Skip to main content

Abstract

As detailed elsewhere in this volume, modification of proteins by the 76-residue ubiquitin polypeptide is involved in many aspects of protein metabolism. Among the cellular processes affected by ubiquitin-dependent reactions are chromosome structure and segregation, cell-cycle progression, receptor-mediated signal transduction, gene expression, protein localization, organelle biogenesis, antigen presentation, viral pathogenesis, and the stress response (reviewed in Hochstrasser, 1995, 1996a; Rubin and Finley, 1995; Wilkinson, 1995; Ciechanover, 1994; Hershko and Ciechanover, 1992; Finley and Chau, 1991). One type of ubiquitination, attachment of a polyubiquitin chain(s) to a protein, targets the modified protein for proteolysis by the proteasome (see references above). The ubiquitin molecules in these polyubiquitin chains are most often linked to one another by isopeptide bonds between the C-terminus of one ubiquitin and the e-amino group of lysine 48 of the next ubiquitin (Chau et al., 1989; Gregori et al., 1990; Hochstrasser et al., 1991). There is also evidence that polyubiquitin chains can be formed with isopeptide linkages involving lysines 6, 11 (Baboshina and Haas, 1996), 29 (Arnason and Ellison, 1994), or 63 (Arnason and Ellison, 1994; Spence et al., 1995) of ubiquitin. In addition, a variety of ubiquitinlike proteins have been described (Toniolo et al., 1988; Banerji et al., 1990; Meyers et al., 1991; Kumar et al., 1993; Olvera and Wool, 1993; Linnen et al., 1993; Haas et al., 1996; Nakamura et al., 1996; Narasimhan et al., 1996; Biggins et al., 1996; Shen et al., 1996).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Amerik, A. Y, Swaminathan, S., Krantz, B. A., Wilkinson, K. D., and Hochstrasser, M., 1997, In vivo disassembly of free polyubiquitin chains by yeast Ubp14 modulates rates of protein degradation by the proteasome. EMBO J. 16:4826–4838.

    Article  PubMed  CAS  Google Scholar 

  • Anderson, M. W., Ballal, N. R., Goldknopf, I. L., and Busch, H., 1981, Protein A24 lyase activity in nucleoli of thioacetamide-treated rat liver releases histone 2A and ubiquitin from conjugated protein A24, Biochemistry 20:1100–1104.

    Article  Google Scholar 

  • Arnason, T., and Ellison, M. J., 1994, Stress resistance in Saccharomyces cerevisiae is strongly correlated with assembly of a novel type of multiubiquitin chain, Mol. Cell. Biol. 14:7876–7883.

    PubMed  CAS  Google Scholar 

  • Baboshina, O. V., and Haas, A. L., 1996, Novel multiubiquitin chain linkages catalyzed by the conjugating enzymes E2EPF and RAD6 are recognized by 26 S proteasome subunit 5, J. Biol. Chem. 271:2823–2831.

    Article  PubMed  CAS  Google Scholar 

  • Bacci, B., Cochran, E., Nunzi, M. G., Izeki, E., Mizutani, T., Patton, A., Hite, S., Sayre, L. M., Autilio Gambetti, L., and Gambetti, P., 1994, Amyloid beta precursor protein and ubiquitin epitopes in human and experimental dystrophic axons. Ultrastructural localization, Am. J. Pathol. 144: 702–710.

    PubMed  CAS  Google Scholar 

  • Baker, R. T., Tobias, J. W., and Varshavsky, A., 1992, Ubiquitin-specific proteases of Saccharomyces cerevisiae. Cloning of UBP2 and UBP3, and functional analysis of the UBP gene family, J. Biol. Chem. 267:23364–23375.

    PubMed  CAS  Google Scholar 

  • Banerjee, A., Gregori, L., Xu, Y., and Chau, V., 1993, The bacterially expressed yeast CDC34 gene product can undergo autoubiquitination to form a multiubiquitin chain-linked protein, J. Biol. Chem. 268:5668–5675.

    PubMed  CAS  Google Scholar 

  • Banjerji, J., Sands, J., Strominger, J. L., and Spies, T., 1990, A gene pair from the human major histocompatibility complex encodes large proline-rich proteins with multiple repeated motifs and a single ubiquitin-like domain, Proc. Natl. Acad. Sci. USA 87:2374–2378.

    Article  Google Scholar 

  • Beal, R., Deveraux, Q., Xia, G., Rechsteiner, M., and Pickart, C., 1996, Surface hydrophobic residues of multiubiquitin chains essential for proteolytic targeting, Proc. Natl. Acad. Sci. USA 93:861–866.

    Article  PubMed  CAS  Google Scholar 

  • Biggins, S., Ivanovska, I., and Rose, M. D., 1996, Yeast ubiquitin-like genes are involved in duplication of the microtubule organizing center, J. Cell Biol. 133:1331–1346.

    Article  PubMed  CAS  Google Scholar 

  • Chau, V., Tobias, J. W., Bachmair, A., Marriott, D., Ecker, D. J., Gonda, D. K., and Varshavsky, A., 1989, A multiubiquitin chain is confined to specific lysine in a targeted short-lived protein, Science 243:1576–1583.

    Article  PubMed  CAS  Google Scholar 

  • Ciechanover, A., 1994, The ubiquitin-proteasome proteolytic pathway, Cell 79:13–21.

    Article  PubMed  CAS  Google Scholar 

  • Cook, W. J., Jeffrey, L. C., Kasperek, E., and Pickart, C. M., 1994, Structure of tetraubiquitin shows how multiubiquitin chains can be formed, J. Mol. Biol. 236:601–609.

    Article  PubMed  CAS  Google Scholar 

  • Cox, M. J., Haas, A. L., and Wilkinson, K. D., 1986, Role of ubiquitin conformations in the specificity of protein degradation: Iodinated derivatives with altered conformation and activities, Arch. Biochem. Biophys. 250:400–409.

    Article  PubMed  CAS  Google Scholar 

  • DeMartino, G. N., Moomaw, C. R., Zagnitko, O. P., Proske, R. J., Chu-Ping, M., Afendis, S. J., Swaffield, J. C., and Slaughter, C. A., 1994, PA700, an ATP-dependent activator of the 20 S proteasome, is an ATPase containing multiple members of a nucleotide-binding protein family, J. Biol. Chem. 269:20878–20884.

    PubMed  CAS  Google Scholar 

  • Deveraux, Q., Ustrell, V., Pickart, C., and Rechsteiner, M., 1994, A 26 S protease subunit that binds ubiquitin conjugates, J. Biol. Chem. 269:7059–7061.

    PubMed  CAS  Google Scholar 

  • Di Stefano, D. L., and Wand, A. J., 1987, Two-dimensional 1H NMR study of human ubiquitin: A main chain directed assignment and structure analysis, Biochemistry 26:7272–7281.

    Article  PubMed  Google Scholar 

  • Duerksen-Hughes, P. J., Williamson, M. M., and Wilkinson, K. D., 1989, Affinity chromatography using protein immobilized via arginine residues: Purification of ubiquitin carboxyl-terminal hydrolases, Biochemistry 28:8530–8536.

    Article  PubMed  CAS  Google Scholar 

  • Dunten, R. L., and Cohen, R. E., 1989, Recognition of modified forms of ribonuclease A by the ubiquitin system, J. Biol. Chem. 264:16739–16747.

    PubMed  CAS  Google Scholar 

  • Ellison, M. J., and Hochstrasser, M., 1991, Epitope-tagged ubiquitin. A new probe for analyzing ubiquitin function, J. Biol. Chem. 266:21150–21157.

    PubMed  CAS  Google Scholar 

  • Eytan, E., Armon, T., Heller, H., Beck, S., and Hershko, A., 1993, Ubiquitin C-terminal hydrolase activity associated with the 26 S protease complex, J. Biol. Chem. 268:4668–4674.

    PubMed  CAS  Google Scholar 

  • Falquet, L., Paquet, N., Frutiger, S., Hughes, G. J., Hoang-Van, K., and Jaton, J. C., 1995, A human deubiquitinating enzyme with both isopeptidase and peptidase activities in vitro, FEBS Lett. 359:73–77.

    Article  PubMed  CAS  Google Scholar 

  • Finley, D., and Chau, V., 1991, Ubiquitination, Annu. Rev. Cell Biol. 7:25–69.

    Article  PubMed  CAS  Google Scholar 

  • Finley, D., Bartel, B., and Varshavsky, A., 1989, The tails of ubiquitin precursors are ribosomal proteins whose fusion to ubiquitin facilitates ribosome biogenesis, Nature 338:394–401.

    Article  PubMed  CAS  Google Scholar 

  • Finley, D., Sadis, S., Monia, B. P., Boucher, P., Ecker, D. J., Crooke, S. T., and Chau, V., 1994, Inhibition of proteolysis and cell cycle progression in a multiubiquitination-deficient yeast mutant, Mol. Cell. Biol. 14:5501–5509.

    PubMed  CAS  Google Scholar 

  • Fujiwara, Y, Hatano, K., Hirabayashi, T., and Miyazaki, J. I., 1994, Ubiquitin C-terminal hydrolase as a putative factor involved in sex differentiation of fish (temperate wrasse, Halichoeres poecilopterus), Differentiation 56:13–20.

    PubMed  CAS  Google Scholar 

  • Gregori, L., Poosch, M. S., Cousins, G., and Chau, V., 1990, A uniform isopeptide-linked multiubi-quitin chain is sufficient to target substrate for degradation in ubiquitin-mediated proteolysis, J. Biol. Chem. 265:8354–8357.

    PubMed  CAS  Google Scholar 

  • Gwozd, C. S., Amason, T. G., Cook, W. J., Chau, V., and Ellison, M. J., 1995, The yeast UBC4 ubiquitin conjugating enzyme monoubiquitinates itself in vivo: Evidence for an E2-E2 homo-interaction, Biochemistry 34:6296–6302.

    Article  PubMed  CAS  Google Scholar 

  • Haas, A. L., and Bright, P. M., 1985, The immunochemical detection and quantitation of intracellular ubiquitin-protein conjugates, J. Biol. Chem. 260:12464–12473.

    PubMed  CAS  Google Scholar 

  • Haas, A. L., and Bright, P. M., 1987, The dynamics of ubiquitin pools within cultured human lung fibroblasts, J. Biol. Chem. 262:345–351.

    PubMed  CAS  Google Scholar 

  • Haas, A. L., Ahrens, P., Bright, P. M, and Ankel, H., 1987, Interferon induces a 15-kilodalton protein exhibiting marked homology to ubiquitin, J. Biol. Chem. 262:11315–11323.

    PubMed  CAS  Google Scholar 

  • Haas, A. L., Baboshina, O., Williams, B., and Schwartz, L. M., 1995, Coordinated induction of the ubiquitin conjugation pathway accompanies the developmentally programmed death of insect skeletal muscle, J. Biol. Chem. 270:9407–9412.

    Article  PubMed  CAS  Google Scholar 

  • Haas, A. L., Katzung, D. J., Reback, P. M., and Guarino, L. A., 1996, Functional characterization of the ubiquitin variant encoded by the baculovirus Autographa californica, Biochemistry 35:5385–5394.

    Article  PubMed  CAS  Google Scholar 

  • Hadari, T., Warms, J. V., Rose, I. A., and Hershko, A., 1992, A ubiquitin C-terminal isopeptidase that acts on polyubiquitin chains. Role in protein degradation, J. Biol. Chem. 267:719–727.

    PubMed  CAS  Google Scholar 

  • Haldeman, M. T., Finley, D., and Pickart, C. M., 1995, Dynamics of ubiquitin conjugation during erythroid differentiation in vitro, J. Biol. Chem. 270:9507–9516.

    Article  PubMed  CAS  Google Scholar 

  • Henchoz, S., De Rubertis, F., Pauli, D., and Spierer, P., 1996, The dose of a putative ubiquitin-specific protease affects position-effect variegation in Drosophila melanogaster, Mol. Cell. Biol. 16:5717–5725.

    PubMed  CAS  Google Scholar 

  • Hershko, A., and Ciechanover, A., 1992, The ubiquitin system for protein degradation, Annu. Rev. Biochem. 61:761–807.

    Article  PubMed  CAS  Google Scholar 

  • Hershko, A., and Rose, I. A., 1987, Ubiquitin-aldehyde: A general inhibitor of ubiquitin-recycling processes, Proc. Natl. Acad. Sci. USA 84:1829–1833.

    Article  PubMed  CAS  Google Scholar 

  • Hershko, A., Eytan, E., Ciechanover, A., and Haas, A. L., 1982, Immunochemical analysis of the turnover of ubiquitin-protein conjugates in intact cells. Relationship to the breakdown of abnormal proteins, J. Biol. Chem. 257:13964–13970.

    PubMed  CAS  Google Scholar 

  • Hochstrasser, M., 1995, Ubiquitin, proteasomes, and the regulation of intracellular protein degradation, Curr. Opin. Cell Biol. 7:215–223.

    Article  PubMed  CAS  Google Scholar 

  • Hochstrasser, M., 1996a, Protein degradation or regulation: Ub the judge, Cell 84:813–815.

    Article  PubMed  CAS  Google Scholar 

  • Hochstrasser, M., 1996b, Ubiquitin-dependent protein degradation, Annu. Rev. Genet. 30:405–439.

    Article  PubMed  CAS  Google Scholar 

  • Hochstrasser, M., Ellison, M. J., Chau, V., and Varshavsky, A., 1991, The short-lived Matα2 transcriptional regulator is ubiquitinated in vivo, Proc. Natl. Acad. Sci. USA 88:4606–4610.

    Article  PubMed  CAS  Google Scholar 

  • Honore, B., Rasmussen, H. H., Vandekerckhove, J., and Celis, J. E., 1991, Neuronal protein gene product 9.5 (IEF SSP 6104) is expressed in cultured human MRC-5 fibroblasts of normal origin and is strongly down-regulated in their SV40 transformed counterparts, FEBS Lett. 280:235–240.

    Article  PubMed  CAS  Google Scholar 

  • Huang, Y., Baker, R. T., and Fischer-Vize, J. A., 1995, Control of cell fate by a deubiquitinating enzyme encoded by the fat facets gene, Science 270:1828–1831.

    Article  PubMed  CAS  Google Scholar 

  • Johnson, E. S., Ma, P. C. M., Ota, I. M., and Varshavsky, A., 1995, A proteolytic pathway that recognizes ubiquitin as a degradation signal, J. Biol. Chem. 270:17442–17456.

    Article  PubMed  CAS  Google Scholar 

  • Johnston, S. C., Larsen, C. N., Cook, W. J., Wilkinson, K. D., and Hill, C. P., 1997, Crystal structure of a deubiquitinating enzyme (human UCH-L3) at 1.8 A resolution. EMBO J. 16:3787–3796.

    Article  PubMed  CAS  Google Scholar 

  • Kas, K., Michiels, L., and Merregaert, J., 1992, Genomic structure and expression of the human faugene: Encoding the ribosomal protein S30 fused to a ubiquitin-like protein, Biochem. Biophys. Res. Commun. 187:927–933.

    Article  PubMed  CAS  Google Scholar 

  • Kumar, S., Yoshida, Y., and Noda, M., 1993, Cloning of a cDNA which encodes a novel ubiquitin-like protein, Biochem. Biophys. Res. Commun. 195:393–399.

    Article  PubMed  CAS  Google Scholar 

  • Larsen, C. N., Price, J. S., and Wilkinson, K. D., 1996, Substrate binding and catalysis by ubiquitin C-terminal hydrolases: Identification of two active site residues, Biochemistry 35:6735–6744.

    Article  PubMed  CAS  Google Scholar 

  • Linnen, J. M., Bailey, C. P., and Weeks, D. L., 1993, Two related localized mRNAs from Xenopus laevis encode ubiquitin-like fusion proteins, Gene 128:181–188.

    Article  PubMed  CAS  Google Scholar 

  • Liu, C. C., Miller, H. I., Kohr, W. J., and Silber, J. I., 1989, Purification of a ubiquitin protein peptidase from yeast with efficient in vitro assays, J. Biol. Chem. 264:20331–20338.

    PubMed  CAS  Google Scholar 

  • Lowe, J., McDermott, H., Landon, M., Mayer, R. J., and Wilkinson, K. D., 1990, Ubiquitin carboxyl-terminal hydrolase (PGP 9.5) is selectively present in ubiquitinated inclusion bodies characteristic of human neurodegenerative diseases, J. Pathol. 161:153–160.

    Article  PubMed  CAS  Google Scholar 

  • Matsui, S., Sandberg, A. A., Negoro, S., Seon, B. K., and Goldstein, G., 1982, Isopeptidase: A novel eukaryotic enzyme that cleaves isopeptide bonds, Proc. Natl. Acad. Sci. USA 79:1535–1539.

    Article  PubMed  CAS  Google Scholar 

  • Mayer, A. N., and Wilkinson, K. D., 1989, Detection, resolution, and nomenclature of multiple ubiquitin carboxyl-terminal esterases from bovine calf thymus, Biochemistry 28:166–172.

    Article  PubMed  CAS  Google Scholar 

  • Medina, R., Wing, S. S., Haas, A., and Goldberg, A. L., 1991, Activation of the ubiquitin-ATP-dependent proteolytic system in skeletal muscle during fasting and denervation atrophy, Biomed. Biochim. Acta 50:347–356.

    PubMed  CAS  Google Scholar 

  • Melandri, F., Grenier, L., Plamondon, L., Huskey, W. P., and Stein, R. L., 1996, Kinetic studies on the inhibition of isopeptidase T by ubiquitin aldehyde, Biochemistry 35:12893–12900.

    Article  PubMed  CAS  Google Scholar 

  • Meyers, G., Tautz, N., Dubovi, E. J., and Thiel, H. J., 1991, Viral cytopathogenicity correlated with integration of ubiquitin-coding sequences, Virology 180:602–616.

    Article  PubMed  CAS  Google Scholar 

  • Miller, H. I., Henzel, W J., Ridgeway, J. B., Kuang, W., Chisholm, V., and Liu, C., 1989, Cloning and expression of a yeast ubiquitin-protein cleaving activity in Escherichia coli, Biotechnology 7:698–704.

    Article  CAS  Google Scholar 

  • Moazed, D., and Johnson, D., 1996, A deubiquitinating enzyme interacts with SIR4 and regulates silencing in S. cerevisiae, Cell 86:667–677.

    Article  PubMed  CAS  Google Scholar 

  • Nakamura, M., Xavier, R. M., and Tanigawa, Y, 1996, Ubiquitin-like moiety of the monoclonal nonspecific suppressor factor beta is responsible for its activity, J. Immunol. 156:532–538.

    PubMed  CAS  Google Scholar 

  • Narasimhan, J., Potter, J. L., and Haas, A. L., 1996, Conjugation of the 15-kDa interferon-induced ubiquitin homolog is distinct from that of ubiquitin, J. Biol. Chem. 271:324–330.

    Article  PubMed  CAS  Google Scholar 

  • Olvera, J., and Wool, I. G., 1993, The carboxyl extension of a ubiquitin-like protein is rat ribosomal protein S30, J. Biol. Chem. 268:17967–17974.

    PubMed  CAS  Google Scholar 

  • Özkaynak, E., Finley, D., and Varshavsky, A., 1984, The yeast ubiquitin gene: Head-to-tail repeats encoding a polyubiquitin precursor protein, Nature 312:663–666.

    Article  PubMed  Google Scholar 

  • Özkaynak, E., Finley, D., Solomon, M. J., and Varshavsky, A., 1987, The yeast ubiquitin genes: A family of natural gene fusions, EMBO J. 6:1429–1439.

    PubMed  Google Scholar 

  • Palombella, V. J., Rando, O. J., Goldberg, A. L., and Maniatis, T., 1994, The ubiquitin-proteasome pathway is required for processing the NF-kappa B1 precursor protein and the activation of NF-kappa B, Cell 78:773–785.

    Article  PubMed  CAS  Google Scholar 

  • Papa, F. R., and Hochstrasser, M., 1993, The yeast DOA4 gene encodes a deubiquitinating enzyme related to a product of the human tre-2 oncogene, Nature 366:313–319.

    Article  PubMed  CAS  Google Scholar 

  • Pickart, C. M., and Rose, I. A., 1985, Ubiquitin carboxyl-terminal hydrolase acts on ubiquitin carboxyl-terminal amides, J. Biol. Chem. 260:7903–7910.

    PubMed  CAS  Google Scholar 

  • Pickart, C. M., and Rose, I. A., 1986, Mechanism of ubiquitin carboxyl-terminal hydrolase. Borohydride and hydroxylamine inactive in the presence of ubiquitin, J. Biol. Chem. 261:10210–10217.

    PubMed  CAS  Google Scholar 

  • Rawlings, N. D., and Barrett, A. J., 1994, Families of cysteine peptidases, Methods Enzymol. 244: 461–485.

    Article  PubMed  CAS  Google Scholar 

  • Reiss, Y., Heller, H., and Hershko, A., 1989, Binding sites of ubiquitin-protein ligase. Binding of ubiquitin-protein conjugates and of ubiquitin-carrier protein, J. Biol. Chem. 264:10378–10383.

    PubMed  CAS  Google Scholar 

  • Riley, D. A., Bain, J. L., Ellis, S., and Haas, A. L., 1988, Quantitation and immunocytochemical localization of ubiquitin conjugates within rat red and white skeletal muscles, J. Histochem. Cytochem. 36:621–632.

    Article  PubMed  CAS  Google Scholar 

  • Roff, M., Thompson, J., Rodriguez, M. S., Jacque, J. M., Baleux, F., Arenzana-Seisdedos, F., and Hay, R. T., 1996, Role of IKBα ubiquitination in signal-induced activation of NFKB in vivo, J. Biol. Chem. 271:7844–7850.

    Article  PubMed  CAS  Google Scholar 

  • Rose, I. A., 1988, Ubiquitin carboxyl-terminal hydrolases, in Ubiquitin (M. Rechsteiner, ed.), pp. 135–155, Plenum Press, New York.

    Chapter  Google Scholar 

  • Rose, I. A., and Warms, J. V., 1983, An enzyme with ubiquitin carboxy-terminal esterase activity from reticulocytes, Biochemistry 22:4234–4237.

    Article  PubMed  CAS  Google Scholar 

  • Rubin, D. M., and Finley, D., 1995, Proteolysis. The proteasome: A protein-degrading organelle? Curr. Biol. 5:854–858.

    Article  PubMed  CAS  Google Scholar 

  • Ryabova, L. V., Virtanen, I., Olink-Coux, M., Scherrer, K., and Vassetzky, S. G., 1994, Distribution of prosome proteins and their relationship with the cytoskeleton in oogenesis of Xenopus laevis, Mol. Reprod. Dev. 37:195–203.

    Article  PubMed  CAS  Google Scholar 

  • Schaeffer, J. R., and Cohen, R. E., 1996, Differential effects of ubiquitin aldehyde on ubiquitin and ATP-dependent protein degradation, Biochemistry 35:10886–10893.

    Article  Google Scholar 

  • Scheffner, M., Nuber, U., and Huibregtse, J. M, 1995, Protein ubiquitination involving an E1-E2-E3 enzyme ubiquitin thioester cascade, Nature 373:81–83.

    Article  PubMed  CAS  Google Scholar 

  • Schofield, J. N., Day, I. N., Thompson, R. J., and Edwards, Y. H., 1995, PGP9.5, a ubiquitin C-terminal hydrolase; pattern of mRNA and protein expression during neural development in the mouse, Brain Res. Dev. Brain Res. 85:229–238.

    Article  PubMed  CAS  Google Scholar 

  • Shean, B. S., and Mykles, D. L., 1995, Polyubiquitin in crustacean striated muscle: Increased expression and conjugation during molt-induced claw muscle atrophy, Biochim. Biophys. Acta 1264: 312–322.

    Article  PubMed  Google Scholar 

  • Shen, Z., Pardington-Purtymun, P. E., Cary, R. B., Peterson, S. R., Comeaux, J. C., and Chen, D. J., 1996, hRAP12, a human ubiquitin-like nuclear protein that associates with human RAD51/ RAD52 proteins, FASEB J. 10:A963.

    Google Scholar 

  • Singer, J. D., Manning, B. M., and Formosa, T., 1996, Coordinating DNA replication to produce one copy of the genome requires genes that act in ubiquitin metabolism, Mol. Cell. Biol. 16:1356–1366.

    PubMed  CAS  Google Scholar 

  • Sokolik, C. W., and Cohen, R. E., 1991, The structures of ubiquitin conjugates of yeast iso-2-cytochrome c, J. Biol. Chem. 266:9100–9107.

    PubMed  CAS  Google Scholar 

  • Spence, J., Sadis, S., Haas, A. L., and Finley, D., 1995, A ubiquitin mutant with specific defects in DNA repair and multiubiquitination, Mol. Cell. Biol. 15:1265–1273.

    PubMed  CAS  Google Scholar 

  • Stein, R. L., Chen, Z., and Melandri, F., 1995, Kinetic studies of isopeptidase T: Modulation of peptidase activity by ubiquitin, Biochemistry 34:12616–12623.

    Article  PubMed  CAS  Google Scholar 

  • Swindle, J., Ajioka, J., Eisen, H., Sanwal, B., Jacquemot, C., Browder, Z., and Buck, G., 1988, The genomic organization and transcription of the ubiquitin genes of Trypanosoma cruzi, EMBO J. 7:1121–1127.

    PubMed  CAS  Google Scholar 

  • Tautz, N., Meyers, G., and Thiel, H. J., 1993, Processing of poly-ubiquitin in the polyprotein of an RNA virus, Virology 197:74–85.

    Article  PubMed  CAS  Google Scholar 

  • Tobias, J. W., and Varshavsky, A., 1991, Cloning and functional analysis of the ubiquitin-specific protease gene UBP1 of Saccharomyces cerevisiae, J. Biol. Chem. 266:12021–12028.

    PubMed  CAS  Google Scholar 

  • Toniolo, D., Persico, M., and Alcalay, M., 1988, A “housekeeping” gene on the X chromosome encodes a protein similar to ubiquitin, Proc. Natl. Acad. Sci. USA 85:851–855.

    Article  PubMed  CAS  Google Scholar 

  • Van Nocker, S., and Vierstra, R. D., 1993, Multiubiquitin chains linked through lysine 48 are abundant in vivo and are competent intermediates in the ubiquitin proteolytic pathway, J. Biol. Chem. 268:24766–24773.

    PubMed  Google Scholar 

  • Vijay-Kumar, S., Bugg, C. E., Wilkinson, K. D., Vierstra, R. D., Hatfield, P. M., and Cook, W. J., 1987, Comparison of the three-dimensional structures of human, yeast, and oat ubiquitin, J. Biol. Chem. 262:6396–6399.

    PubMed  CAS  Google Scholar 

  • Weber, P. L., Brown, S. C., and Mueller, L., 1987, Sequential 1H NMR assignments and secondary structure identification of human ubiquitin, Biochemistry 26:7282–7290.

    Article  PubMed  CAS  Google Scholar 

  • Wilkinson, K. D., 1988, Purification and structural properties of ubiquitin, in Ubiquitin (M. Rechsteiner, ed.), pp. 5–38, Plenum Press, New York.

    Chapter  Google Scholar 

  • Wilkinson, K. D., 1994, Cellular roles of ubiquitin, in Heat Shock Proteins in the Nervous System (R. J. Mayer and I. R. Brown, eds.), pp. 191–234, Academic Press, London.

    Google Scholar 

  • Wilkinson, K. D., 1995, Roles of ubiquitinylation in proteolysis and cellular regulation, Annu. Rev. Nutr. 15:161–189.

    Article  PubMed  CAS  Google Scholar 

  • Wilkinson, K. D., and Audhya, T. K., 1981, Stimulation of ATP-dependent proteolysis requires ubiquitin with the COOH—terminal sequence Arg-Gly-Gly, J. Biol. Chem. 256:9235–9241.

    PubMed  CAS  Google Scholar 

  • Wilkinson, K. D., and Mayer, A. N., 1986, Alcohol-induced conformational changes of ubiquitin, Arch. Biochem. Biophys. 250:390–399.

    Article  PubMed  CAS  Google Scholar 

  • Wilkinson, K. D., Lee, K. M., Deshpande, S., Duerksen-Hughes, P. J., Boss, J. M., and Pohl, J., 1989, The neuron-specific protein PGP 9.5 is a ubiquitin carboxyl-terminal hydrolase, Science 246: 670–673.

    Article  PubMed  CAS  Google Scholar 

  • Wilkinson, K. D., Deshpande, S., and Larsen, C. N., 1992, Comparisons of neuronal (PGP 9.5) and non-neuronal ubiquitin C-terminal hydrolases, Biochem. Soc. Trans. 20:631–637.

    PubMed  CAS  Google Scholar 

  • Wilkinson, K. D., Tashayev, V. L., O’Connor, L. B., Larsen, C. N., Kasperek, E., and Pickart, C. M., 1995, Metabolism of the polyubiquitin degradation signal: Structure, mechanism, and role of isopeptidase T, Biochemistry 34:14535–14546.

    Article  PubMed  CAS  Google Scholar 

  • Wing, S. S., Haas, A. L., and Goldberg, A. L., 1995, Increase in ubiquitin-protein conjugates concomitant with the increase in proteolysis in rat skeletal muscle during starvation and atrophy denervation, Biochem. J. 307:639–645.

    PubMed  CAS  Google Scholar 

  • Wunsch, A. M., and Haas, A. L., 1995, Ubiquitin-protein conjugates selectively distribute during early chicken embryogenesis, Dev. Dyn. 204:118–132.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, N., Wilkinson, K. D., and Bownes, M., 1993, Cloning and analysis of expression of a ubiquitin carboxyl terminal hydrolase expressed during oogenesis in Drosophila melanogaster, Dev. Biol. 157:214–223.

    Article  PubMed  CAS  Google Scholar 

  • Zhu, Y., Carroll, M., Papa, F. R., Hochstrasser, M., and D’Andrea, A. D., 1996a, DUB-1, a novel deubiquitinating enzyme with growth-suppressing activity, Proc. Natl. Acad. Sci. USA 93:3275–3279.

    Article  PubMed  CAS  Google Scholar 

  • Zhu, Y., Pless, M., Inhorn, R., Mathey-Prevot, B., and D’Andrea, A. D., 1996b, The murine DUB-1 gene is specifically induced by the beta-c subunit of the interleukin-3 receptor, Mol. Cell. Biol. 16:4808–4817.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Wilkinson, K.D., Hochstrasser, M. (1998). The Deubiquitinating Enzymes. In: Peters, JM., Harris, J.R., Finley, D. (eds) Ubiquitin and the Biology of the Cell. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1922-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1922-9_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1924-3

  • Online ISBN: 978-1-4899-1922-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics