Skip to main content

Optical Properties of Normal Human Intracranial Tissues in the Spectral Range of 400 to 2500 NM

  • Chapter
Optical Imaging of Brain Function and Metabolism

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 333))

Abstract

Optical properties describe the physical interactions between electromagnetic radiation and matter dependent on the wavelength of the radiation. Incident power may be reflected, absorbed, scattered and/or transmitted. Reflection may consist of specular reflection and back scattering from inside the matter. The total amount of absorption and internal scattering may be expressed as extinction. According to the law of energy conservation, reflection, extinction and transmission add up to 1. For that reason, measuring optical properties of tissues must include at least two of these parameters or one of them must be excluded by the experimental design. Using a semi-infinite thickness of specimens, the influence of transmitted power may be neglected. According to the Kubelka-Munk-theory (Kubelka and Munk 1931, Kubelka 1948), the ratio of absorption and scattering can be calculated from reflection measurements assuming an ideally black background and a semi-infinite slice thickness (Blazek 1979). In reflection as well as in transmission measurements it has to be considered that the intensity of reflected and transmitted power depends on the solid angle of reflection or transmission (Hardy et al. 1956, Longini et al. 1968). This problem may be solved by using a two-beam spectral photometer with an integrating sphere as measuring instrument (Blazek 1975).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Bayly J.G., Kartha U.B., Stevens W.H. (1963) The absorption spectra of liquid phase H2O, HDO and D2O from 0.7 μm to 10 μm. Infrared Physics 3: 211–223.

    Article  CAS  Google Scholar 

  • Blazek V. (1975) Reflexions-, Transmissions-und Absorptionsverhalten von biologischem Gewebe für elektromagnetische Strahlung im sichtbaren und nahen IR-Bereich. Biomed Technik 20: 299–300.

    Google Scholar 

  • Blazek V. (1979) Absorption and scattering properties of biological tissue in relation to monochromatic optical radiation. Biomed Technik 24: 331–332.

    Article  Google Scholar 

  • Boggan J.E., Bolger G, Edwards M.S.B. (1985) Effect of hematoporphyrin derivative photoradiation therapy on survival in the rat 9L gliosarcoma brain-tumor model. J Neurosurg 63: 917–921.

    Article  PubMed  CAS  Google Scholar 

  • Cheng M.K., McKean J., Boisvert D., Tulip J. (1986) Photoradiation therapy: Current status and application in the treatment of brain tumors. Surg Neurol 25: 423–435.

    Article  PubMed  CAS  Google Scholar 

  • De Tommasi A., Occhiogrossi M., Vailati G., Baidarre L., Cingolani A. (1986) Evaluation of the Ar+ laser thermal effect in rabbit brain tissue by means of optical absorption coefficients: photoacoustic measurements. Acta Neurochir(Wien) 79: 139–144.

    Article  Google Scholar 

  • Doiron D.R., Svaasand L.O., Profio A.E. (1982) Light dosimetry in tissue: Application to photoradiation therapy, in: “Porphyrin Photosensitization,” D. Kessel, T.J. Dougherty, eds., Plenum Press, New York.

    Google Scholar 

  • Eggert H.R., Blazek V. (1987) Optical properties of human brain tissue, meninges, and brain tumors in the spectral range of 200 to 900 nm. Neurosurgery 21: 459–464.

    Article  PubMed  CAS  Google Scholar 

  • Eichler J., Knof J., Lenz H., Salk J., Schäfer G. (1978) Temperature distribution in tissue during laser irradiation. Radiat Environ Biophys 15: 277–287.

    Article  PubMed  CAS  Google Scholar 

  • Hardy J.D., Hammel H.T. Murgatroyd D. (1956) Spectral transmittance and reflectance of excised human skin. J Appl Physiol 9: 257–264.

    PubMed  CAS  Google Scholar 

  • Kubelka P., Munk F. (1931) Ein Beitrag zur Optik der Farbanstriche. Z Techn Phys 12: 593–601.

    Google Scholar 

  • Kubelka P. (1948) New contributions to the optics of intensely light scattering materials: Part I. J Opt Soc Am 38: 448–457.

    Article  PubMed  CAS  Google Scholar 

  • Longini R.L., Zdrojkowski R. (1968) A note on the theory of backscattering of light by living tissue. IEEE Trans Biomed Eng, BME-15: 4–10.

    Article  Google Scholar 

  • Parrish J.A. (1982) Photobiologic considerations in photoradiation therapy, in: “Porphyrins and Photosensitization,” D. Kessel, T.J. Dougherty, eds., Plenum Press, New York.

    Google Scholar 

  • Svaasand L.O., Ellingsen R. (1983) Optical properties of human brain. Photochem Photobiol 38: 293–299.

    Article  PubMed  CAS  Google Scholar 

  • Svaasand L.O., Ellingsen R. (1985) Optical penetration in human intracranial tumors. Photochem Photobiol 41: 73–76.

    Article  PubMed  CAS  Google Scholar 

  • Welch A.J., Wissler E.H., Priebe L.A. (1980) Significance of blood flow in calculation of temperature in laser irradiated tissue. IEEE Trans Biomed Eng 27: 164–166.

    Article  PubMed  CAS  Google Scholar 

  • Wilson B.C., Muller P.J., Yanch J.C. (1986) Instrumentation and light dosimetry for intraoperative photodynamic therapy (PDT) of malignant brain tumours. Phys Med Biol 31: 125–133.

    Article  PubMed  CAS  Google Scholar 

  • van Gemert M., Verdaasdonk R., Strassen E.G., Schets G.A.C.M., Gijsbers G.H.M., Bonnier J.J. (1985) Optical properties of human blood vessel wall and plaque. Lasers Surg Med 5: 235–237.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Eggert, H.R., Blazek, V. (1993). Optical Properties of Normal Human Intracranial Tissues in the Spectral Range of 400 to 2500 NM. In: Dirnagl, U., Villringer, A., Einhäupl, K.M. (eds) Optical Imaging of Brain Function and Metabolism. Advances in Experimental Medicine and Biology, vol 333. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-2468-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-2468-1_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-2470-4

  • Online ISBN: 978-1-4899-2468-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics