Skip to main content

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 441))

Abstract

Hepatic glucose production increases during exercise as a sum of liver glycogenolysis and gluconeogenesis. Whereas the former dominates during intense exercise, the latter contributes substantially with prolonged exercise and the concomitant decline in liver glycogen stores and with increased gluconeogenic precursor supply. Afferent neural feedback signals from contracting muscle and feedback signals mediated via the blood stream, can stimulate glucose production to maintain euglycemia. A rise in blood glucose directly inhibits hepatic glucose production, whereas a decline in blood glucose enhances liver glucose production via release of glucoregulatory hormones. In addition to this, central mechanisms coupled to the degree of motor center activity can be responsible for part of the increase in glucose mobilization, especially during intense exercise where hepatic glucose release exceeds peripheral glucose uptake and plasma glucose rises. A decline in plasma insulin is important for the rise in glucose production during exercise in a variety of species, whereas an increase in plasma glucagon is probably more important in other species than man, where glucagon plays a role only in prolonged exercise. Sympathetic nervous activity to the liver and circulating norepinephrine has been demonstrated to be without any role in glucose production, whereas epinephrine has a minor stimulating effect on hepatic glucose mobilization during intense exercise. Growth hormone and cortisol contribute only minimally to the exercise induced rise in liver glucose output.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahlborg, G., Felig, P., Hagenfeldt, L., Hendler, R., Wahren, J. Substrate turnover during prolonged exercise in man. J. Clin. Invest. 53: 1080–1090, 1974.

    Article  PubMed  CAS  Google Scholar 

  2. Ahlborg, G., Felig, P. Lactate and glucose exchange across the forearm, legs, and splanchnic bed during and after prolonged leg exercise. J. Clin. Invest. 69: 45–54, 1982.

    Article  PubMed  CAS  Google Scholar 

  3. Arnall, D.A., Marker, J.C., Conlee, R.K., Winder, W.W. Effect of infusing epinephrine on liver and muscle glycogenolysis during exercise in rats. Am. J. Physiol. 250: E641–E649, 1986.

    PubMed  CAS  Google Scholar 

  4. Björkman, O., Eriksson, L.S. Splanchnic glucose metabolism during leg exercise in 60-hour-fasted human subjects. Am. J. Physiol. 245: E443–E448, 1983.

    PubMed  Google Scholar 

  5. Brockman, R.P. Effect of somatostatin on plasma glucagon and insulin, and glucose turnover in exercising sheep. J. Appl. Physiol. 47: 273–278, 1979.

    PubMed  CAS  Google Scholar 

  6. Brooks, G.A., Butterfield, G.E., Wolfe, R.R., Groves, B.M., Mazzeo, R.S., Sutton, J.R., Wolfel, E.E., Reeves, J.T. Increased dependence on blood glucose after acclimatization to 4300 m. J. Appl. Physiol. 70: 919–927, 1991.

    Article  PubMed  CAS  Google Scholar 

  7. Calles, J., Cunningham, J.J., Nelson, L., Brown, N., Nadel, E., Sherwin, R.S., Felig, P. Glucose turnover during recovery from intense exercise. Diabetes 32: 734–738, 1983.

    PubMed  CAS  Google Scholar 

  8. Carlson, K.I., Marker, J.C., Arnall, D.A., Terry, M.L., Yang, H.T., Lindsay, L.G., Bracken, M.E., Winder, W.W. Epinephrine is unessential for stimulation of liver glycogenolysis during exercise. J. Appl. Physiol. 58: 544–548, 1985.

    PubMed  CAS  Google Scholar 

  9. Carraro, F., Hartl, W.H., Stuart, C.A., Layman, D.K., Jahoor, F., Wolfe, R.R. Whole body and plasma protein synthesis in exercise and recovery in human subjects. Am. J. Physiol. 258: E821–E831, 1990.

    PubMed  CAS  Google Scholar 

  10. Coggan, A.R., Kohrt, W.M., Spina, R.J., Bier, D.M., Holloszy, J.O. Endurance training decreases plasma glucose turnover and oxidation during moderate-intensity exercise in men. J. Appl. Physiol. 68: 990–996, 1990.

    PubMed  CAS  Google Scholar 

  11. Coker, R.H., Krishna, M.G., Brooks Lacy, D., Allen, E.J., Wasserman, D.H. Sympathetic drive to liver and nonhepatic splanchnic tissue during heavy exercise. J. Appl. Physiol. 82: 1244–1249, 1997.

    PubMed  CAS  Google Scholar 

  12. Coker, R.H., Krishna, M.G., Brooks Lacy, D., Bracy, D.P., Wasserman, D.H. Role of hepatic alpha-and beta-adrenergic receptor stimulation on hepatic glucose production during heavy exercise. Am. J. Physiol. 273: E831–E838, 1997.

    PubMed  CAS  Google Scholar 

  13. Cooper, D.M., Wasserman, D.W., Vranic, M., Wasserman, K. Glucose turnover in response to exercise during high-and low-Flo2 breathing in man. Am. J. Physiol. 251: E209–E214, 1986.

    PubMed  CAS  Google Scholar 

  14. Dohm, G.L., Kasperek, G.J., Topscott, E.B., Beecher, G.R. Effect of exercise on synthesis and degradation of muscle protein. Biochem. J. 188: 255–262, 1980.

    PubMed  CAS  Google Scholar 

  15. Dohm, G.L., Kasperek, G.J., Barakat, H.A. Time course of changes in gluconeogenic enzyme activities during exercise and recovery. Am. J. Physiol. 249: E6–E11, 1985.

    PubMed  CAS  Google Scholar 

  16. Friedman, J.E. Role of clucocorticoids in activation of hepatic PEPCK gene transcription during exercise. Am. J. Physiol. 266: E560–E566, 1994.

    PubMed  CAS  Google Scholar 

  17. Hirsch, LB., Marker, J.C., Smith, L.J., Holloszy, J.O., Cryer, P.E. Insulin and glucagon in prevention of hypoglycemia during exercise in humans. Am. J. Physiol. 260: E695–E704, 1991.

    PubMed  CAS  Google Scholar 

  18. Hoelzer, D.R., Dalsky, G.P., Clutter, W.E., Shah, S.D., Holloszy, J.O., Cryer, P.E. Glucoregulation during exercise: hypoglycemia is prevented by redundant glucoregulatory systems, sympathocromaffin activation and changes in islet hormone secretion. J. Clin. Invest. 77: 212–221, 1986.

    Article  PubMed  CAS  Google Scholar 

  19. Hoelzer, D.R., Dalsky, G.P., Schwartz, N.S., Clutter, W.E., Shah, S.D., Holloszy, J.O., Cryer, P.E. Epinephrine is not critical to prevention of hypoglycemia during exercise in humans. Am. J. Physiol. 251: E104–E110, 1986.

    PubMed  CAS  Google Scholar 

  20. Howlett, K., Loretsen, J., Bergeron, R., Zimmerman-Belsing, T., Bülow, J., Galbo, H., Feldt Rasmussen, U., Hargreaves, M., Kjær, M. Effect of adrenaline on glucose kinetics during exercise in adrenalectomized subjects. Abstract-Meeting on Biochemistry of Exercise, Sydney, 1997.

    Google Scholar 

  21. Hua, X. Studies on the regulation of exercise induced muscular uptake and hepatic production of glucose. Ph.D.-thesis, Faculty of Natural Sciences, University of Copenhagen, Denmark, 1993.

    Google Scholar 

  22. Hultman, E., Nilsson, L.H. Liver glycogen in man. Effect of different diets and muscular exercise. Advan. Exp. Med. Biol. 11: 143–151, 1971

    Article  Google Scholar 

  23. Issekutz, B. The role of hypoinsulinemia in exercise metabolism. Diabetes 29: 629–635, 1980.

    PubMed  CAS  Google Scholar 

  24. Issekutz, B. Effects of glucose infusion on hepatic and muscle glycogenolysis in exercising dogs. Am. J. Physiol. 240: E451–E457, 1981.

    PubMed  CAS  Google Scholar 

  25. Jenkins, A.B., Chisholm, D.J., James, D.E., Ho, K.Y., Kraegen, E.W. Exercise-induced hepatic glucose output is precisely sensitive to the rate of systemic glucose supply. Metabolism 34: 431–441, 1985.

    Article  PubMed  CAS  Google Scholar 

  26. Jenkins, A.B., Furier, S.M., Chisholm, D.J., Kraegen, A.B. Regulation of hepatic glucose output during exercise by circulating glucose and insulin in humans. Am. J. Physiol. 250: R411–R417, 1986.

    PubMed  CAS  Google Scholar 

  27. Kjær, M., Farrell, P.A., Christensen, N.J., Galbo, H. Increased epinephrine response and inaccurate glucoregulation in exercising athletes. J. Appl. Physiol. 61: 1693–1700, 1986.

    PubMed  Google Scholar 

  28. Kjær, M., Secher, N.H., Bach, F.W., Galbo, H. Role of motor center activity for hormonal changes and substrate mobilization in humans. Am. J. Physiol. 253: R687–R695, 1987.

    PubMed  Google Scholar 

  29. Kjær, M., Secher, N.H., Bach, F.W., Sheikh, S., Galbo, H. Hormonal and metabolic responses to exercise in humans: Effect of sensory nervous blockade. Am. J. Physiol. 257: E95–E101, 1989.

    PubMed  Google Scholar 

  30. Kjær, M., Kiens, B., Hargreaves, M., Richter, E.A. Influence of active muscle mass on glucose homeostasis during exercise in humans. J. Appl. Physiol. 71: 552–557, 1991.

    PubMed  Google Scholar 

  31. Kjær, M., Engfred, K., Fernandes, A., Secher, N.H., Galbo, H. Influence of sympathoadrenergic activity on hepatic glucose production during exercise in man. Am. J. Physiol. 265: E275–E283, 1993.

    PubMed  Google Scholar 

  32. Kjær, M., Jurlander, J., Galbo, H., Kirkegaard, P., Keiding, S., Hage, E. No reinnervation of sympathetic hepatic nerves after livertransplantation in humans. J. Hepatol. 20: 97–100, 1994.

    Article  PubMed  Google Scholar 

  33. Kjær, M., Engfred, K., Galbo, H., Sonne, B., Rasmussen, K., Keiding, S. Glucose homeostasis during exercise in humans with a liver or kidney transplant. Am. J. Physiol. 268: E636–E644, 1995.

    PubMed  Google Scholar 

  34. Kjær, M., Pollack, S.F, Weiss, H., Gleim, G.W., Galbo, H., Ragnarsson, K.T. Regulation of glucose turnover and hormonal responses during exercise: Electrically induced cycling in tetraplegic individuals. Am. J. Physiol. 271: R191–R199, 1996.

    PubMed  Google Scholar 

  35. Kjær, M., Secher, N.H., Bangsbo, J., Perko, G., Horn, A., Mohr, T., Galbo, H. Hormonal and metabolic responses to electrically induced cycling during epidural anesthesia in humans. J. Appl. Physiol. 80: 2156–2162, 1996.

    Article  PubMed  Google Scholar 

  36. Marker, J.C., Arnall, D.A., Conlee, R.K., Winder, W.W. Effect of adrenodemedullation on metabolic responses to high intensity exercise. Am. J. Physiol. 251: R552–R559, 1986.

    PubMed  CAS  Google Scholar 

  37. Marker, J.C., Hirsch, LB., Smith, L.J., Parvin, C.A., Holloszy, J.O., Cryer, P.E. Catecholamines in prevention of hypoglycemia during exercise in humans. Am. J. Physiol. 260: E705–E712, 1991.

    PubMed  CAS  Google Scholar 

  38. Marliss, E.B., Simantirakis, E., Miles, P.D.G., Purdon, C., Gougeon, R., Field, C.J., Halter, J.B., Vranic, M. Glucoregulatory and hormonal responses to repeated bouts of intense exercise in normal male subjects. J. Appl. Physiol. 71: 924–933, 1991.

    PubMed  CAS  Google Scholar 

  39. Moates, J.M., Lacy, D.B., Cherrington, A.D., Goldstein, R.E., Wasserman, D.H. The metabolic role of the exercise-induced increment in epinephrine. Am. J. Physiol. 255: E428–E436, 1988.

    PubMed  CAS  Google Scholar 

  40. Reichard, G.A., Issekutz, B. Jr., Kimbel, P., Putnam, R.C., Hochella, N.J., Weinhouse, S. Blood glucose metabolism in man during muscular work. J. Appl. Physiol. 16: 1001–1005, 1961.

    PubMed  CAS  Google Scholar 

  41. Richter, E.A., Galbo, H., Holst, J.J., Sonne, B. Significance of glucagon for insulin secretion and hepatic glycogenolysis during exercise in rats. Horm. Metab. Res. 13: 323–326, 1981.

    Article  PubMed  CAS  Google Scholar 

  42. Rowell, L.B., Masoro, E.J., Spencer, M.J. Splanchnic metabolism in exercising man. J. Appl. Physiol. 20: 1032–1037, 1965.

    PubMed  CAS  Google Scholar 

  43. Sigal, R.J., Purdon, C., Bilinski, D., Vranic, M., Halter, J.B., Marliss, E.B. Glucoregulation during and after intense exercise: effects of beta-blockade. J. Clin. Endocrinol. Metab. 78: 359–366, 1994.

    Article  PubMed  CAS  Google Scholar 

  44. Sigal, R.J., Fisher, S.F., Halter, J.B., Vranic, M., Marliss, E.B. Te roles of catecholamines in glucoregulation in intense exercise as defined by te islet cell clamp technique. Diabetes 45: 148–156, 1996.

    Article  PubMed  CAS  Google Scholar 

  45. Sonne, B., Galbo, H. Carbohydrate metabolism during and after exercise in rats: Studies with radioglucose. J. Appl. Physiol. 59: 1627–1639, 1985a.

    PubMed  CAS  Google Scholar 

  46. Sonne, B., Mikines, K.J., Richter, E.A., Christensen, N.J., Galbo, H. Role of liver nerves and adrenal medulla in glucose turnover of running rats. J. Appl. Physiol. 59: 1640–1646, 1985b.

    PubMed  CAS  Google Scholar 

  47. Sonne, B., Mikines, K.J., Galbo, H. Glucose turnover in 48-hour-fasted running rats. Am. J. Physiol. 252: R587–R593, 1987.

    PubMed  CAS  Google Scholar 

  48. Vissing, J., Sonne, B., Galbo, H. Role of metabolic feedback regulation in glucose production of running rats. Am. J. Physiol. 255: R400–R406, 1988a.

    PubMed  CAS  Google Scholar 

  49. Vissing, J., Sonne, B., Galbo, H. Regulation of hepatic glucose production in running rats studied by glucose infusion. J. Appl. Physiol. 65: 2552–2557, 1988b.

    PubMed  CAS  Google Scholar 

  50. Vissing, J., Iwamoto, G.A., Rybicki, K.J., Galbo, H., Mitchell, J.H. Mobilization of glucoregulatory hormones and glucose by hypothalamic locomotor centers. Am. J. Physiol. 257: E722–E728, 1989a.

    PubMed  CAS  Google Scholar 

  51. Vissing, J., Wallace, J.L., Scheurink, A.J.W., Galbo, H., Steffens, A.B. Ventromedial hypothalamic regulation of hormonal and metabolic responses to exercise. Am. J. Physiol. 256: R1019–R1026, 1989b.

    PubMed  CAS  Google Scholar 

  52. Vissing, J., Lewis, S.F., Galbo, H., Haller, R.G. Effect of deficient muscular glycogenolysis on extramuscular fuel production in exercise. J. Appl. Physiol. 72: 1773–1779, 1992.

    PubMed  CAS  Google Scholar 

  53. Vissing, J., Iwamoto, G.A., Fuchs, I.E., Galbo, H., Mitchell, J.H. Reflex control of glucoregulatory exercise responses by group III and IV muscle afferents. Am. J. Physiol. 266: R824–R830, 1994.

    PubMed  CAS  Google Scholar 

  54. Vissing, J., Galbo, H., Haller, R. Paradoxically enhanced glucose production during exercise in humans with blocked glycolysis due to muscle phosphofructokinase deficiency. Neurology 47: 766–771, 1996.

    Article  PubMed  CAS  Google Scholar 

  55. Vissing, J., Galbo, H., Haller, R.G. Exercise fuel metabolism in mitochondrial myopathy: a metabolic dilemma. Ann. Neurol. 40: 655–662, 1996.

    Article  PubMed  CAS  Google Scholar 

  56. Vranic, M., Kawamori, R., Pek, S., Kovacevic, N., Wrenshall, G. The essentiality of insulin and the role of glucagon in regulating glucose utilization and production during strenuous exercise in dogs. J. Clin. Invest. 57: 245–256, 1976.

    Article  PubMed  CAS  Google Scholar 

  57. Wahren, J., Felig, P., Ahlborg, G., Jorfeldt, L. Glucose metabolism during leg exercise in man. J. Clin. Invest. 50: 2715–2725, 1971.

    Article  PubMed  CAS  Google Scholar 

  58. Wahren, J., Hagenfeldt, L., Felig, P. Splanchnic and leg exchange of glucose, amino acids, and free fatty acids during exercise in diabetes mellitus. J. Clin. Invest. 55: 1303–1314, 1975.

    Article  PubMed  CAS  Google Scholar 

  59. Wasserman, D.H., Lacy, D.B., Green, D.R., Williams, P.E., Cherrington, A.D. Dynamics of hepatic lactate and glucose balances during prolonged exercise and recovery in the dog. J. Appl. Physiol. 63: 2411–2417, 1987.

    PubMed  CAS  Google Scholar 

  60. Wasserman, D.H., Williams, P.E., Lacy, D.B., Green, D.R., Cherrington, A.D. Importance of intrahepatic mechanisms to gluconeogenesis from alanine during exercise and recovery. Am. J. Physiol. 254: E518–E525, 1988.

    PubMed  CAS  Google Scholar 

  61. Wasserman, D.H., Spalding, J.A., Lacy, D.B., Colburn, C.A., Goldstein, R.E., Cherrington, A.D. Glucagon is a primary controller of hepatic glycogenolysis and gluconeogenesis during muscular work. Am. J. Physiol. 257: E108–E117, 1989a.

    PubMed  CAS  Google Scholar 

  62. Wasserman, D.H., Williams, P.E., Lacy, D.B., Goldstein, R.E., Cherrington, A.D. Exercise induced fall in insulin and hepatic carbohydrate metabolism during muscular work. Am. J. Physiol. 256: E500–E509, 1989b.

    PubMed  CAS  Google Scholar 

  63. Wasserman, D.H., Williams, P.E., Lacy, D.B., Bracy, D., Cherrington, A.D. Hepatic nerves are not essential to the increase in hepatic glucose production during muscular work. Am. J. Physiol. 259: E195–E203, 1990.

    PubMed  CAS  Google Scholar 

  64. Wasserman, D.H., Lacy, D.B., Colburn, C.A., Bracy, D., Cherrington, A.D. Efficiency of compensation for absence of fall in insulin during exercise. Am. J. Physiol. 261: E587–E597, 1991.

    PubMed  CAS  Google Scholar 

  65. Winder, W.W., Arogyasami, J., Yang, H.T., Thompson, K.G., Nelson, A., Kelly, K.P., Han, D.H. Effects of glucose infusion in exercising rats. J. Appl. Physiol 64: 2300–2305, 1988.

    PubMed  CAS  Google Scholar 

  66. Wolfe, R.R., Nadel, E.R., Shaw, J.H.F., Stephenson, L.A., Wolfe, M.H. Role of changes in insulin and glucagon in glucose homeostasis in exercise. J. Clin. Invest. 77: 900–907, 1986.

    Article  PubMed  CAS  Google Scholar 

  67. Wolfe, R.R., George, S. Stable isotope methods for studying metabolism. Exerc. Sports Sci. Rev. 21: 3–23, 1993.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Kjær M.D., D.Sc. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kjær, M. (1998). Hepatic Glucose Production during Exercise. In: Richter, E.A., Kiens, B., Galbo, H., Saltin, B. (eds) Skeletal Muscle Metabolism in Exercise and Diabetes. Advances in Experimental Medicine and Biology, vol 441. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1928-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1928-1_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1930-4

  • Online ISBN: 978-1-4899-1928-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics