Skip to main content

Part of the book series: Progress in Mathematics ((PM,volume 21))

Abstract

Let Mn be a smooth n-dimensional Riemannian manifold and let T1Mn be the manifold of unit tangent vectors on Mn. The geodesic flow gt: T1Mn → T1Mn translates every vector v ∈ T1Mn by the parallel translation along the unique geodesic determined by v at distance t. The frame flow \( {\text{f}}_{\text{k}}^{\text{t}} \), acts in the space Stk(Mn) of orthonormal ordered k-frames w = {x, v1,..., vk}, where x ∈ Mn, vi ∈ T1Mn, (vi, vj) = δij, 1 ≤ i, j ≤ k. The flow \( {\text{f}}_{\text{k}}^{\text{t}} \) translates every frame w∈ Stk(Mn) along the geodesic determined by the first vector of the frame at distance t. It is clear that St1(Mn) = T1 Mn. Denote by pk, the natural projection Stk(Mn) → St1(Mn), by pk, m, 1 ≤ m ≤ k ≤ n, the projections Stk(Mn) → Stm(Mn), pk, m(x, vl,..., vk) = (x, v1... v m), and by π: St1Mn→ Mn the projection π(x, v) = x. If Mn is oriented, the space Stn(Mn) has two connected components—the sets of positively and negatively oriented n-frames, each of the components being isomorphic with the space Stn−1 (Mn). The manifold Stk(Mn) is a fiber bundle over St1(Mn) = T1(Mn) with projection pk and structure group SO(n−1).

Supported by NSF Grant #MCS79-0304.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. V. Anosov, Geodesic flows on closed Riemannian manifolds of negative curvature, Proc. Steklov Inst. Math., v. 90 (1967).

    Google Scholar 

  2. A. Borel, Compact Clifford-Klein forms of symmetric spaces, Topology, v. 2 (1963), 111–122.

    Article  MathSciNet  MATH  Google Scholar 

  3. M. Brin, Topological transitivity of one class of dy-namical systems and flows of frames on manifolds of negative curvature, Functional Anal Appl., v. 9 (1975), 8–16.

    Article  MathSciNet  MATH  Google Scholar 

  4. M. Brin, Topology of group extensions of Anosov systems, Math. Notes of the Acad. of Sci. of the USSR, v. 18 (1975), 858–864.

    Article  MathSciNet  Google Scholar 

  5. M. Brin and M. Gromov, On the ergodicity of frame flows, Invent. Math., v. 60 (1980), 1–7.

    Article  MathSciNet  MATH  Google Scholar 

  6. M. Brin and H. Karcher, Frame flows on manifolds with pinched negative curvature, preprint.

    Google Scholar 

  7. M. Brin and Ya. Pesin, Partially hyperbolic dynamical systems, Math, of the USSR-Izvestija, v. 8 (1974), 177–218.

    Article  Google Scholar 

  8. P. Eberlein, Geodesic flows on negatively curved manifolds, I, Ann. of Math. (2), v. 95 (1972), 492–510.

    Article  MathSciNet  MATH  Google Scholar 

  9. —, preprint.

    Google Scholar 

  10. M. Gromov, On a geometric Banach’s problem, Izvestija AN SSSR, ser. mat., v. 31 (1967), 1105–1114 (in Russian).

    MathSciNet  MATH  Google Scholar 

  11. A. L. OnisÇik, On Lie groups transitive on compact manifolds III, Mathematics of the USSR-Sbornick, v.4 (1968), 233–240.

    Article  Google Scholar 

  12. D. J. Rudolph, Classifying the isometric extension of a Bernoulli shift, J. d’Analyse Mathematique, v. 34 (1978), 36–60.

    Article  MathSciNet  MATH  Google Scholar 

  13. Ya. G. Sinai, Dynamical systems with countably multiple Lebesgue spectrum II, Amer. Math. Soc. Translation (2), v 68 (1968), 34–88.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Springer Science+Business Media New York

About this chapter

Cite this chapter

Brin, M. (1982). Ergodic Theory of Frame Flows. In: Katok, A. (eds) Ergodic Theory and Dynamical Systems II. Progress in Mathematics, vol 21. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4899-2689-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-2689-0_5

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-0-8176-3096-6

  • Online ISBN: 978-1-4899-2689-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics