Skip to main content

The N-End Rule of Selective Protein Turnover

Mechanistic Aspects and Functional Implications

  • Chapter
Ubiquitin

Abstract

In both bacterial and eukaryotic cells, relatively long-lived proteins, whose half-lives are close to or exceed the cell generation time, coexist with proteins whose half-lives can be less than 1% of the cell generation time. Rates of intracellular protein degradation are a function of the cell’s physiological state and appear to be controlled differentially for individual proteins.1–7 In particular, damaged and some otherwise abnormal proteins are metabolically unstable.1–10 It is also clear that many otherwise undamaged regulatory proteins are extremely short-lived in vivo.1–23 Metabolic instability of such proteins allows for efficient temporal control of their intracellular concentrations through regulated changes in rates of their synthesis or degradation. Instances in which the metabolic instability of an intracellular protein is known to be directly relevant to its function include the cII protein of bacteriophage λ (cII is the essential component of a molecular switch that determines whether λ grows lytically or lysogenizes an infected cell),16–18 the σ32 factor of the Escherichia coli RNA polymerase (σ32 confers on RNA polymerase the specificity for promoters of heat-shock genes),15,19–21 and the HO endonuclease of the yeast Saccharomyces cerevisiae (HO is a site-specific endodeoxyribonuclease that initiates the process of mating-type interconversion in yeast).22,23

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Finley, D., and Varshavsky, A., 1985, The ubiquitin system: Functions and mechanisms, Trends Biochem. Sci. 10: 343–346.

    Article  CAS  Google Scholar 

  2. Hershko, A., 1983, Ubiquitin: Roles in protein modification and breakdown, Cell 34: 11–12.

    Article  PubMed  CAS  Google Scholar 

  3. Pontremoli, S., and Melloni, E., 1986, Extralysosomal protein degradation, Annu. Rev. Biochem. 55: 455–482.

    Article  PubMed  CAS  Google Scholar 

  4. Hershko, A., and Ciechanover, A., 1986, The ubiquitin pathway for the degradation of intracellular proteins, Prog. Nucleic Acids Res. Mol. Biol. 33: 19–56.

    Article  CAS  Google Scholar 

  5. Rivett, J. A., 1986, Regulation of intracellular protein turnover: Covalent modification as a mechanism of marking proteins for degradation, in: Current Topics in Cellular Regulation, Academic Press, New York, pp. 291–337.

    Google Scholar 

  6. Mortimore, G., 1982, Mechanisms of cellular protein catabolism, Nutr. Rev. 40: 1–12.

    Article  CAS  Google Scholar 

  7. Rechsteiner, M., 1987, Ubiquitin-mediated pathways for intracellular proteolysis, Annu. Rev. Cell. Biol. 3: 1–30.

    Article  PubMed  CAS  Google Scholar 

  8. Goldberg, A. L., and Goff, S. A., 1986, The selective degradation of abnormal proteins in bacteria, in: Maximizing Gene Expression (W. Reznikoff and L. Gold, eds.), Butterworths, Boston, pp. 287–314.

    Google Scholar 

  9. Gottesman, S., Gottesman, M., Shaw, J. E., and Pearson, M. L., 1981, Protein degradation in E. coli: The lon mutation and bacteriophage lambda N and cII protein stability, Cell 24: 225–233.

    Article  PubMed  CAS  Google Scholar 

  10. Goff, S. A., and Goldberg, A. L., 1985, Production of abnormal proteins in E. coli stimulates transcription of lon and other heat shock genes, Cell 41: 587–595.

    Article  PubMed  CAS  Google Scholar 

  11. Croy, R. G., and Pardee, A. B., 1983, Enhanced synthesis and stabilization of M r 68,000 protein in transformed BALB/c-3T3 cells: Candidate for restriction point control of cell growth, Proc. Natl. Acad. Sci. U.S.A. 80: 4699–4703.

    Article  PubMed  CAS  Google Scholar 

  12. Spindler, K., and Berk, A. J., 1984, Rapid intracellular turnover of adenovirus 5 early region 1A proteins, J. Virol. 52: 706–710.

    PubMed  CAS  Google Scholar 

  13. Hann, S. R., and Eisenmann, R. N., 1984, Proteins encoded by the human c-myc on-cogene: Differential expression in neoplastic cells, Mol. Cell. Biol. 4: 2486–2497.

    PubMed  CAS  Google Scholar 

  14. Curan, T., Miller, A. D., Zokas, L., and Verma, I., 1984, Viral and cellular fos proteins: A comparative analysis, Cell 36: 259–268.

    Article  Google Scholar 

  15. Bahl, H., Echols, H., Strauss, D. B., Court, D., Crowl, R., and Georgopoulos, K., 1987, Induction of the heat shock response of E. coli through stabilization of σ32 by the phage cIII protein. Genes Dev. 1: 57–64.

    Article  PubMed  CAS  Google Scholar 

  16. Ho, Y. S., Wulff, D., and Rosenberg, M., 1986, Protein-nucleic interactions involved in transcription activation by the phage X regulatory protein cII, in: Regulation of Gene Expression (I. Booth and C. Higgins, eds.), Cambridge University Press, New York, pp. 79–103.

    Google Scholar 

  17. Banuett, F., Hoyt, M. A., McFarlane, L., Echols, H., and Herskowitz, I., 1986, hflB, a new E. coli locus regulating lysogeny and the level of bacteriophage λ cII protein, J. Mol. Biol. 187: 213–224.

    Article  PubMed  CAS  Google Scholar 

  18. Hoyt, M. A., Knight, D. M., Das, A., Miller, H. I., and Echols, H., 1982, Control of phage X development by stability and synthesis of cII protein: Role of the viral cIII and host hfl A, him A and him D genes, Cell 31: 565–573.

    Article  PubMed  CAS  Google Scholar 

  19. Grossman, A. D., Erickson, J. W., and Gross, C. A., 1984, The htpr gene product in E. coli stimulates transcription of lon and heat shock genes, Cell 38: 383–390.

    Article  PubMed  CAS  Google Scholar 

  20. Neidhardt, F. C., Van Bogelen, R. A., and Vaughn, V., 1984, The genetics and regulation of heat shock proteins, Annu. Rev. Genet. 18: 295–329.

    Article  PubMed  CAS  Google Scholar 

  21. Grossman, A. D., Strauss, D. B., Walter, W. A., and Gross, C. A., 1987, σ32 synthesis can regulate the synthesis of heat shock proteins in E. coli, Genes Dev. 1: 179–184.

    Article  PubMed  CAS  Google Scholar 

  22. Nasmyth, K., 1983, Molecular analysis of the cell lineage, Nature 320: 670–674.

    Article  Google Scholar 

  23. Sternberg, P. W., Stern, M. J., Clark, I., and Herskowitz, I., 1987, Activation of the yeast HO gene by release from multiple negative controls, Cell 48: 567–577.

    Article  PubMed  CAS  Google Scholar 

  24. Bigelow, S., Hough, R., and Rechsteiner, M., 1981, The selective degradation of injected proteins occurs principally in the cytosol rather than in lysosomes, Cell 25: 83–93.

    Article  PubMed  CAS  Google Scholar 

  25. Jones, E. W., 1984, The synthesis and function of proteases in Saccharomyces: Genetic approaches, Annul. Rev. Genet. 18: 233–270.

    Article  CAS  Google Scholar 

  26. Finley, D., Ciechanover, A., and Varshavsky, A., 1984, Thermolability of ubiquitin-activating enzyme from the mammalian cell cycle mutant ts85, Cell 37: 43–55.

    Article  PubMed  CAS  Google Scholar 

  27. Ciechanover, A., Finley, D., and Varshavsky, A., 1984, Ubiquitin dependence of selective protein degradation demonstrated in the mammalian cell cycle mutant ts85, Cell 37: 57–66.

    Article  PubMed  CAS  Google Scholar 

  28. Finley, D. Özkaynak, E., and Varshavsky, A., 1987, The yeast polyubiquitin gene is essential for resistance to high temperatures, starvation and other stresses, Cell 48: 1035–1046.

    Article  PubMed  CAS  Google Scholar 

  29. Özkaynak, E., Finley, D., and Varshavsky, A., 1984, The yeast ubiquitin gene: Head-to-tail repeats encoding a polyubiquitin precursor protein, Nature 312: 663–666.

    Article  PubMed  Google Scholar 

  30. Özkaynak, E., Finley, D., Solomon, M. J., and Varshavsky, A., 1987, The yeast ubiquitin genes: A family of natural gene fusions, EMBO J. 6: 1429–1439.

    PubMed  Google Scholar 

  31. Bachmair, A., Finley, D., and Varshavsky, A., 1986, In vivo half-life of a protein is a function of its amino-terminal residue, Science 234: 179–186.

    Article  PubMed  CAS  Google Scholar 

  32. Jentsch, S., McGrath, J. P., and Varshavsky, A., 1987, The yeast DNA repair gene RAD6 encodes a ubiquitin-conjugating enzyme, Nature 329: 131–134.

    Article  PubMed  CAS  Google Scholar 

  33. Blobel, G., 1980, Intracellular protein topogenesis, Proc. Natl. Acad. Sci. U.S.A. 77: 1496–1500.

    Article  PubMed  CAS  Google Scholar 

  34. Schatz, G., 1987, Signals guiding proteins to their correct locations in mitochondria, Eur. J. Biochem. 165: 1–6.

    Article  PubMed  CAS  Google Scholar 

  35. Walter, P., and Lingappa, V., 1986, Mechanism of protein translocation across the endoplasmic reticulum, Annu. Rev. Cell Biol. 2: 499–516.

    Article  PubMed  CAS  Google Scholar 

  36. Haas, A. L., and Bright, P. M., 1987, The dynamics of ubiquitin pools within cultured human lung fibroblasts, J. Biol. Chem. 262: 345–351.

    PubMed  CAS  Google Scholar 

  37. Pickart, C. M., and Rose, I. A., 1985, Functional heterogeneity of ubiquitin carrier proteins, J. Biol. Chem. 260: 1573–1581.

    PubMed  CAS  Google Scholar 

  38. Hershko, A., Heller, H., Elias, S., and Ciechanover, A., 1983, Components of the ubiquitin-protein ligase system, J. Biol. Chem. 258: 8206–8214.

    PubMed  CAS  Google Scholar 

  39. Hershko, A., Heller, H., Eytan, E., Kaklij, G., and Rose, I. A., 1984, Role of the α-amino group of protein in ubiquitin-mediated protein breakdown, Proc. Natl. Acad. Sci. U.S.A. 81: 7021–7025.

    Article  PubMed  CAS  Google Scholar 

  40. Messing, J., and Vieira, J., 1982, A new pair of M13 vectors for selecting either DNA strand of double-digest restriction fragments, Gene 19: 269–276.

    Article  PubMed  CAS  Google Scholar 

  41. Smith, M., 1985, In vitro mutagenesis, Annu. Rev. Genet. 19: 423–462.

    Article  PubMed  CAS  Google Scholar 

  42. Levitt, M., 1978, A simplified representation of protein conformation for rapid simulation of protein folding, J. Mol. Biol. 104: 59–107.

    Article  Google Scholar 

  43. Hershko, A., and Heller, H., 1985, Occurrence of a polyubiquitin structure in ubiquitin-protein conjugates, Biochem. Biophys. Res. Commun. 128: 1079–1086.

    Article  PubMed  CAS  Google Scholar 

  44. Hough, R., and Rechsteiner, M., 1986, Ubiquitin-lysozyme conjugates: Purification and succeptibility to proteolysis, J. Biol. Chem. 261: 2391–2399.

    PubMed  CAS  Google Scholar 

  45. Chin, D. T., Carlson, N., Kuehl, L., and Rechsteiner, M., 1986, The degradation of guanidinated lysozyme in reticulocyte lysate, J. Biol. Chem. 261: 3883–3890.

    PubMed  CAS  Google Scholar 

  46. Hershko, A., and Rose, I.A., 1987, Ubiquitin-aldehyde: A general inhibitor of ubiquitin-recycling processes, Proc. Natl. Acad. Sci. U.S.A. 84: 1829–1833.

    Article  PubMed  CAS  Google Scholar 

  47. Jones, M. O., and Herskowitz, I., 1978, Mutants of bacteriophage X which do not require the cIII gene for efficient lysogenization, Virology 88: 199–206.

    Article  PubMed  CAS  Google Scholar 

  48. Lane, C., Shannon, S., and Craig, R., 1979, Sequestration and turnover of guinea-pig milk proteins and chicken ovalbumin in Xenopus oocytes, Eur. J. Biochem. 101: 485–495.

    Article  PubMed  CAS  Google Scholar 

  49. Tsunasawa, S., Steward, J. W., and Sherman, F., 1985, Amino-terminal processing of mutant forms of yeast iso-1-cytochrome c: The specificities of methionine aminopeptidase, J. Biol. Chem. 260: 5382–5391.

    PubMed  CAS  Google Scholar 

  50. Sherman, F., Stewart, J. W., and Tsunasawa, S., 1985, Methionine or not methionine at the beginning of a protein, BioEssays 3: 27–31.

    Article  PubMed  CAS  Google Scholar 

  51. Boissel, J. P., Kasper, T. J., Shah, S., Malone, J. I., and Bunn, H. F., 1985, Aminoterminal processing of proteins: Hemoglobin South Florida, a variant with retention of initiator methionine and N-acetylation, Proc. Natl. Acad. Sci. U.S.A. 82: 8448–8452.

    Article  PubMed  CAS  Google Scholar 

  52. Ben-Bassat, A., Bauer, K., Chang, S. Y., Myambo, K., Boosman, A., and Chang, S., 1987, Processing of the initiation methionine from proteins: Properties of the E. coli methionine aminopeptidase and its gene structure, J. Bacteriol. 169: 751–757.

    PubMed  CAS  Google Scholar 

  53. Kasper, T. J., Boissel, J. P., and Bunn, H. F., 1987, Specificity of N-terminal aminopeptidase: Analysis by site-directed mutagenesis, Abstr. ASBC Meeting, Fed. Proc. 46: 1980–1981.

    Google Scholar 

  54. Miller, C. G., Strauch, K. L., Kukral, A. M., Miller, J. L., Wingfield, P. T., Mazzei, G. J., Werlen, R. C., Graber, P., and Movva, N. R., 1987, N-terminal methionine-specific peptidase in Salmonella typhimuriwn, Proc. Natl. Acad. Sci. U.S.A. 84: 2718–2722.

    Article  PubMed  CAS  Google Scholar 

  55. Ben-Bassat, A., and Bauer, K., 1987, Amino-terminal processing of proteins, Nature 326: 315–316.

    Article  Google Scholar 

  56. Maniatis, T., Goodbourn, S., and Fischer, J., 1987, Regulation of inducible and tissue-specific gene expression, Science 236: 1237–1244.

    Article  PubMed  CAS  Google Scholar 

  57. Hershko, A., Heller, H., Eytan, E., and Reiss, Y., 1986, The protein substrate binding site of the ubiquitin-protein ligase system, J. Biol. Chem. 261: 11992–11999.

    PubMed  CAS  Google Scholar 

  58. Backer, J., and Dice, J., 1986, Covalent linkage of ribonuclease S-peptide to microinjected proteins causes their intracellular degradation to be enhanced during serum withdrawal, Proc. Natl. Acad. Sci. U.S.A. 80: 996–1000.

    Google Scholar 

  59. Ahlberg, J., Berkenstam, A., Henell, F., and Glaumann, H., 1985, Degradation of short and long lived proteins in isolated rat liver lysosomes, J. Biol. Chem. 260: 5847–5854.

    PubMed  CAS  Google Scholar 

  60. Dean, R. T., 1984, Modes of access of macromolecules to the lysosomal interior, Biochem. Soc. Trans. 12: 911–913.

    PubMed  CAS  Google Scholar 

  61. Soffer, R. L., 1980, Biochemistry and biology of aminoacyl-tRNA-protein transferases, in: Transfer RNA: Biological Aspects (D. Soll, J. Abelson, and P. R. Schimmel, eds.), Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, pp. 493–505.

    Google Scholar 

  62. Deutch, C., 1984, Aminoacyl-tRNA:Protein transferases, Methods Enzymol. 106: 198–205.

    Article  PubMed  CAS  Google Scholar 

  63. Kaji, H., 1976, Amino-terminal arginylation of chromosomal proteins by arginyl-tRNA, Biochemistry 15: 5121–5125.

    Article  PubMed  CAS  Google Scholar 

  64. Shyne-Athwal, S., Riccio, R. V., Chakraborty, G., and Ingolia, N. A., 1986, Protein modification by amino acid addition is increased in crushed siatic but not optic nerves, Science 231: 603–605.

    Article  PubMed  CAS  Google Scholar 

  65. Ferber, S., and Ciechanover, A., 1986, Transfer RNA is required for conjugation of ubiquitin to selective substrates of the ubiquitin-and ATP-dependent proteolytic system, J. Biol. Chem. 261: 3128–3134.

    PubMed  CAS  Google Scholar 

  66. Ferber, S., and Ciechanover, A., 1987, Role of arginine-tRNA in protein degradation by the ubiquitin pathway, Nature 326: 808–810.

    Article  PubMed  CAS  Google Scholar 

  67. Rogers, S., Wells, R., and Rechsteiner, M., 1987, Amino acid sequences common to rapidly degraded proteins: The PEST hypothesis, Science 234: 364–368.

    Article  Google Scholar 

  68. Thornton, J. M., and Sibanda, B. L., 1983, Amino and carboxy-terminal regions in globular proteins, J. Mol. Biol. 167: 443–460.

    Article  PubMed  CAS  Google Scholar 

  69. Rote, K. V., and Rechsteiner, M., 1986, Degradation of proteins microinjected into HeLa cells: The role of substrate flexibility, J. Biol. Chem. 261: 15430–15436.

    PubMed  CAS  Google Scholar 

  70. Volz, K. W., Mathews, D. A., Alden, R. A., Freer, S. T., Hansch, C., Kaufman, B. T., and Kraut, J., 1982, Crystal structure of avian dihydrofolate reductase containing phenyltriazine and NADPH, J. Biol. Chem. 257: 2528–2536.

    PubMed  CAS  Google Scholar 

  71. Stubiquitiner, D., Ibrahimi, I., Cutler, D., Dobberstein, B., and Bujard, H., 1984, A novel in vitro transcription-translation system: Accurate and efficient synthesis of single proteins from cloned DNA sequences, EMBO J. 3: 3143–3148.

    Google Scholar 

  72. Guarente, L., 1983, Yeast promoters and lacZ fusions designed to study expression of cloned genes in yeast, Methods Enzymol. 101: 181–191.

    Article  PubMed  CAS  Google Scholar 

  73. Lawrence, C. W., 1982, Mutagenesis in Saccharomyces cerevisiae, Adv. Genet. 21: 173–254.

    Article  PubMed  CAS  Google Scholar 

  74. Reynolds, P., Weber, S., and Prakash, L., 1985, RAD6 gene of Saccharomyces cerevisiae encodes a protein containing a tract of 13 consecutive aspartates, Proc. Natl. Acad. Sci. U.S.A. 82: 168–172.

    Article  PubMed  CAS  Google Scholar 

  75. Busch, H., and Goldknopf, I. L., 1981, Ubiquitin-protein conjugates, Mol. Cell. Biochem. 40: 173–187.

    Article  PubMed  CAS  Google Scholar 

  76. Levinger, L., and Varshavsky, A., 1982, Selective arrangement of ubiquitinated and Dl-containing nucleosomes within the Drosophila genome, Cell 28: 375–385.

    Article  PubMed  CAS  Google Scholar 

  77. Perry, G., Friedman, R., Shaw, G., and Chau, V., 1987, Ubiquitin is detected in neurofibrillary tangles and senile plaque neurites of Alzheimer disease brains, Proc. Natl. Acad. Sci. U.S.A. 84: 3033–3036.

    Article  PubMed  CAS  Google Scholar 

  78. Mori, H., Kondo, J., and Ihara, Y., 1987, Ubiquitin is a component of paired helical filaments in Alzheimer’s disease, Science 235: 1641–1644.

    Article  PubMed  CAS  Google Scholar 

  79. Amann, E., and Brosius, J., 1985, “ATG” vectors for regulated high-level expression of cloned genes in E. coli, Gene 40: 183–190.

    Article  PubMed  CAS  Google Scholar 

  80. Ullman, A., 1984, One-step purification of hybrid proteins which have β-galactosidase activity, Gene 29: 27–31.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer Science+Business Media New York

About this chapter

Cite this chapter

Varshavsky, A., Bachmair, A., Finley, D., Gonda, D., Wünning, I. (1988). The N-End Rule of Selective Protein Turnover. In: Rechsteiner, M. (eds) Ubiquitin. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-2049-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-2049-2_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-2051-5

  • Online ISBN: 978-1-4899-2049-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics