Skip to main content

The Bacillus Cell Envelope

  • Chapter
Bacillus

Part of the book series: Biotechnology Handbooks ((BTHA,volume 2))

Abstract

The primary function of the bacterial cell envelope is to protect the underlying protoplast and its fragile membrane from mechanical assault and from swelling and disruption due to the unrestricted inflow of water. The high surface-to-volume ratio that results from the very small size of bacteria is important in permitting the high tranfer rate of nutrients needed to maintain the rapid metabolic activity that enables some bacteria to double in under 20 min in appropriate environments. The high internal concentration of metabolites necessary to sustain this rapid growth results in differences in osmolarity between the protoplast and the relatively dilute media in which bacteria commonly grow. A consequent influx of water is prevented by the envelope, which resists the necessary increase in protoplast volume. In cocci, the envelope shape is that which most efficiently withstands the hydrostatic pressure. In rod-shaped bacteria, the envelope has additionally to maintain the less stable rod shape, resisting the rounding effects of the internal hydrostatic pressure. The work needed to resist the rounding forces is presumably offset by advantages arising from the increased surface area of the rod-shaped cells (Koch, 1983).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson, A. J., Green, R. S., and Archibald, A. R., 1978a, Wall composition and phage binding properties of Bacillus subtilis W23 grown in chemostat culture in media containing varied concentrations of phosphate, FEMS Microbiol. Lett. 4:129–132.

    CAS  Google Scholar 

  • Anderson, A. J., Green, R. S., Sturman, A. J., and Archibald, A. R., 1978b, Cell wall assembly in Bacillus subtilis: Location of wall material incorporated during pulsed release of phosphate limitation, its accessibility to bacteriophages and concanavalin A and its susceptibility to turnover, J. Bacterial. 136:886–899.

    CAS  Google Scholar 

  • Aono, R., 1986, Presence of fucosamine in teichuronic acid of the alkaliphilic Bacillus strain C125, Biochem. J. 233:291–294.

    PubMed  CAS  Google Scholar 

  • Aono, R., 1985, Isolation and partial characterisation of structural components of the walls of alkaliphilic Bacillus strain C125J. Gen. Microbiol. 131:105–112.

    CAS  Google Scholar 

  • Aono, R., and Horikoshi, K., 1983, Chemical composition of cell walls of alkaliphilic strains of Bacillus, J. Gen. Microbiol. 129:1083–1087.

    CAS  Google Scholar 

  • Arakawa, H., and Ito, E., 1986, Biosynthetic studies on N-acetylmannosaminuronic acid-containing teichuronic acid in Bacillus megaterium, Can. J. Microbiol. 32:822–825.

    PubMed  CAS  Google Scholar 

  • Araki, Y., Oba, S., Araki, S., and Ito, E., 1980, Enzymatic deacetylation of N-acetylglucosamine residues in cell wall peptidoglycan, J. Biochem. 88:469–79.

    PubMed  CAS  Google Scholar 

  • Archibald, A. R., 1987, Continuous culture, Growth kinetics and wall turnover, in: Bacterial Cell Wall Techniques (I. C. Hancock and I. W. Poxton, eds.), John Wiley and Sons Ltd, London.

    Google Scholar 

  • Archibald, A. R., 1985, Structure and assembly of the cell wall in Bacillus subtilis, Biochem. Soc. Trans. 13:990–993.

    PubMed  CAS  Google Scholar 

  • Archibald, A. R., 1980, Phage receptors in Gram-positive bacteria, in: Virus Receptors, Part 1, Bacterial Viruses (L. L. Randall and L. Philipson, eds.), Chapman and Hall, London, pp. 5–26.

    Google Scholar 

  • Archibald, A. R., 1976, Cell wall assembly in Bacillus subtilis: Development of bacteriophage-binding properties as a result of the pulsed incorporation of teichoic acid, J. Bacteriol. 127:956–960.

    PubMed  CAS  Google Scholar 

  • Archibald, A. R., and Coapes, H. E., 1976, Bacteriophage SP50 as a marker for cell wall growth in Bacillus subtilis, J. Bacteriol. 125:1195–1206.

    PubMed  CAS  Google Scholar 

  • Archibald, A. R., and Heckels, J. E., 1975, Alterations in the composition and bacteriophage binding properties of walls of Staphylococcus aureus H grown in continuous culture in simplified media, Biochem. Biophys. Acta. 406:60–67.

    PubMed  CAS  Google Scholar 

  • Armstrong, J. J., Baddiley, J., and Buchanan, J. G., 1960, Structure of the ribitol teichoic acid from walls of Bacillus subtilis, Biochem. J. 76:610–621.

    PubMed  CAS  Google Scholar 

  • Baddiley, J., 1985, Trans-membrane synthesis of cell wall polymers, Biochem. Soc. Trans. 13:992–994.

    PubMed  CAS  Google Scholar 

  • Barnickel, G., Nauman, D., and Bradaczek, H., 1983, Computer-aided molecular modelling of the three dimensional structure of bacterial peptidoglycan, in: The Target of Penicillin (R. Hakenbeck, J. V. Holtje, and H. Labischinski, eds.), de Gruyter, Berlin, pp. 61–66.

    Google Scholar 

  • Bartlett, A. T. M., and White, P. J., 1985, Species of Bacillus that make a vegetative peptidoglycan containing lysine lack diaminopimelate epimerase but have diaminopimelate dehydrogenase, J. Gen. Microbiol. 131:2145–2152.

    CAS  Google Scholar 

  • Bertram, K. C., Hancock, I. C., and Baddiley, J., 1981, Synthesis of teichoic acid by Bacillus subtilis protoplasts, J. Bacteriol. 148:406–412.

    PubMed  CAS  Google Scholar 

  • Beveridge, T. J. and Murray, R. G. E., 1976, Uptake and retention of metals by cell walls of Bacillus subtilis, J. Bacteriol. 127:1503–1518.

    Google Scholar 

  • Birdsell, D. C., Doyle, R. J. and Morgenstern, M., 1975, Organisation of teichoic acid in the cell wall of Bacillus subtilis, J. Bacteriol. 121:726–734.

    PubMed  CAS  Google Scholar 

  • Bishop, D. G., Rutberg, L., and Samuelsson, B., 1967, The chemical composition of the cytoplasmic membrane of Bacillus subtilis, Eur. J. Biochem. 2:448–453.

    PubMed  CAS  Google Scholar 

  • Bone, E. J., Todd, J. A., Ellar, D. J., Sargent, M. G., and Wyke, A. W., 1985, Membrane particles from Escherichia coli and Bacillus subtilis containing penicillin binding proteins and enriched for chromosomal origin DNA, J. Bacteriol. 164:192–200.

    PubMed  CAS  Google Scholar 

  • Boudreaux, D. P., and Freese, E., 1981, Sporulation in Bacillus subtilis is independant of membrane fatty acid composition, J. Bacteriol. 148:480–486.

    PubMed  CAS  Google Scholar 

  • Bourne, N., and Dancer, B. N., 1986, Regeneration of protoplasts of Bacillus subtilis 168 and closely related strains, J. Gen. Microbiol. 132:251–255.

    PubMed  CAS  Google Scholar 

  • Boylan, R. J., and Mendelson, N. H., 1969, Initial characterisation of a ts-rod mutant of Bacillus subtilis, J. Bacteriol. 100:1316–1321.

    PubMed  CAS  Google Scholar 

  • Burge, R. E., Adams, R., Balyuzi, H. H. M., and Reavely, D. A., 1977a, Structure of the peptidoglycan of bacterial cell walls. J. Mol. Biol. 117:955–974.

    PubMed  CAS  Google Scholar 

  • Burge, R. E., Fowler, A. G., and Reavely, D. A., 1977b, Structure of the peptidoglycan of bacterial cell walls. 2, J. Mol. Biol. 117:927–953.

    PubMed  CAS  Google Scholar 

  • Burger, M. M., 1966, Teichoic acids, antigenic determinants, chain separation, and their location in the cell wall, Proc. Natl. Acad. Sci. U.S.A. 56:910–917.

    PubMed  CAS  Google Scholar 

  • Burger, M. M., and Glaser, L., 1966, The synthesis of teichoic acids. V. Polyglucosylglycerol phosphate and polygalactosylglycerol phosphate, J. Biol. Chem. 241:494–506.

    PubMed  CAS  Google Scholar 

  • Burger, M. M., and Glaser, L., 1964, The synthesis of teichoic acids 1. polyglycerol phosphate, J. Biol. Chem. 239:3168–3177.

    PubMed  CAS  Google Scholar 

  • Button, D., and Hemmings, N. L., 1976a, Teichoic acids and lipids associated with the membrane of a Bacillus licheniformis mutant and membrane lipids of the parent strain, J. Bacteriol. 128:149–156.

    PubMed  CAS  Google Scholar 

  • Button, D., and Hemmings, N. L., 1976b, Lipoteichoic acid from Bacillus licheniformis 6346 M.H. 1, comparative studies on the lipid portion of the lipoteichoic acid and the membrane glycolipid, Biochemistry, 15:989–995.

    PubMed  CAS  Google Scholar 

  • Button, D., Choudry, M. K., and Hemmings, N. C., 1975, Lipoteichoic acid from Bacillus licheniformis and one of its mutants, Proc. Soc. Gen. Microbiol. 2:45–46.

    Google Scholar 

  • Caulfieid, M. P., Tai, P. C., and Davis, B. D., 1983, Association of penicillin binding proteins and other enzymes with the ribosome-free membrane fraction of Bacillus subtilis, J. Bacteriol. 156:1–5.

    Google Scholar 

  • Chambert, R., and Petit-Glatron, M. F. P., 1984, Hyperproduction of exocellular levansucrase by Bacillus subtilis: Examination of the phenotype of a sacU h strain, J. Gen. Microbiol. 130:3143–3152.

    PubMed  CAS  Google Scholar 

  • Chang, S., and Cohen, S. N., 1979, High frequency transformation of Bacillus subtilis protoplasts by plasmid DNA, Mol. Gen. Genetics 168:111–115.

    CAS  Google Scholar 

  • Chase, H. A., and Reynolds, P. E., 1981, The cell wall as a permeability barrier to beta lactam antibiotics in Bacillus megaterium, FEMS Microbiol. Lett. 10:285–289.

    CAS  Google Scholar 

  • Cheah, S. C., Hussey, H., Hancock, I. C., and Baddiley, J., 1982, Control of synthesis of wall teichoic acid during balanced growth of Bacillus subtilis W23, J. Gen. Microbiol. 128:593–599.

    PubMed  CAS  Google Scholar 

  • Chesbro, W. R., and Lampen, J. O., 1968, Characteristics of secretion of penicillinase, alkaline phosphatase and nuclease by Bacillus species, J. Bacterial. 96:428–437.

    CAS  Google Scholar 

  • Cheung, H. Y., and Freese, E., 1985, Monovalent cations enable cell wall turnover of the turnover deficient lyt-15 mutant of Bacillus subtilis, J. Bacteriol. 163:1222–1225.

    Google Scholar 

  • Childs, W. C., and Neuhaus, F. C., 1980, Biosynthesis of D-alanyl-lipoteichoic acid: Characterisation of ester linked alanine in the in vitro synthesised product, J. Bacteriol. 143:293–301.

    PubMed  CAS  Google Scholar 

  • Chin, T., Burger, M. M., and Glaser, L., 1966, Synthesis of teichoic acids. Vi. The formation of multiple wall polymers in Bacillus subtilis W23, Arch. Biochim. Biophys. 116:358–367.

    CAS  Google Scholar 

  • Clarke-Sturman, A. J., and Archibald, A. R., 1982, Cell wall turnover in phosphate and potassium limited cultures of Bacillus subtilis W23, Arch. Mkrobiol. 131:375–379.

    CAS  Google Scholar 

  • Coley, J., Tarelli, E., Archibald, A. R., and Baddiley, J., 1978, The linkage between teichoic acid and peptidoglycan in bacterial cell walls, FEBS Lett. 88:1–9.

    PubMed  CAS  Google Scholar 

  • de Boer, W. R., Kruyssen, F. J., and Wouters, J. T. M., 1981, Cell wall turnover in batch and chemostat cultures of Bacillus subtilis, J. Bacteriol. 145:50–60.

    PubMed  Google Scholar 

  • de Boer, W. R., Wouters, J. T. M., Anderson, A. J., and Archibald, A. R., 1978, Further evidence for the structure of the teichoic acids from Bacillus subtilis var. niger, Eur. J. Biochem. 85:433–436.

    PubMed  Google Scholar 

  • de Chastelier, C., Hellio, R., and Ryter, A., 1975, Study of cell wall growth in Bacillus megaterium by high resolution autoradiography, J. Bacteriol. 123:1184–1196.

    Google Scholar 

  • Doyle, R. J., Koch, A. L., and Carstens, P. H. B., 1983, Cell wall-DNA association in Bacillus subtilis, J. Bacteriol. 153:1521–1527.

    PubMed  CAS  Google Scholar 

  • Doyle, R. J., McDannel, M. L., Helman, J. R., and Streips, U. N., 1975, Distribution of teichoic acid in the cell wall of Bacillus subtilis, J. Bacteriol. 122:152–158.

    PubMed  CAS  Google Scholar 

  • Duckworth, M., Archibald, A. R., and Baddiley, J., 1972, The location of N-acetylgalactosamine in the walls of Bacillus subtilis 168, Biochem. J. 130:691–696.

    PubMed  CAS  Google Scholar 

  • Eberle, H., and Lark, K. G., 1966, Chromosome segregation in Bacillus subtilis, J. Mol. Biol. 22:183–186.

    Google Scholar 

  • Edmur, L. I., and Chiu, T. H., 1975, The role of phosphatidylglycerol in the in vitro synthesis of teichoic acid and lipoteichoic acid, FEBS Lett. 55:216–219.

    Google Scholar 

  • Eisenberg, A. D., and Corner, T. R., 1978, Effects of growth temperature on protoplast membrane properties in Bacillus megaterium, Can. J. Mkrobiol. 24:386–396.

    CAS  Google Scholar 

  • Elliott, T. S. J., Ward, J. B., and Rogers, H. J., 1975a, Formation of cell wall polymers by reverting protoplasts of Bacillus licheniformis, 124:623–632.

    CAS  Google Scholar 

  • Elliott, T. S. J., Ward, J. B., Wyrick, P. B., and Rogers, H. J., 1975b, Ultrastructural study of the reversion of protoplasts of Bacillus licheniformis, J. Bacteriol. 124:905–917.

    PubMed  CAS  Google Scholar 

  • Ellwood, D. C., and Tempest, D. W., 1972, Effects of environment on bacterial wall content and composition, Adv. Microbial Physiol. 7:83–117.

    CAS  Google Scholar 

  • Ellwood, D. C., and Tempest, D. W., 1969, Control of teichoic acid and teichuronic acid biosynthesis in chemostat cultures of Bacillus subtilis var. niger, Biochem. J. 111:1–5.

    PubMed  CAS  Google Scholar 

  • Fan, D. P., Beckman, B. E., and Gardner-Eckstrom, H. L., 1975, Mode of cell wall synthesis in gram-positive bacilli, J. Bacteriol. 123:1157–1162.

    PubMed  CAS  Google Scholar 

  • Favre, D., Karamata, D., and Mendelson, N. H., 1985, Temperature-pulse induced “memory” in Bacillus subtilis and a role for protein(s) in the left-handed twist state, J. Bacteriol. 164:1141–1145.

    PubMed  CAS  Google Scholar 

  • Fein, J. E., 1979, Possible involvement of bacterial autolytic enzymes in flagellar morphogenesis, J. Bacteriol. 137:1141–1145.

    Google Scholar 

  • Fischer, W. H., Koch, U., Rosel, P., and Fiedler, F., 1981, Effect of alanine ester substitution and other structural features of lipoteichoic acids on their inhibitory activity against Staphylococcus, J. Biol. Chem. 255:4557–4562.

    Google Scholar 

  • Forsberg, C. W., Wyrick, P. B., Ward, H. J., and Rogers, H. J., 1973, Effect of phosphate limitation on the morphology and wall composition of Bacillus licheniformis and its phosphoglucomutase deficient mutants, J. Bacteriol. 113:969–984.

    PubMed  CAS  Google Scholar 

  • Fuchs-Cleveland, E., and Gilvarg, C., 1976, Oligomeric intermediate in peptidoglycan biosynthesis in Bacillus megaterium, Proc. Natl. Acad. Sci. U.S.A. 73:4200–4204.

    PubMed  CAS  Google Scholar 

  • Ganfield, M. C. W., and Peiringer, R. A., 1980, The biosynthesis of nascent membrane lipoteichoic acid of Streptococcus faecium (S. faecalis ATCC 9790) from phosphatidyl-kojibiosyldiacylglycerol and phosphatidylglycerol, J. Biol. Chem. 255:5164–5169.

    PubMed  CAS  Google Scholar 

  • Ghuysen, J. M., 1977, The concept of the penicillin target from 1965 until today, J. Gen. Microbiol. 101:13–33.

    PubMed  CAS  Google Scholar 

  • Giles, A. F., and Reynolds, P. E., 1979, The direction of transpeptidation during cell wall peptidoglycan biosynthesis in Bacillus megaterium, FEBS Lett. 101:244–248.

    PubMed  CAS  Google Scholar 

  • Givan, A. L., Glassey, K., Lang, W. K., Anderson, A. J., and Archibald, A. R., 1982, Relation between wall teichoic acid content of Bacillus subtilis and efficiency of absorption of bacteriophages SP50 and φ25, Arch. Microbiol. 133:318–322.

    PubMed  CAS  Google Scholar 

  • Glaser, L., and Lindsay, B., 1977, Relation between cell wall turnover and cell wall growth in Bacillus subtilis, J. Bacteriol. 130:610–619.

    PubMed  CAS  Google Scholar 

  • Glynn, J. A., and Schaffel, S. D., McNicholas, J. M., and Hulett, F. M., 1977, Biochemical localisation of the alkaline phosphatase of Bacillus licheniformis as a function of culture age, J. Bacteriol. 129:1010–1019.

    PubMed  CAS  Google Scholar 

  • Goldfine, H., 1972, Comparative aspects of bacterial lipids, Adv. Microbial Physiol. 8:1–58.

    CAS  Google Scholar 

  • Gould, A. R., May, B. K., and Elliott, W. H., 1975, Release of extracellular enzymes from Bacillus amyloliquefaciens, J. Bacteriol. 122:34–40.

    PubMed  CAS  Google Scholar 

  • Goundry, J., Archibald, A. R., and Baddiley, J., 1967, The structure of the cell wall of Bacillus polymyxa NCIB 4747, Biochem. J. 104:1–3.

    Google Scholar 

  • Hancock, I. C., 1985, The regulation of synthesis of wall polymers and wall assembly in Bacillus, Biochem. Soc. Trans. 13:994–996.

    PubMed  CAS  Google Scholar 

  • Hancock, I. C., 1983, Activation and inactivation of secondary wall polymers in Bacillus subtilis W23, Arch. Microbiol. 134:222–226.

    PubMed  CAS  Google Scholar 

  • Hancock, I. C., 1981, The biosynthesis of ribitol teichoic acid by toluenised cells of Bacillus subtilis W23, Eur. J. Biochem. 119:85–90.

    PubMed  CAS  Google Scholar 

  • Hancock, I. C., and Baddiley, J., 1985, Biosynthesis of the bacterial envelope polymers teichoic acid and teichuronic acid, in: The Enzymes of Biological Macromolecules, Vol. 2 (A. N. Martonosi, ed.), Plenum Press, New York, pp. 279–307.

    Google Scholar 

  • Harrington, C. R., and Baddiley, J., 1984, Synthesis of peptidoglycan and teichoic acid in Bacillus subtilis: Role of the electrochemical proton gradient, J. Bacteriol. 159:925–933.

    PubMed  CAS  Google Scholar 

  • Harrington, C. R., and Baddiley, J., 1983, Peptidoglycan synthesis by partly autolysed cells of Bacillus subtilis W23J. Bacteriol. 155:776–792.

    CAS  Google Scholar 

  • Heptinstall, S., Archibald, A. R., and Baddiley, J., 1970, Teichoic acids and membrane function in bacteria, Nature 225:519–521.

    PubMed  CAS  Google Scholar 

  • Herbold, D. R., and Glaser, L., 1975a, Interaction of N-acetylmuramic acid L-alanine amidase with cell wall polymers, J. Biol. Chem. 250:7231–7238.

    PubMed  CAS  Google Scholar 

  • Herbold, D. R. and Glaser, L., 1975b, Bacillus subtilis N-acetylmuramic acid L-alanine amidase, J. Biol. Chem. 250:1676–1682.

    PubMed  CAS  Google Scholar 

  • Hobot, J. A., Carlemalm, W., and Kellenberger, E., 1984, Periplasmic gel: New concept resulting from the reinvestigation of bacterial cell envelope ultrastructure by new methods, J. Bacteriol. 160:143–148.

    PubMed  CAS  Google Scholar 

  • Hughes, R. C., Hancock, I. C., and Baddiley, J., 1973, The function of teichoic acids in cation control in bacterial membranes, Biochem. J. 122:83–93.

    Google Scholar 

  • Hughes, R. C. and Thurman, P. F., 1970, Some structural features of the teichuronic acid of Bacillus licheniformis NCTC 6346 cell walls, Biochem. J. 117:441–449.

    PubMed  CAS  Google Scholar 

  • Hulett, F. M., Schaffel, S. D., and Campbell, L. L., 1976, Subunits of the alkaline phosphatase of Bacillus licheniformis: Chemical, physicochemical and dissociation studies, J. Bacteriol. 128:651–657.

    PubMed  CAS  Google Scholar 

  • Hulett, F. M., Wang, P. Z., Sussman, M., and Lee J. W. K., 1985, Two alkaline phosphatase genes positioned in tandem in Bacillus licheniformis MC 14 require different RNA polymerase holoenzymes for transcription, Proc. Natl. Acad. Sci. U.S.A. 82:1035–1039.

    PubMed  CAS  Google Scholar 

  • Iwasaki, H., Shimada, A., and Ito, E., 1986, Comparative studies of lipoteichoic acids from several Bacillus strains, J. Bacteriol. 167:508–516.

    PubMed  CAS  Google Scholar 

  • James, A. M., and Brewer, J. E., 1968, Non-protein components of the cell surface of Staphylococcus aureus, Biochem. J. 107:817–821.

    PubMed  CAS  Google Scholar 

  • Janczura, E., Perkins, H. R., and Rogers, H. J., 1961, Teichuronic acid: A mucopolysaccharide present in wall preparations from vegetative cells of Bacillus subtilis, Biochem. J. 80:82–93.

    PubMed  CAS  Google Scholar 

  • Joliffe, L. K., Doyle, R. J., and Streips, U. N., 1981, The energised membrane and cellular autolysis in Bacillus subtilis, Cell 25:753–763.

    Google Scholar 

  • Joliffe, L. K., Doyle, R. J., and Streips, U. N., 1980, Extracellular proteases modify cell wall turnover in Bacillus subtilis, J. Bacteriol. 141:1191–1208.

    Google Scholar 

  • Kaneda, T., 1977, Fatty acids of the genus Bacillus: An example of branched-chain preference, Bacteriol. Rev. 421:391–411.

    Google Scholar 

  • Kaya, S., Araki, Y., and Ito, E., 1985, Structural studies on the linkage unit between polygalactosylglycerol phosphate and peptidoglycan in walls of Bacillus coagulans, Eur. J. Biochem. 147:41–46.

    PubMed  CAS  Google Scholar 

  • Kaya, S., Yokoyama, K., Araki, Y., and Ito, E., 1984, N-Acetylmannosaminyl(1–4)N-acetylglucosamine, a linkage unit between glycerol teichoic acid and peptidoglycan in cell walls of several Bacillus strains, J. Bacteriol. 158:990–996.

    PubMed  CAS  Google Scholar 

  • Kennedy, L. D., and Shaw, D. R. D., 1968, Direction of polyglycerolphosphate chain growth in Bacillus subtilis, Biochim. Biophys. Res. Commun. 32:861–865.

    CAS  Google Scholar 

  • Kirchner, G., Koch, A. L., and Doyle, R. J., 1984, Energised membrane regulates pole formation in Bacillus subtilis, FEMS Microbiol. Lett. 24:438–441.

    Google Scholar 

  • Koch, A. L., 1983, The surface stress theory of microbial morphogenesis, Adv. Microbial Physiol. 24:301–366.

    CAS  Google Scholar 

  • Koch, A. L., and Burdett, I. J. D., 1986a, Normal pole formation during total inhibition of wall synthesis of Bacillus subtilis, J. Gen. Microbiol. 132:3441–3449.

    PubMed  CAS  Google Scholar 

  • Koch, A. L. and Burdett, I. J. D., 1986b, Biophysics of pole formation of gram-positive rods, J. Gen. Microbiol. 132:3451–3457.

    PubMed  CAS  Google Scholar 

  • Koch, A. L., and Doyle, A. J., 1985, Inside-to-outside growth and turnover of the wall of gram-positive rods, J. Them. Biol. 117:137–157.

    CAS  Google Scholar 

  • Koch, A. L., Higgins, M. L., and Doyle, R. J., 1982, The role of surface stress in the morphology of microbes, J. Gen. Microbiol. 128:927–945.

    PubMed  CAS  Google Scholar 

  • Koch, A. L., Mobley, H. L. T., Doyle, R. J., and Streips, U. N., 1981, The coupling of wall growth and chromosome replication in gram-positive rods, FEMS Microbiol. Lett. 12:201–208.

    CAS  Google Scholar 

  • Koch, H. U., and Fischer, W., 1978, Acyldiglucosyldiacylglycerol-containing lipoteichoic acid with a poly 3-O-galactobiosyl 2-O-galactosyl sn-glycero-1-phosphate chain from Streptococcus lactis Kiel 42172, Biochemistry 17:5275–5281.

    PubMed  CAS  Google Scholar 

  • Kojima, N., Araki, Y., and Ito, E., 1985a, Structure of the linkage units between ribitol teichoic acids and peptidoglycan, J. Bacteriol. 161:299–306.

    PubMed  CAS  Google Scholar 

  • Kojima, N., Iida, J., Araki, Y., and Ito, E., 1985b, Structural studies on the linkage unit between poly(N-acetylglucosamine I-phosphate) and peptidoglycan in cell walls of Bacillus pumilis, Eur.J. Biochem. 149:331–336.

    PubMed  CAS  Google Scholar 

  • Kojima, N., Uchikawa K., Araki, Y., and Ito, E., 1985c, A common linkage saccharide linkage unit between teichoic acids and peptidoglycan in cell walls of Bacillus coagulans, J. Biochem. (Tokyo) 97:1085–1092.

    CAS  Google Scholar 

  • Labischinski, H., Barnickel, G., Bradaczek, H., and Giesbrecht, P., 1979, On the secondary and tertiary structure of murein, Eur. J. Biochem. 95:147–155.

    PubMed  CAS  Google Scholar 

  • Lablaw, L. W., and Mosley, V. M., 1954, Periodic structure in the flagella and cell walls of a bacterium, Biochem. Biophys. Acta 15:325–331.

    Google Scholar 

  • Lambert, P. A., Hancock, I. C., and Baddiley, J., 1977, Occurrence and function of membrane teichoic acids, Biochim. Biophys. Acta 472:1–12.

    PubMed  CAS  Google Scholar 

  • Landman, O. E., Castro-Costa, D. E., and Bond, E. C., 1977, Mechanisms of stability and reversion of mass conversion stable L-forms of Bacillus subtilis, in: Microbiology 1977 (D. Schlessinger, ed.), American Society for Microbiology, Washington, D.C., pp. 35–43.

    Google Scholar 

  • Lang, K., and Archibald, A. R., 1983, Relation between wall teichoic acid content and concanavalin A binding in Bacillus subtilis W23 FEMS Microbiol. Lett. 20:163–166.

    CAS  Google Scholar 

  • Lang, W. K., Glassey, K., and Archibald, A. R., 1982, Influence of phosphate supply on teichoic and teichuronic acid content of Bacillus subtilis walls, J. Bacteriol. 151:367–375.

    PubMed  CAS  Google Scholar 

  • Lifely, M. R., Tarelli, E., and Baddiley, J., 1980, The teichuronic acid from walls of Bacillus licheniformis ATCC 9945, Biochem. J. 191:305–318.

    PubMed  CAS  Google Scholar 

  • Lombardi, S., and Fulco, A. J., 1980, Two distinct pools of phosphatidylglycerol in Bacillus megaterium, J. Bacteriol., 141:618–625.

    PubMed  CAS  Google Scholar 

  • Lombardi, S. J., Chen, S. L., and Fulco, A. J., 1980, A rapidly metabolising pool of phosphatidylglycerol as a precursor for phosphatidylethanolamine and diglyceride in Bacillus megaterium, J. Bacteriol. 141:626–634.

    PubMed  CAS  Google Scholar 

  • McArthur, H. A. I., Hancock, I. C. and Baddiley, J. 1981, Attachment of main chain to linkage unit in the biosynthesis of teichoic acids, J. Bacteriol. 145:1222–1231.

    PubMed  CAS  Google Scholar 

  • McCloskey, M. A., and Troy, F. A., 1980, Paramagnetic isoprenoid lipid carrier, 1. Chemical synthesis and incorporation into model membrane, Biochemistry, 19:2056–2060.

    PubMed  CAS  Google Scholar 

  • McDonald, K. O., and Burke, W. F., 1984, Plasmid transformation of Bacillus sphaericus 1593, J. Gen. Microbiol. 130:203–208.

    PubMed  CAS  Google Scholar 

  • McNicholas, M. J., and Hulett, F. M., 1977, Electron microscope histochemical localisation of alkaline phosphatase(s) in Bacillus licheniformis, J. Bacteriol. 129:501–515.

    PubMed  CAS  Google Scholar 

  • Marquis, R. E., 1968, Salt-induced contraction of bacterial cell walls, J. Bacteriol. 95:775–781.

    PubMed  CAS  Google Scholar 

  • Marty-Mazars, D., Horiuchi, S., Tai, P. C., and Davis, B. D., 1983, Proteins of ribosome-bearing and free membrane domains in Bacillus subtilis, J. Bacteriol. 154:1381–1388.

    PubMed  CAS  Google Scholar 

  • Mauck, J., Chin, L., and Glaser, L., 1971, Turnover of cell wall of Gram-positive bacteria, J. Biol. Chem. 246:1820–1827.

    PubMed  CAS  Google Scholar 

  • Mauck, J., and Glaser, L., 1972, On the mode of in vivo assembly of the cell wall of Bacillus subtilis, J. Biol. Chem. 247:1180–1187.

    PubMed  CAS  Google Scholar 

  • Mendelson, N. H., 1985, A model of bacterial DNA segregation based upon helical geometry, J. Them. Biol. 112:25–39.

    CAS  Google Scholar 

  • Mendelson, N. H., 1982a, Bacterial growth and division: Genes, structures, forces and clocks, Microbiol. Reviews 46:341–375.

    CAS  Google Scholar 

  • Mendelson, N. H., 1982b, The helix clock: A potential biomechanical cell cycle timer, J. Theor. Biol. 94:209–222.

    PubMed  CAS  Google Scholar 

  • Mendelson, N. H., 1978, Helical Bacillus macrofibres: Morphogenesis of a bacterial multicellular microorganism, Proc. Natl. Acad. Sci. U.S.A. 75:2478–2482.

    PubMed  CAS  Google Scholar 

  • Mendelson, N. H., 1976, Helical growth of Bacillus subtilis: A new model of cell growth, Proc. Natl. Acad. Sci. U.S.A. 73:1740–1744.

    PubMed  CAS  Google Scholar 

  • Mendelson, N. H., 1972, Deoxyribonucleic acid distribution in Bacillus subtilis independent of cell elongation, J. Bacteriol. 111:156–162.

    PubMed  CAS  Google Scholar 

  • Mendelson, N. H., and Karamata, D., 1982, Inversion of helix orientation in Bacillus subtilis macrofibers, J. Bacteriol. 151:450–455.

    PubMed  CAS  Google Scholar 

  • Mendelson, N. H., Favre, D., and Thwaites, J. J., 1984, Twisted states of Bacillus subtilis macrofibres reflect structural states of the cell wall, Proc. Natl. Acad. Sci. U.S.A. 81:3562–3566.

    PubMed  CAS  Google Scholar 

  • Millward, G. R., and Reavely, D. A., 1974, Electron microscope observations on the cell walls of some gram-positive bacteria, J. Ultrastruct. Res. 46:309–326.

    PubMed  CAS  Google Scholar 

  • Minnikin, D. E., Ahdulrahimzadeh, H., and Baddiley, J., 1972, Variation of polar lipid composition of Bacillus subtilis (Marburg) with different growth conditions, FEBS Lett. 27:16–18.

    PubMed  CAS  Google Scholar 

  • Mitchell, P., and Moyle, J., 1956, Osmotic function and structure in bacteria, Symp. Soc. Gen. Microbiol. 6:150–180.

    Google Scholar 

  • Miyashiro, M. S., Enei, H., Hirose, Y., and Udaka, S., 1980, Extracellular production of proteins. 5. Stimulatory effect of inhibitors of cell wall synthesis on protein production by Bacillus brevis, Agric. Biol. Chem. 44:2297–2303.

    CAS  Google Scholar 

  • Mobley, H. L. T., Doyle, R. J., and Joliffe, L. K., 1983, Cell wall polypeptide complexes in Bacillus subtilis, Carbohydr. Res. 116:113–125.

    CAS  Google Scholar 

  • Mobley, H. L. T., Koch, A. L., Doyle, R. J., and Streips, U. N., 1984, Insertion and fate of the cell wall in Bacillus subtilis, J. Bacteriol. 158:169–179.

    PubMed  CAS  Google Scholar 

  • Murazumi, N., Araki, Y., and Ito, E., 1986, Biosynthesis of the wall neutral polysaccharide in Bacillus cereus, Eur. J. Biochem. 161:51–59.

    PubMed  CAS  Google Scholar 

  • Murazumi, N., Sasaski, Y., Okada, J., Araki, Y., and Ito, E., 1981, Biosynthesis of glycerol teichoic acid in Bacillus cereus: Formation of linkage unit disaccharide on a lipid intermediate, Biochem. Biophys. Res. Commun. 99:504–510.

    PubMed  CAS  Google Scholar 

  • Nauman, D., Barnickel, G., Bradaczek, H., Labischinski, H., and Giesbrecht, P., 1982, Infrared spectroscopy, a tool for probing bacterial peptidoglycan, Eur. J. Biochem. 125:505–515.

    Google Scholar 

  • Nermut, M. V., and Murray, R. G. E., 1967, Ultastructure of the cell wall of Bacillus polymyxa, J. Bacteriol. 93:1949–1965.

    PubMed  CAS  Google Scholar 

  • Neuhaus, F. C., 1985, Interchain transacylation of D-alanine ester residues of lipoteichoic acid. A unique mechanism of membrane communication, Biochem. Soc. Trans. 13:987–990.

    PubMed  CAS  Google Scholar 

  • Nielsen, J. B. K., Caulfield, M. P., and Lampen, J. O., 1981, Lipoprotein nature of Bacillus licheniformis membrane penicillinase Proc. Natl. Acad. Sci. U.S.A. 78:3511–3515.

    PubMed  CAS  Google Scholar 

  • Ogata, S., 1980, Bacteriophage contamination in industrial processes, Biotech. Bio. 22:177–193.

    CAS  Google Scholar 

  • Ohmizu, H., Tsukagos, N., Udaka, S., Kaneda, N., and Yagi, K., 1983, Major proteins released by a protein producing bacterium, Bacillus brevis 47, are derived from the cell wall protein, J. Biochem. 94:1077–1084.

    PubMed  CAS  Google Scholar 

  • Ou, L. T., and Marquis, R. E., 1970, Electromechanical interactions in cell walls of gram-positive cocci, J. Bacleriol. 101:92–101.

    CAS  Google Scholar 

  • Petit-Glatron, M. F. P., and Chambert, R., 1981, Levansucrase of Bacillus subtilis: Conclusive evidence that its production and export are unrelated to fatty acid synthesis but modulated by membrane modifying agents, Euro. J. Biochem. 119:603–611.

    CAS  Google Scholar 

  • Pooley, H. M., 1976a, Layered distribution according to age within the cell wall of Bacillus subtilis, J. Bacleriol. 125:1139–1147.

    CAS  Google Scholar 

  • Pooley, H. M., 1976b, Turnover and spreading of old wall during surface growth of Bacillus subtilis, J. Bacteriol. 125:1127–1138.

    PubMed  CAS  Google Scholar 

  • Pooley, H. M., and Karamata, H., 1984, Genetic analysis of autolysin deficient and flagellaless mutants of Bacillus subtilis, J. Bacteriol. 160:1123–1129.

    PubMed  CAS  Google Scholar 

  • Powell, J. F., and Strange, R. E., 1957, Diaminopimelic acid metabolism and sporulation in Bacillus sphaericus, Biochem. J. 65:700–708.

    PubMed  CAS  Google Scholar 

  • Randall, L. L., and Hardy, S. J. S., 1984, Export of protein in bacteria, Microbiol. Rev. 48:290–298.

    PubMed  CAS  Google Scholar 

  • Robson, R. L., and Baddiley, J., 1977, Role of teichuronic acid in Bacillus licheniformis; defective autolysis due to deficiency of teichuronic acid in a novobiocin resistant mutant, J. Bacteriol. 129:1051–1058.

    PubMed  CAS  Google Scholar 

  • Rogers, H. J., and Thurman, P. F., 1985, The effect of cerulenin on the morphogenesis and autolytic activity of Bacillus subtilis, J. Gen. Microbiol. 131:591–599.

    CAS  Google Scholar 

  • Rogers, H. J., Perkins, H. R., and Ward, J. B., 1980, Microbial Cell Walls and Membranes, Chapman and Hall, London.

    Google Scholar 

  • Rogers, H. J., Taylor, C., Rayter, M. S., and Ward, J. B., 1984, Purification and properties of autolytic endo-β-N-acetyl glucosaminidase and the N-acetylmuramyl-L-alanine amidase from Bacillus subtilis 168, J. Gen. Microbiol. 130:2395–2402.

    PubMed  CAS  Google Scholar 

  • Sargent, M. G., 1978, Surface extension and the cell cycle in procaryotes, Adv. Microbial. Physiol. 18:106–176.

    Google Scholar 

  • Sargent, M. G., 1975, Control of cell length in Bacillus subtilis, J. Bacteriol. 123:7–19.

    PubMed  CAS  Google Scholar 

  • Sasaki, Y., Araki, Y., and Ito, E., 1983, Structure of teichoic acid glycopeptide complexes from cell walls of Bacillus cereus AHU 1030, Eur. J. Biochem. 132:207–213.

    PubMed  CAS  Google Scholar 

  • Schaeffer, P., and Hirschbein, L., 1985, Bacillus subtilis protoplast fusion, nucleoids and chromosome inactivation, in: Fundamental and Applied Aspects of Bacterial Spores (G. W. Gould, G. J. Dring, and D. J. Ellar, eds.), Academic Press, New York, pp. 77–88.

    Google Scholar 

  • Schaeffer, P., Cami, B., and Hotchkiss, R. D., 1976, Fusion of bacterial protoplasts, Proc. Natl. Acad. Sci. U.S.A. 73:2151–2155.

    PubMed  CAS  Google Scholar 

  • Schaffel, S. D., and Hulett, F. M., 1978, Alkaline phosphatase from Bacillus licheniformis. Solubility dependant on magnesium, purification and characterisation, Biochem. Biophys. Acta 526:457–467.

    PubMed  CAS  Google Scholar 

  • Scherrer, R., and Gerhardt, P., 1971, Molecular seiving by the Bacillus megaterium cell wall and protoplast, J. Bacteriol. 107:718–735.

    PubMed  CAS  Google Scholar 

  • Schleifer, K. H., and Kandier, O., 1972, Peptidoglycan types of bacterial cell walls and their taxonomic implications, Bacteriol. Rev. 36:407–477.

    PubMed  CAS  Google Scholar 

  • Shabarova, Z. A., Hughes, N. A., and Baddiley, J., 1962, The influence of adjacent phosphate and hydroxyl groups on aminoacid esters, Biochem. J. 83:216–219.

    PubMed  CAS  Google Scholar 

  • Shaw, N., 1970, Bacterial glycolipids, Bacteriol. Rev. 34:365–377.

    PubMed  CAS  Google Scholar 

  • Shockman, G. D., and Barrett, J. F., 1983, Structure function and assembly of cell walls of gram-positive bacteria, Ann. Rev. Microbiol. 37:501–527.

    CAS  Google Scholar 

  • Shohayeb, M., and Chopra, I., 1985, Composition of membranes from whole cells and minicells of Bacillus subtilis, J. Gen. Mkrobiol. 131:345–354.

    CAS  Google Scholar 

  • Sibakov, M., Sarvas, M., and Palva, I., 1983, Increased secretion of alpha-amylase from Bacillus subtilis caused by multiple copies of the alpha amylase gene from Bacillus amyloliquifaciens is not further enhanced by genes enhancing the basic level of secretion, FEMS Microbiol. Lett. 17:81–85.

    CAS  Google Scholar 

  • Sleytr, U. B., 1983, Crystalline surface layers on bacteria, Annu. Rev. Microbiol. 37:311–339.

    PubMed  CAS  Google Scholar 

  • Sleytr, U. B., Sara, M., Kupcu, Z., and Messner, P., 1986, Ultrafiltration membranes with uniform pores from crystalline bacterial cell wall layers: Application of s-layers of selected strains of Bacillus stearothermophilus and Desulfotomaculum nigrificans, Arch. Mkrobiol. 146:19–24.

    CAS  Google Scholar 

  • Sonnenfield, E. M., Beveridge, T. J., and Doyle, R. J., 1985a, Discontinuity of charge on cell wall poles of Bacillus subtilis, Can. J. Mkrobiol. 31:875–877.

    Google Scholar 

  • Sonnenfeld, E. M., Beveridge, T.J., Koch, A. L., and Doyle, R.J., 1985b, Asymmetric distribution of charge on the cell wall of Bacillus subtilis, J. Bacteriol. 163:1167–1171.

    PubMed  CAS  Google Scholar 

  • Sonnenfeld, E. M., Koch, A. L., and Doyle, R. J., 1985c, Cellular location of origin and terminus of replication in Bacillus subtilis, J. Bacterial. 163:895–899.

    CAS  Google Scholar 

  • Sturman, A. J., and Archibald, A. R., 1978, Conservation of phage receptor material at the polar caps of Bacillus subtilis W23, FEMS Microbiol. Lett. 4:255–259.

    Google Scholar 

  • Taron, D. J., Childs, W. C. and Neuhaus, F. C., 1988, Biosynthesis of D-alanyl lipoteichoic acid: Role of diglyceride kinase in the synthesis of phosphatidyl glycerol for chain elongation. J. Bacterial. 154:1110–1116.

    Google Scholar 

  • Thompson, S., Hancock, I. C., and Baddiley, J., 1980, The identification of polypeptides synthesised during the acquisition of teichoic acid synthetic activity in Bacillus licheniformis, Biachem. Biophys. Acta 630:537–544.

    CAS  Google Scholar 

  • Tilby, M. J., 1977, Helical shape and wall synthesis in bacteria, Nature 266:450–452.

    PubMed  CAS  Google Scholar 

  • Tsuboi, A., Norihiro, T., and Udaka, S., 1982, Reassembly in vitro of hexagonal surface arrays in a protein producing bacterium Bacillus brevis, J. Bacterial. 151:1485–1497.

    CAS  Google Scholar 

  • Tsukagoshi, N., Iritani, S., Sasaki, T., Takemura, T., Ihara, H., Idota, Y., Yamagata, H., and Udaka, S., 1985, Efficient synthesis and secretion of a thermophilic alpha-amylase by protein-producing Bacillus brevis 47 carrying the Bacillus stearathermophilus amylase gene, J. Bacterial. 164:1182–1187.

    CAS  Google Scholar 

  • Tynecka, Z., and Ward, J. B., 1975, Peptidoglycan synthesis in Bacillus licheniformis. The inhibition of cross-linking by benzylpenicillin and cephaloridine in vitro accompanied by the formation of soluble peptidoglycan, J. Bacteriol. 146:253–267.

    CAS  Google Scholar 

  • van Heijenoort, J., Elbaz, L., Dezelee, P., Petit, J. F., Bricas, E., and Ghuysen. J. M., 1969, Structure of the meso-diamoinopimelic acid containing peptidoglycans in Escherichia coli B and Bacillus megaterium KM, Biochemistry 8:207–211.

    PubMed  Google Scholar 

  • Verwer, R. W. H., Nanninga, N., Keck, W., and Schwartz, U., 1978, Arrangement of the glycan chains in the sacculus of Escherichia coli, J. Bacterial. 136:723–729.

    CAS  Google Scholar 

  • Ward, J. B., 1981, Teichoic and teichuronic acids: Biosynthesis, assembly and location, Microbiol. Rev. 45:211–243.

    PubMed  CAS  Google Scholar 

  • Ward, J. B., 1973, The chain length of the glycan in bacterial walls, Biochem. J. 133:395–398.

    PubMed  CAS  Google Scholar 

  • Ward, J. B., and Curtis, C. A. M., 1982, The biosynthesis and linkage of teichuronic acid to peptidoglycan in Bacillus licheniformis, Euro. J. Biochem. 122:125–132.

    CAS  Google Scholar 

  • Ward, J. B., and Perkins, H. R., 1973, The direction of glycan synthesis in a bacterial peptidoglycan, Biochem. J. 135:721–728.

    PubMed  CAS  Google Scholar 

  • Ward, J. B., and Perkins, H., 1974, Peptidoglycan biosynthesis by preparations from Bacillus licheniformis: Cross-linking of newly synthesised chains to preformed cell wall, Biochem. J. 139:781–784.

    PubMed  CAS  Google Scholar 

  • Ward, J. B., Wyke, A. W., and Curtis, C. A. M., 1980, The effect of tunicamycin on wall synthesis in Bacilli, Biochem. Soc. Trans. 8:164–166.

    PubMed  CAS  Google Scholar 

  • Watkinson, B. J., Hussey, H., and Baddiley, J., 1971, Shared lipid phosphate carrier in the biosynthesis of teichoic acid and peptidoglycan, Nature (New Biol.) 229:57–59.

    CAS  Google Scholar 

  • Weidel, W., and Pelzer, H., 1964, Bagshaped macromolecules, Adv. Enzymol. 26:193–232.

    PubMed  Google Scholar 

  • Wicken, A. J., and Knox, K. W., 1975, Lipoteichoic acids, a new class of bacterial antigen, Science 187:1161–1167.

    PubMed  CAS  Google Scholar 

  • Wicken, A. J., and Knox, K. W., 1980, Bacterial surface amphiphiles, Biochem. Biophys. Acta 604:1–26.

    PubMed  CAS  Google Scholar 

  • Wickus, G. G., and Strominger, J. L., 1972, Penicillin-sensitive transpeptidation during peptidoglycan biosynthesis in cell free preparations from Bacillus megaterium, J. Biol. Chem. 247:5297–5306.

    PubMed  CAS  Google Scholar 

  • Williamson, R., and Ward, J. B., 1980, Deficiency of autolytic activity in Bacillus subtilis and Streptococcus pneumoniae is associated with a decreased permeability of the wall, J. Gen. Microbiol. 125:325–334.

    Google Scholar 

  • Wouters, J. T. M., and Buijsman, P. J., 1977, Production of some extracellular enzymes by Bacillus licheniformis 749/c in chemostat culture, FEMS Microbiol. Lett. 1:109–112.

    CAS  Google Scholar 

  • Wright, J., and Heckels, J. E., 1975, The teichuronic acid of Bacillus subtilis W23 grown in a chemostat under phosphate limitation, Biochem. J. 147:186–189.

    Google Scholar 

  • Wyke, A. W., and Ward, J. B., 1977a, Biosynthesis of wall polymers in Bacillus subtilis, J. Bacterial. 130:1055–1063.

    CAS  Google Scholar 

  • Wyke, A. W., and Ward, J. B., 1977b, The biosynthesis of muramic acid phosphate in Bacillus licheniformis, FEBS Letts. 73:159–163.

    CAS  Google Scholar 

  • Yamada, H., Tsukagoshi, N., and Ukada, S., 1981, Morphological alterations of cell wall concomitant with protein release in a protein producing bacterium, Bacillus brevis 47, J. Bacterial. 148:322–332.

    CAS  Google Scholar 

  • Yokoyama, K., La Mar, G. N., Araki, Y., and Ito, E., 1986, Structure and functions of linkage unit intermediates in biosynthesis of ribitol teichoic acids in Slaphylococcus aureus H and Bacillus subtilis W23, Eur. J. Biochem. 161:479–489.

    PubMed  CAS  Google Scholar 

  • Yoneyama, T., Araki, Y., and Ito, E., 1984, The primary structure of teichuronic acid in Bacillus subtilis AHU 1031, Eur. J. Biochem. 141:83–89.

    PubMed  CAS  Google Scholar 

  • Yoneyama, T., Koike, Y., Arakawa, H., Yokoyama, K., Sasaki, Y., Kawamura, T., Araki, Y., Ito, E., and Takao, S., 1982, Distribution of mannosamine and mannosaminuronic acid among cell walls of Bacillus species, J. Bacteriol. 149:15–21.

    PubMed  CAS  Google Scholar 

  • Young, F. E., Tipper, D. J., Strominger, J. L., 1967, Autolysis of cell walls of Bacillus subtilis: Mechanism and possible relationship to competence, J. Biol. Chem. 239:3600–3602.

    Google Scholar 

  • Zipperle, G. F., Ezzell, J. W., and Doyle, R. J., 1984, Glucosamine substitution and muramidase susceptibility in Bacillus anthracis, Can. J. Microbiol. 30:553–559.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer Science+Business Media New York

About this chapter

Cite this chapter

Archibald, A.R. (1989). The Bacillus Cell Envelope. In: Harwood, C.R. (eds) Bacillus. Biotechnology Handbooks, vol 2. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-3502-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-3502-1_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-3504-5

  • Online ISBN: 978-1-4899-3502-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics