Skip to main content

The Role of Retinoids in Developmental Mechanisms in Embryos

  • Chapter
Fat-Soluble Vitamins

Part of the book series: Subcellular Biochemistry ((SCBI,volume 30))

Abstract

It has been known since the 1920s that the appropriate level of vitamin A (retinoids) in the maternal diet is vital for the development of the embryo (Kalter and Warkany, 1959). Both too little or too much vitamin A results in characteristic defects appearing in the embryo: defects in the central nervous system, various structures of the head and neck, the heart, the limb, and the urogenital system. These studies thus revealed that excess vitamin A was teratogenic and harmful to embryos and the usual interpretation of its effects was that it was causing cell death or an inhibition of development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alexandre, D., Clarke, J. D. W., Oxtoby, E., Yan, Y.-L., Jowett, T., and Holder, N., 1996, Ectopic expression of Hoxa-1in the zebrafish alters the fate of the mandibular arch neural crest and phenocopies a retinoic acid-induced phenotype, Development 122:735–746.

    PubMed  CAS  Google Scholar 

  • Avantaggiato, V., Acampora, D., Tuorto, F., and Simeone, A., 1996, Retinoic acid induces stage-specific repatterning of the rostral central nervous system, Dev. Biol. 175:347–357.

    Article  PubMed  CAS  Google Scholar 

  • Bally-Cuif, L., Gulisano, M., Broccoli, V., and Boncinelli, E., 1995, c-otx2 is expressed in two different phases of gastrulation and is sensitive to retinoic acid treatment in chick embryos, Mech. Dev. 49:49–63.

    Article  PubMed  CAS  Google Scholar 

  • Beauchemin, M., and Savard, P., 1993, Expression of five homeobox genes in the adult newt appendages and regeneration blastemas, in Limb Regeneration and Development (J. F. Fallon, P. F. Goetinck, R. O. Kelley, and D. L. Stocum., eds.), Part A, pp. 41–50, Wiley-Liss, New York.

    Google Scholar 

  • Blumberg, B., Mangelsdorf, D. J., Dyck, J. A., Bittner, D. A., Evans, R. M., and De Robertis, E. M., 1992, Multiple retinoid-responsive receptors in a single cell: Families of retinoid “X” receptors and retinoic acid receptors in the Xenopus egg, Proc. Natl. Acad. Sci. USA 89:2321–2325.

    Article  PubMed  CAS  Google Scholar 

  • Blumberg, B., Bolado, J., Moreno, T. A., Kintner, C., Evans, R. M., and Papalopulu, N., 1997, An essential role for retinoid signalling in anteroposterior neural patterning, Development 124:373–379.

    PubMed  CAS  Google Scholar 

  • Brockes, J. P., 1992, Introduction of a retinoid reporter gene into the urodele limb blastema, Proc. Natl. Acad. Sci. USA 89:11386–11390.

    Article  PubMed  CAS  Google Scholar 

  • Brown, R., and Brockes, J. P., 1991, Identification and expression of a regeneration-specific homeobox gene in the newt limb blastema, Development 111:489–496.

    PubMed  CAS  Google Scholar 

  • Charite, J., de Graff, W., Shen, S., and Deschamps, J., 1994, Ectopic expression of Hoxb-8 causes duplication of the ZPA in the forelimb and homeotic transformations of axial structures, Cell 78:589–601.

    Article  PubMed  CAS  Google Scholar 

  • Chen, Y.-P., and Solursh, M., 1992, Comparison of Hensen’s node and retinoic acid in secondary axis induction in the early chick embryo, Dev. Dynam. 195:142–151.

    Article  CAS  Google Scholar 

  • Chen, Y.-P., Huang, L., Russo, A.F., and Solursh, M., 1992, Retinoic acid is enriched in Hensen’s node and is developmentally regulated in the early chick embryo, Proc. Natl. Acad. Sci. USA 89:10056–10059.

    Article  PubMed  CAS  Google Scholar 

  • Chen, Y.-P., Huang, L, and Solursh, M., 1994, A concentration gradient of retinoids in the early Xenopus laevis embryo, Dev. Biol. 161:70–76.

    Article  PubMed  Google Scholar 

  • Cho, K. W. Y., and De Robertis, E. M., 1990, Differential activation of Xenopus homeobox genes by mesoderm-inducing growth factors and retinoic acid, Genes Dev. 4:1910–1916.

    Article  PubMed  CAS  Google Scholar 

  • Cho, K. W. Y., Blumberg, B., Steinbeisser, H., and De Robertis, E. M., 1991, Molecular nature of Spemann’s organiser: The role of the Xenopus homeobox gene goosecoid, Cell 67:1111–1120.

    Article  PubMed  CAS  Google Scholar 

  • Cohlan, S. Q., 1953, Excessive intake of vitamin A as a cause of congenital abnormalities in the rat, Science 117:535–536.

    Article  PubMed  CAS  Google Scholar 

  • Conlon, R. A., 1995, Retinoic acid and pattern formation in vertebrates, Trends Genet, 11:314–319.

    Article  PubMed  CAS  Google Scholar 

  • Conlon, R. A., and Rossant, J., 1992, Exogenous retinoic acid rapidly induces anterior ectopic expression of murine Hox-2 genes in vivo, Development 116:357–368.

    PubMed  CAS  Google Scholar 

  • Creech-Kraft, J., Schuh, T., Juchau, M., and Kimelman, D., 1994, The retinoid X receptor ligand, 9-cis-retinoic acid, is a potential regulator of early Xenopus development, Proc. Natl. Acad. Sci. USA 91:3067–3071.

    Article  Google Scholar 

  • Cunningham, M. L., Mac Auley, A., and Mirkes, P. E., 1994, From gastrulation to neurulation: Transition in retinoic acid sensitivity identifies distinct stages of neural patterning in the rat, Dev. Dynam. 200:227–241.

    Article  CAS  Google Scholar 

  • Dekker, E.-J., Pannese, M., Houtzager, E., Boncinelli, E., and Durston, A., 1992, Colinearity in the Xenopus laevis Hox-2 complex, Mech. Dev. 40:3–12.

    Article  Google Scholar 

  • Dersch, H., and Zile, M. H., 1993, Induction of normal cardiovascular development in the vitamin A-deprived quail embryo by natural retinoids, Dev. Biol. 160:424–433.

    Article  PubMed  CAS  Google Scholar 

  • Dolle, P., Fraulob, V., Kastner, P., and Chambon, P., 1994, Developmental expression of murine retinoid X receptor (RXR) genes, Mech. Dev. 45:91–104.

    Article  PubMed  CAS  Google Scholar 

  • Durston, A. J., Timmermans, J. P. M., Hage, W. J., Hendricks, H. F. J., de Vries, N. J., Heideveld, M., and Nieuwkoop, P. D., 1989, Retinoic acid causes an anteroposterior transformation in the developing nervous system, Nature 340:140–144.

    Article  PubMed  CAS  Google Scholar 

  • Eichele, G., Tickle, C., and Alberts, B. M., 1985, Studies on the mechanism of retinoid-induced pattern duplications in the early chick limb bud: Temporal and spatial aspects, J. Cell Biol. 101:1913–1920.

    Article  PubMed  CAS  Google Scholar 

  • Ellinger-Ziegelbauer, H., and Dreyer, C., 1991, A retinoic acid receptor expressed in the early development of Xenopus laevis, Genes Dev. 5:94–105.

    Article  PubMed  CAS  Google Scholar 

  • Gale, E., Prince, V., Lumsden, A., Clarke, J., Holder, N., and Maden, M., 1996, Late effects of retinoic acid on neural crest and aspects of rhombomere identity, Development 122:783–793.

    PubMed  CAS  Google Scholar 

  • Gardiner, D. M., Blumberg, B., Komine, Y., and Bryant, S. V., 1995, Regulation of HoxA expression in developing and regenerating axolotl limbs, Development 121:1731–1741.

    PubMed  CAS  Google Scholar 

  • Heine, U. I., Roberts, A. B., Munoz, E. F., Roche, N. S., and Sporn, M. B., 1985, Effects of retinoid deficiency on the development of the heart and vascular system of the quail embryo, Virchow’s Arch. B Cell Pathol. 50:135–152.

    Article  CAS  Google Scholar 

  • Helms, J. A., Kim, C. H., Eichele, G., and Thaller, C., 1996, Retinoic acid signalling is required during early chick limb development, Development 122:1385–1394.

    PubMed  CAS  Google Scholar 

  • Hill, D. S., Ragsdale, C. W., and Brockes, J. P., 1993, Isoform-specific immunological detection of newt retinoic acid receptor d1 in normal and regenerating limbs, Development 117:937–945.

    PubMed  CAS  Google Scholar 

  • Hill, J., Clarke, J. D. W., Vargesson, N., Jowett, T., and Holder, N., 1995, Exogenous retinoic acid causes specific alterations in the development of the midbrain and hindbrain of the zebrafish embryo including positional respecification of the Mauthner neuron, Mech. Dev. 50:3–16.

    Article  PubMed  CAS  Google Scholar 

  • Holder, N., and Hill, J., 1991, Retinoic acid modifies development of the midbrain-hindbrain border and affects cranial ganglion formation in zebrafish embryos, Development 113:1159–1170.

    PubMed  CAS  Google Scholar 

  • Horton, C., and Maden, M., 1995, Endogenous distribution of retinoids during normal development and teratogenesis in the mouse embryo, Dev. Dynam. 202:312–323.

    Article  CAS  Google Scholar 

  • Izpisua-Belmonte, J.-C., Tickle, C., Dolle, P., Wolpert, L., and Duboule, D., 1991, Expression of the homeobox Hox-4 genes and the specification of position in chick wing development, Nature 350:585–589.

    Article  PubMed  CAS  Google Scholar 

  • Jones, B. B., Ohno, C. K., Allenby, G., Boffa, M. B., Levin, A. A., Grippo, J. F., and Petkovich, M., 1995, New retinoid X receptor subtypes in zebra fish (Danio rerio) differentially modulate transcription and do not bind 9-cis retinoic acid, Mol. Cell Biol. 15:5226–5234.

    PubMed  CAS  Google Scholar 

  • Joore, J., van der Lans, G. B. L. J., Lanser, P. H., Vervaart, J. M. A., Zivkovic, D., Speksnijder, J. E., and Kruijer, W., 1994, Effects of retinoic acid on the expression of retinoic acid receptors during zebrafish embryogenesis, Mech. Dev. 46:137–150.

    Article  PubMed  CAS  Google Scholar 

  • Kalter, H., and Warkany, J., 1959, Experimental production of congenital malformations in mmals by metabolic procedure, Physiol. Rev. 39:69–115.

    PubMed  CAS  Google Scholar 

  • Kastner, P., Mark, M., and Chambon, P., 1995, Nonsteroid nuclear receptors: What are genetic studies telling us about their role in real life? Cell 83:859–869.

    Article  PubMed  CAS  Google Scholar 

  • Kastner, P., Mark, M., Ghyselinck, N., Kretzel, W., Dupe, V., and Grondona, J. M., 1997, Genetic evidence that the retinoid signal is transduced by heterodimeric RXR/RAR functional units during mouse development, Development 124:313–326.

    PubMed  CAS  Google Scholar 

  • Keeble, S., and Maden, M., 1989, The relationship among retinoid structure, affinity for retinoic acid-binding protein and ability to respecify pattern in the regenerating axolotl limb, Dev. Biol. 132:26–34.

    Article  PubMed  CAS  Google Scholar 

  • Kessel, M., 1992, Respecification of vertebral identities by retinoic acid, Development 115:487–501.

    PubMed  CAS  Google Scholar 

  • Kessel, M., 1993, Reversal of axonal pathways from rhombomere 3 correlates with extra Hox expression domains, Neuron 10:379–393.

    Article  PubMed  CAS  Google Scholar 

  • Kessel, M., and Gruss, P., 1991, Homeotic transformations of murine vertebrae and comcomitant alteration of Hox codes induced by retinoic acid, Cell 67:89–104.

    Article  PubMed  CAS  Google Scholar 

  • Krumlauf, R., 1994, Hox genes in vertebrate development, Cell 78:191–201.

    Article  PubMed  CAS  Google Scholar 

  • Lammer, E. J., Chen, D. T., Hoar, R. M., Agnish, A. D., Benke, P. J., Braun, J. T., Curry, C. J., Fernhoff, P. M., Grix, A. W., Lott, I. T., Richard, J. M., and Sun, S. C., 1985, Retinoic acid embryopathy, N. Engl. J. Med. 313:837–841.

    Article  PubMed  CAS  Google Scholar 

  • Langston, A. W., and Gudas, L. J., 1994, Retinoic acid and homeobox gene regulation, Curr. Opin. Gen. Dev. 4:550–555.

    Article  CAS  Google Scholar 

  • Lee, Y. M., Osumi-Yamashita, N., Ninomiya, Y., Moon, C. K., Eriksson, U., and Eto, K., 1995, Retinoic acid stage-dependently alters the migration pattern and identity of hindbrain neural crest cells, Development 121:825–837.

    PubMed  CAS  Google Scholar 

  • Leonard, L., Horton, C., Maden, M., and Pizzey, J. A., 1995, Anteriorization of CRABP-I expression by retinoic acid in the developing mouse central nervous system and its elationship to teratogenesis, Dev. Biol. 168:514–528.

    Article  PubMed  CAS  Google Scholar 

  • Leroy, P., and De Robertis, E. M., 1992, Effects of lithium chloride and retinoic acid on the expression of genes from the Xenopus Hox 2 complex, Dev. Dynam. 194:21–32.

    Article  CAS  Google Scholar 

  • Lohnes, D., Mark, M., Mendelsohn, C., Dolle, P., Dierich, A., Gorry, P., Gansmuller, A., and Chambon, P., 1994, Function of the retinoic acid receptors (RARs) during development (I) Craniofacial and skeletal abnormalities in RAR double mutants. Development 120:2723–2748.

    PubMed  CAS  Google Scholar 

  • Lopez, S. L., Dono, R., Zeller, R., and Carrasco, A. E., 1995, Differential effects of retinoic acid and a retinoid antagonist on the spatial distribution of the homeoprotein Hoxb-1 in vertebrate embryos, Dev. Dynam. 204:457–471.

    Article  CAS  Google Scholar 

  • Lopez-Martinez, A., Chang, D. T., Chiang, C., Porter, J. A., Ros, M. A., Simandl, B. K., Beachy, P. A., and Fallon, J. F., 1995, Limb-patterning activity and restricted posterior localization of the amino-terminal product of sonic hedgehog cleavage, Curr. Biol. 5:791–796.

    Article  PubMed  CAS  Google Scholar 

  • Lu, H.-C., Revelli, J.-P., Goering, L., Thaller, C., and Eichele, G., 1997, Retinoid signalling is required for the establishment of a ZPA and for the expression of Hoxb-8, a mediator of ZPA formation, Development 124:1643–1651.

    PubMed  CAS  Google Scholar 

  • Ludolph, D. C., Cameron, J. A., and Stocum, D. L., 1990, The effect of retinoic acid on positional memory in the dorsoventral axis of regenerating axolotl limbs, Dev. Biol. 140:41–52.

    Article  PubMed  CAS  Google Scholar 

  • Maden, M., 1982, Vitamin A and pattern formation in the regenerating limb, Nature 295:672–675.

    Article  PubMed  CAS  Google Scholar 

  • Maden, M., 1983a, The effect of vitamin A on limb regeneration in Rana temporaria, Dev. Biol. 98:409–416.

    Article  PubMed  CAS  Google Scholar 

  • Maden, M., 1983b, The effect of vitamin A on the regenerating axolotl limb, J. Embryol. Exp. Morphol. 77:273–295.

    PubMed  CAS  Google Scholar 

  • Maden, M., 1993, The homeotic transformation of tails into limbs in Rana temporaria by etinoids, Dev. Biol. 159:379–391.

    Article  PubMed  CAS  Google Scholar 

  • Maden, M., and Pizzey, J. A., 1997, The role of retinoids in patterning fish, amphibian and chick embryos, Adv. Organ Biol. 3:93–139.

    Article  CAS  Google Scholar 

  • Maden, M., Summerbell, D., Maignan, J., Darmon, M., and Shroot, B., 1991, The respecification of limb pattern by new synthetic retinoids and their interaction with cellular retinoic acid-binding protein, Differentiation 47:49–55.

    Article  PubMed  CAS  Google Scholar 

  • Maden, M., and Corcoran, J., 1996, Role of thyroid hormone and retinoid receptors in the homeotic transformation of tails into limbs in frogs, Dev. Genet 19:85–93.

    Article  PubMed  CAS  Google Scholar 

  • Maden, M., Gale, E., Horton, G, and Smith, J. C., 1992, Retinoid-binding proteins in the developing vertebrate nervous system, in Retinoids in Normal Development and Teratogenesis (G. M. Morriss-Kay, ed.), pp. 119–134, Oxford University Press, Oxford.

    Google Scholar 

  • Maden, M., Gale, E., Kostetskii, I., and Zile, M., 1996, Vitamin A-deficient quail embryos have half a hindbrain and other neural defects, Curr. Biol. 6:417–426.

    Article  PubMed  CAS  Google Scholar 

  • Marklew, S., Smith, D. P., Mason, C. S., and Old, R. W., 1994, Isolation of a novel RXR from Xenopus that most closely resembles mammalian RXRβ and is expressed throughout early development, Biochim. Biophys. Acta 1218:267–272.

    Article  PubMed  CAS  Google Scholar 

  • Marsh-Armstrong, N., McCaffery, P., Hyatt, G., Alonso, L., Dowling, J. E., Gilbert, W., and Drager, U. G, 1995, Retinoic acid in the anteroposterior patterning of the zebrafish trunk, Roux’s Arch. Dev. Biol. 205:103–113.

    Article  CAS  Google Scholar 

  • Marshall, H., Nonchev, S., Sham, M. H., Muchamore, I., Lumsden, A., and Krumlauf, R., 1992, Retinoic acid alters hindbrain Hox code and induces transformation of rhombomeres 2/3 into a 4/5 identity, Nature 360:737–741.

    Article  PubMed  CAS  Google Scholar 

  • Marti, E., Takada, R., Bumcrot, D. A., Sasaki, H., and McMahon, A. P., 1995, Distribution of sonic hedgehog peptides in the developing chick and mouse embryo, Development 121:2537–2547.

    PubMed  CAS  Google Scholar 

  • McCaffery, P., Lee, M.-O., Wagner, M. A., Sladek, N. E., and Drager, U., 1992, Asymmetrical retinoic acid synthesis in the dorsoventral axis of the retina, Development 115:371–382.

    PubMed  CAS  Google Scholar 

  • Mohanty-Hejmadi, P., Dutta, S. K., and Mahapatra, P., 1992, Limbs generated at site of tail amputation in marbled balloon frog after vitamin A treatment, Nature 355:352–353.

    Article  PubMed  CAS  Google Scholar 

  • Morriss, G. M., 1972, Morphogenesis of the malformations induced in rat embryos by maternal hypervitaminosis A, J. Anat. 113:241–250.

    PubMed  CAS  Google Scholar 

  • Morriss-Kay, G. M., Murphy, P., Hill, R. E., and Davidson, D. R., 1991, Effects of retinoic acid excess on expression of Hox-2.9 and Krox-20 and on morphological segementation in the hindbrain of mouse embryos, EMBO J. 10:2985–2995.

    PubMed  CAS  Google Scholar 

  • Mullen, L. M., Bryant, S. V., Torok, M. A., Blumberg, B., and Gardiner, D. M., 1996, Nerve dependency of regeneration: The role of Distal-less and FGF signalling in amphibian limb regeneration, Development 122:3487–3497.

    PubMed  CAS  Google Scholar 

  • Muto, K., Noji, S., Nohno, T., Koyama, E., Myokai, F., Nishijima, K., Saito, T., and Taniguchi, S., 1991, Involvement of retinoic acid and its receptor βs in differentiation of motoneurons in chick spinal cord, Neurosci. Lett. 129:39–42.

    Article  PubMed  CAS  Google Scholar 

  • Niazi, I. A., and Saxena, S., 1978, Abnormal hind limb regeneration in tadpoles of the toad, Bufo andersoni, exposed to excess vitamin A, Folia Biol. (Krakow) 26:1–8.

    Google Scholar 

  • Nohno, T., Noji, S., Koyama, E., Ohyama, K., Myokai, F., Kuriowa, A., Saito, T., and Taniguchi, S., 1991, Involvement of the Chox-4 chicken homeobox genes in determination of anteroposterior axial polarity during limb development, Cell 64:1197–120.

    Article  PubMed  CAS  Google Scholar 

  • Ogura, T., Alvarez, I. S., Vogel, A., Rodriguez, C., Evans, R. M., and Izpisua-Belmonte, J. C., 1996, Evidence that Shh cooperates with a retinoic acid inducible cofactor to establish ZPA-like activity, Development 122:537–542.

    PubMed  CAS  Google Scholar 

  • Papalopulu, N., Clarke, J. D. W., Bradley, L., Wilkinson, D., Krumlauf, R., and Holder, N., 1991, Retinoic acid causes abnormal development and segmental patterning of the anterior hindbrain in Xenopus embryos, Development 113:1145–1158.

    PubMed  CAS  Google Scholar 

  • Pecorino, L. T., Lo, D. C., and Brockes, J. P., 1994, Isoform-specific induction of a retinoid-responsive antigen after biolostic transfection of chimaeric retinoic acid/thyroid hormone receptors into a regenerating limb, Development 120:325–333.

    PubMed  CAS  Google Scholar 

  • Pecorino, L., Entwistle, A., and Brockes, J. P., 1996, Activation of a single retinoic acid receptor isoform mediates proximodistal respecification, Curr. Biol. 6:563–569.

    Article  PubMed  CAS  Google Scholar 

  • Pfeffer, P. L., and De Robertis, E. M., 1994, Regional specificity of RARg isoforms in Xenopus development, Mech. Dev. 45:147–153.

    Article  PubMed  CAS  Google Scholar 

  • Ragsdale, C. W., Petkovich, M., Gates, P. B., Chambon, P., and Brockes, J. P., 1989, Identification of a novel retinoic acid receptor in regenerating tissues of the newt, Nature 341:654–657.

    Article  PubMed  CAS  Google Scholar 

  • Ragsdale, C. W., Gates, P. B., and Brockes, J. P., 1992a, Identification and expression pattern of a second isoform of the newt alpha retinoic acid receptor, Nucleic Acids Res. 20:5851.

    Article  PubMed  CAS  Google Scholar 

  • Ragsdale, C. W., Gates, P. B., Hill, D. S., and Brockes, J. P., 1992b, Delta retinoic acid receptor isoform dl is distinguished by its exceptional N-terminal sequence and abundance in the limb regeneration blastema, Mech. Dev. 40:99–112.

    Article  Google Scholar 

  • Riddle, R. D., Johnson, R. L, Laufer, E., and Tabin, C., 1993, Sonic hedgehog mediates the polarizing activity of the ZPA, Cell 75:1401–1416.

    Article  PubMed  CAS  Google Scholar 

  • Rossant, J., Zirngibl, R., Cado, D., Shago, M., and Giguere, V., 1991, Expression of a retinoic acid response element-hsplacZ transgene defines specific domains of transcriptional activity during mouse embryogenesis, Genes Dev. 5:1333–1344.

    Article  PubMed  CAS  Google Scholar 

  • Rowe, A., Eager, N. S. C., and Brickell, P. M., 1991, A member of the RXR nuclear receptor family is expressed in neural-crest-derived cells of the developing chick peripheral nervous system, Development 111:771–778.

    PubMed  CAS  Google Scholar 

  • Ruberte, E., Dolle, P., Chambon, P., and Morriss-Kay, G., 1991, Retinoic acid receptors and cellular retinoid binding proteins. II Their differential pattern of transcription during early morphogenesis in mouse embryos, Development 111:45–60.

    PubMed  CAS  Google Scholar 

  • Ruberte, E., Friederich, V., Chambon, P., and Morriss-Kay, G., 1993, Retinoic acid receptors and cellular retinoid binding proteins. HI Their differential transcript distribution during mouse nervous system development, Development 118:267–282.

    PubMed  CAS  Google Scholar 

  • Ruiz i Altaba, A., and Jessell, T., 1991a, Retinoic acid modifies mesodermal patterning in early Xenopus embryos, Genes Dev. 5:175–187.

    Article  PubMed  CAS  Google Scholar 

  • Ruiz i Altaba, A., and Jessell, T. M., 1991b, Retinoic acid modifies the pattern of cell differentiation in the central nervous system of neurula stage Xenopus embryos, Development 112:945–958.

    PubMed  CAS  Google Scholar 

  • Sasai, Y., and De Robertis, E. M., 1997, Ectodermal patterning in vertebrate embryos, Dev. Biol. 182:5–20.

    Article  PubMed  CAS  Google Scholar 

  • Saunders, J. W., and Gasseling, M. T., 1968, Ectodermal-mesenchymal interactions in the origin of limb asymmetry, in Epithelial-Mesenchymal Interactions (R. Fleischmajer and R. E. Billingham, eds.), pp. 78–97, Williams & Wilkins, Baltimore, Maryland.

    Google Scholar 

  • Savard, P., Gates, P. B., and Brockes, J. P., 1988, Position dependent expression of a homeobox gene transcript in relation to amphibian limb regeneration, EMBO J. 7:4275–4282.

    PubMed  CAS  Google Scholar 

  • Scadding, S., and Maden, M., 1994, Retinoic acid gradients during limb regeneration, Dev. Biol. 162:608–617.

    Article  PubMed  CAS  Google Scholar 

  • Schilthuis, J. G., Gann, A. A. F., and Brockes, J. P., 1993, Chimeric retinoic acid/thyroid hormone receptors implicate RAR a1 as mediating growth inhibition by retinoic acid, EMBO J. 12:3459–3466.

    PubMed  CAS  Google Scholar 

  • Scott, W. J., Walter, R., Tzimas, G., Sass, J. O., Nau, H., and Collins, M. D., 1994, Endogenous status of retinoids and their cytosolic binding proteins and limb buds of chick vs mouse embryos, Dev. Biol 165:397–409.

    Article  PubMed  CAS  Google Scholar 

  • Sharpe, C. R., 1991, Retinoic acid can mimic endogenous signals involved in transformation of the Xenopus nervous system, Neuron 7:239–247.

    Article  PubMed  CAS  Google Scholar 

  • Sharpe, C. R., 1992, Two isoforms of retinoic acid receptor a expressed during Xenopus development respond to retinoic acid, Mech. Dev. 39:81–93.

    Article  PubMed  CAS  Google Scholar 

  • Sharpe, C. R., and Goldstone, K., 1997, Retinoid receptors promote primary neurogenesis in Xenopus, Development 124:515–523.

    PubMed  CAS  Google Scholar 

  • Simeone, A., Avantaggiato, V., Moroni, M. C., Mavilio, F., Arra, C., Cotelli, F., Nigro, V., and Acampora, D., 1995, Retinoic acid induces stage-specific anteroposterior transformation of rostral central nervous system, Mech. Dev. 51:83–98.

    Article  PubMed  CAS  Google Scholar 

  • Simon, H.-G., and Tabin, C. J., 1993, Analysis of Hox-4.5 and Hox-3.6 expression during newt limb regeneration: Differential regulation of paralogous Hox genes suggest different roles for members of different Hox clusters, Development 117:1397–1407.

    PubMed  CAS  Google Scholar 

  • Sive, H. L., and Cheng, P. F., 1991, Retinoic acid perturbs the expression of Xhox.lab genes and alters mesodermal determination in Xenopus laevis, Genes Dev. 5:1321–1332.

    Article  PubMed  CAS  Google Scholar 

  • Sive, H. L., Draper, B. W., Harland, R. M., and Weintrub, H., 1990, Identification of a retinoic acid-sensitive period during primary axis formation in Xenopus laevis, Genes Dev. 4:932–942.

    Article  PubMed  CAS  Google Scholar 

  • Smith, S. M., and Eichele, G., 1991, Temporal and regional differences in the expression pattern of distinct retinoic acid receptor-b transcripts in the chick embryo, Development 111:245–252.

    PubMed  CAS  Google Scholar 

  • Smith, S. M., Kirstein, I. J., Wang, Z.-S., Fallon, J. F., Kelley, J., and Bradshaw-Rouse, J., 1995, Differential expression of retinoic acid receptor-b isoforms during chick limb ontogeny, Dev. Dynam. 202:54–66.

    Article  CAS  Google Scholar 

  • Stratford, T., Horton, C., and Maden, M., 1996, Retinoic acid is required for the initiation of outgrowth in the chick limb bud, Curr. Biol. 6:1124–1133.

    Article  PubMed  CAS  Google Scholar 

  • Stratford, T. H., Kostakopoulou, K., and Maden, M., 1997, Hoxb-S has a role in establishing early anterior-posterior polarity in chick forelimb but not hindlimb, Development 124:4225–4234.

    PubMed  CAS  Google Scholar 

  • Summerbell, D., 1983, The effects of local application of retinoic acid to the anterior margin of the developing chick limb, J. Embryol. Exp. Morphal. 78:269–289.

    CAS  Google Scholar 

  • Summerbell, D., and Honig, L. S., 1982, The control of pattern across the anteroposterior axis of the chick limb bud by a unique signalling region, Am. Zool. 22:105–116.

    Google Scholar 

  • Sundin, O., and Eichele, G., 1992, An early marker of axial pattern in the chick embryo and its respecification by retinoic acid, Development 114:841–852.

    PubMed  CAS  Google Scholar 

  • Tabin, C. J., 1989, Isolation of potential vertebrate limb-identity genes, Development 105:813–820.

    PubMed  CAS  Google Scholar 

  • Taira, M., Jamrich, M., Good, P. J., and Dawid, I. B., 1992, The LIM domain-containing homeo box gene Xlim-1 is expressed specifically in the organiser region of Xenopus gastrula embryos, Genes Dev. 6:356–366.

    Article  PubMed  CAS  Google Scholar 

  • Taira, M., Otani, H., Jamrich, M., and Dawid, I. B., 1994, Expression of the LIM class homeobox gene Xlim-1 in pronephros and CNS cell lineages of Xenopus embryos is affected by retinoic acid and exogastrulation, Development 120:1525–1536.

    PubMed  CAS  Google Scholar 

  • Thaller, C., and Eichele, G., 1987, Identification and spatial distribution of retinoids in the developing chick limb bud, Nature 327:625–628.

    Article  PubMed  CAS  Google Scholar 

  • Thaller, C., and Eichele, G., 1990, Isolation of 3,4-didehydroretinoic acid, a novel morphogenetic signal in the chick wing bud, Nature 345:815–819.

    Article  PubMed  CAS  Google Scholar 

  • Tickle, C., Summerbell, D., and Wolpert, L., 1975, Positional signalling and specification of digits in chick limb morphogenesis, Nature 254:199–202.

    Article  PubMed  CAS  Google Scholar 

  • Tickle, C., Alberts, B., Wolpert, L., and Lee, J., 1982, Local application of retinoic acid to the limb bond mimics the action of the polarizing region, Nature 296:564–566.

    Article  PubMed  CAS  Google Scholar 

  • Tickle, C., Lee, J., and Eichele, G., 1985, A quantitative analysis of the effect of all-trans-retinoic acid on the pattern of chick wing development, Dev. Biol. 109:82–95.

    Article  PubMed  CAS  Google Scholar 

  • Tsonis, P. A., Washabaugh, C. H., and Rio-Tsonis, K. D., 1994, Morphogenetic effects of 9-cis-retinoic acid on the regenerating limbs of the axolotl, Roux’s Arch. Dev. Biol. 203:230–234.

    Article  CAS  Google Scholar 

  • Vallari, R. C., and Pietruszko, R., 1982, Human aldehyde dehydrogenase: Mechanism of inhibition by disulphiram, Science 216:637–639.

    Article  PubMed  CAS  Google Scholar 

  • Viviano, C. M., Horton, C., Maden, M., and Brockes, J. P., 1995, Synthesis and release of 9-cis retinoic acid by the urodele wound epidermis, Development 121:3753–3762.

    CAS  Google Scholar 

  • Wagner, M., Thaller, C., Jessell, T. M., and Eichele, G., 1990, Polarizing activity and retinoid synthesis in the floor plate of the neural tube, Nature 345:819–822.

    Article  PubMed  CAS  Google Scholar 

  • Wood, H., Pall, G., and Morriss-Kay, G., 1994, Exposure to retinoic acid before or after the onset of somitogenesis reveals separate effects on rhombomeric segmentation and 3′ HoxB gene expression domains, Development 120:2279–2285.

    PubMed  CAS  Google Scholar 

  • Zhang, Z., Balmer, J. E., Lovlie, A., Fromm, S. H., and Blomhoff, R., 1996, Specific teratogenic effects of different retinoic acid isomers and analogs in the developing anterior central nervous system of zebrafish, Dev. Dynam. 206:73–86.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Maden, M. (1998). The Role of Retinoids in Developmental Mechanisms in Embryos. In: Quinn, P.J., Kagan, V.E. (eds) Fat-Soluble Vitamins. Subcellular Biochemistry, vol 30. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1789-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1789-8_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1791-1

  • Online ISBN: 978-1-4899-1789-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics