 × 104 Daltons (For review, see Levenbook, 1985). Telfer et al. (1983) suggested that the larval haemolymph proteins which are similar in structure and amino acid composition to calliphorin, the major haemolymph protein of the blowfly, Calliphora vicina, should be called arylphorins to signify that they bear aryl groups.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bosquet, G., Guillet, C., Calvez, B. and Chavancy, G. 1989. The regulation of major haemolymph protein synthesis: Changes in mRNA content during the development of Bombyx mori larvae. Insect Biochem. 19: 29–39.

    Article  CAS  Google Scholar 

  • Delaney, S.J., Smith, D.F., McClelland, Sunkel, C. and Glover, D.M. 1986. Sequence conservation around the 5′ ends of the larval serum protein 1 genes of Drosophila melanogaster. J. Mol. Biol. 189: 1–11.

    Article  PubMed  CAS  Google Scholar 

  • Enderle, U., Kuser, G., Reum, L., Scheller, K. and Koolman, J. 1983. Ecdysteroids in the haemolymph of blowfly larvae are bound to calliphorin. pp. 40–49 in: “The Larval Serum Proteins of Insects.” Scheller, K. ed. Thieme, Stuttgart.

    Google Scholar 

  • Fujii, T., Sakurai, H., Izumi, S. and Tomino, S. 1989. Structure of the gene for the arylphorin-type storage protein SP 2 of Bombyx mori. The J. Biol. Chem. 264: 11020–11025.

    CAS  Google Scholar 

  • Kejzlarov-Lepesant, J., Mousseron, S., Benes, H., Jowett, T., Chihara, C., Claverie, J.-M. and Lepesant, J.-A. 1987. Structure and expression of the LSP-2 gene of Drosophila melanogaster. Biol. Chem. Hoppe-Seyler 368: 575–576.

    Google Scholar 

  • Kefaliakou, M., Christodoulou, C. and Marmaras V.J. 1987. The use of immunological properties of larval serum proteins for the study of phylogenesis in Diptera. Biol. Chem. Hoppe-Seyler 368: 574.

    Google Scholar 

  • Koolman, J. 1980. Ecdystroids in the blowfly, Calliphora vicina. pp. 187–209 in: “Progress in Ecdysone Research.” Hoffmann, J. A. ed. Elsevier/North Holland, New York

    Google Scholar 

  • Lepesant, J.-A., Levine, M., Garen, A., Kejzlerov-Lepesant, J., Rat, L. and Somme-Martin, G. 1982. Developmentally regulated gene expression in Drosophila larval fat body. J. Molec. Appl. Gen. 1: 371–383.

    CAS  Google Scholar 

  • Leung, H., Palli, S.R and Locke, M. 1989. The localization of arylphorin in an insect, Calpodes ethlius. J. Insect Physiol. 35: 223–231.

    Article  CAS  Google Scholar 

  • Levenbook, L. 1983. The structure and function of calliphorin. pp. 1–17 in: “The Larval Serum Proteins of Insects.” Scheller, K. ed. Thieme, Stuttgart.

    Google Scholar 

  • Levenbook, L. 1985. Insect storage proteins. pp. 307–346 in: “Comprehensive Insect Physiology, Biochemistry and Pharmacology.” Vol.10. Kerkut, G.A. and Gilbert, L.I., eds. Pergamon Press, Oxford.

    Google Scholar 

  • Lowry, O.H., Rosebrough, N.J., Farr, A.L. and Randall, R.J. 1957. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193: 265–275.

    Google Scholar 

  • Marinotti, O., Nunes, L.R. and de Bianchi, A.G. 1988. Heterogeneous glycosylation of Musca domestica arylphorin. Biochem. Biophys. Res. Commun. 151: 1004–1010.

    Article  PubMed  CAS  Google Scholar 

  • Markl, J. and Winter S. 1989. Sububit-specific monoclonal antibodies to tarantula hemocyanin, and a common epitope shared with calliphorin. J. Comp. Physiol. B. 159: 139–151

    Article  CAS  Google Scholar 

  • Mascheck, P., Scheller, K. and Karlson, P. 1977. Changes in gene expression during the larval development of Calliphora vicina induced by ecdysterone. Z. Naturforsch. 32c: 434–438.

    Google Scholar 

  • Munn, E.A. and Greville, G.D. 1969. The soluble proteins of developing Calliphora erythrocephala, particularly calliphorin, and similar proteins in other insects. J. Insect Physiol. 15: 1935–1950.

    Article  CAS  Google Scholar 

  • Palli, S.R. and Locke, M. 1987. Purification and localization of the three major haemolymph proteins of an insect, Calpodes ethlius. Arch. Insect Biochem. Biophys. 5: 233–245.

    Article  CAS  Google Scholar 

  • Peter, M.G. and Scheller, K. 1989. Arylphorins and the integument. in: “The Physiology of Insect Epidermis.” Retnakaran, A. and Binnington, K., eds. Inkata Press, North Clayton. in press.

    Google Scholar 

  • Powell, D., Sato, J.D., Brock, H.W. and Roberts, D.B. 1984. Regulation of synthesis of the larval serum proteins of Drosophila melanogaster. Dev. Biol. 102: 206–215.

    Article  PubMed  CAS  Google Scholar 

  • Ray, A., Memmel, N.A. and Kumaran, A.K. 1987a. Developmental regulation of the larval haemolymph protein genes in Galleria mellonella. Roux’s Arch. Dev. Biol. 196: 414–420.

    Article  CAS  Google Scholar 

  • Ray, A., Memmel, N.A., Orchekowski, R.P. and Kumaran A.K. 1987b. Isolation of two cDNA clones coding for larval haemolymph proteins of Galleria mellonella. Insect Biochem. 17: 603–617.

    Article  CAS  Google Scholar 

  • Riddihough, G. and Pelham, H.R.B. 1987. An ecdysone response element in the Drosophila hsp27 promotor. EMBO J. 6: 3729–3734.

    PubMed  CAS  Google Scholar 

  • Riddiford L.M. and Law J.H. 1983. Larval serum proteins of Lepidoptera. pp. 75–85 in: “The Larval Serum Proteins of Insects.” Scheller, K., ed. Thieme, Stuttgart.

    Google Scholar 

  • Riddiford, L.M. and Hice, R.H. 1985. Developmental profiles of the mRNAs for Manduca arylphorin and two other storage proteins during the final larval instar of Manduca sexta. Insect Biochem. 15: 489–502.

    Article  CAS  Google Scholar 

  • Roberts, D.B. 1983. The evolution of the larval serun protein genes in Drosophila. pp.86–101 in: “The Larval Serum Proteins of Insects.” Scheller, K., ed. Thieme, Stuttgart.

    Google Scholar 

  • Ryan, R.O., Anderson D.R., Grimes W.J. and Law J.H. 1985. Arylphorin from Manduca sexta: Carbohydrate structure and immunological studies. Arch. Biochem. Biophys. 243: 115–124.

    Article  PubMed  CAS  Google Scholar 

  • Schenkel, H., Kejzlarov-Lepesant, J., Berreuer, P., Moreau, J., Scheller, K., Brégégère, F. and Lepesant, J.-A. 1985. Identification and molecular analysis of a multigene family encoding calliphorin, the major larval serum protein of Calliphora vicina. EMBO J. 4: 2983–2990.

    PubMed  CAS  Google Scholar 

  • Schenkel, H., Myllek, C., König, M., Hausberg, P. and Scheller, K. 1983. Calliphorin: studies on its biosynthesis and function. pp. 18–39 in: “The Larval Serum Proteins of Insects.” Scheller, K., ed. Thieme, Stuttgart.

    Google Scholar 

  • Schenkel, H.. and Scheller, K. 1986. Stage- and tissue-specific expression of the genes encoding calliphorin, the major larval serum protein of Calliphora vicina. Roux’s Arch. Dev. Biol. 195: 290–295.

    Article  CAS  Google Scholar 

  • Sekeris, C.E. and Scheller, K. 1977. Calliphorin, a major protein of the blowfly. Correlation between the amount of protein, its biosynthesis, and the titre of translatable calliphorin-mRNA during development. Dev. Biol. 59: 12–23.

    Article  PubMed  CAS  Google Scholar 

  • Struhl, K. 1987. Promotors, activator proteins and the mechanism of transcriptional initiation in yeast. Cell 49: 295–297.

    Article  PubMed  CAS  Google Scholar 

  • Tahara, T., Kuroiwa, A., Obinata, M. and Natori, S. 1984. Multigene structure of the storage protein genes of Sarcophaga peregrina. J. Mol. Biol. 174: 19–29.

    Article  PubMed  CAS  Google Scholar 

  • Telfer, W.H., Keim, P.S. and Law, J.H. 1983. Arylphorin, a new protein from Hyalophora cecropia: Comparisons with calliphorin and manducin. Insect. Biochem. 13: 601–613.

    Article  CAS  Google Scholar 

  • Thomson, J.A., Radok, K.-R., Shaw, D.C., Whitten, M.J., Foster, G.G. and Bin, L.M. 1976. Genetics of lucilin, a storage protein from the sheep blowfly, Lucilia cuprina. Biochem. Genet. 14: 145–160.

    Article  PubMed  CAS  Google Scholar 

  • Tojo, S., Nagata, M. and Kobayashi, M. 1980. Storage proteins in the silkworm, Bombyx mori. Insect Biochem. 10: 289–303.

    Article  CAS  Google Scholar 

  • Ueno, K. and Natori, S. 1987. Possible involvement of lumichrome in the binding of storage protein to its receptor in Sarcophaga peregrina. J. Biol. Chem. 262: 12780–12784.

    PubMed  CAS  Google Scholar 

  • Webb, B.A. and Riddiford, L.A. 1988. Regulation of expression of arylphorin and female-specific protein mRNAs in the tobacco hornworm, Manduca sexta. Developmental Biology 130: 682–692.

    Article  PubMed  CAS  Google Scholar 

  • Willott, E., Wang X-Y. and Wells, M.A. 1989. C-DNA and gene sequence of Manduca sexta arylphorin: Homology to arthropod hemocyanins. J. Biol. Chem. 264: 19052–19059.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer Science+Business Media New York

About this chapter

Cite this chapter

Scheller, K., Fischer, B., Schenkel, H. (1990). Molecular Properties, Functions and Developmentally Regulated Biosynthesis of Arylphorin in Calliphora vicina . In: Hagedorn, H.H., Hildebrand, J.G., Kidwell, M.G., Law, J.H. (eds) Molecular Insect Science. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-3668-4_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-3668-4_19

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-3670-7

  • Online ISBN: 978-1-4899-3668-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics