Skip to main content

Part of the book series: Modern Inorganic Chemistry ((MICE,volume 2))

Abstract

Pressure is one of the most effective methods available to solid-state scientists to alter properties of matter. Since its implementation by Bridgman early this century, application of high pressure research in matter has provided substantial information on the properties of matter, in all aspects. Today, as a result of the development of static high pressure devices based on the diamond-anvil cell, experimenters can reach pressures in the megabar region generating energy densities in matter of the order of keV/nm3. With such energy densities insulators with gap energies in the eV regions become metals, new structural and electronic phases become stable, and new aspects of magnetism may be revealed. The diamond anvil cell thus has become a very powerful ultra-high-pressure device, helping scientists discover new states of matter. Some of the modern diamond anvil cells generating pressures into the Mbar region can fit into the palm of the hand and allow a variety of sophisticated measurements to be performed on materials even though samples are of microscopic dimensions. The principles underlying the diamond anvil cell, its pressure calibration, its applications as of 1983, and some potential uses, are extensively described in the review paper by Jayaraman.1

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Jayaraman, Rev. Modern. Phys. 55, 65 (1983).

    Article  CAS  Google Scholar 

  2. R. L. Mössbauer, Z. Physik 151, 124 (1958).

    Article  Google Scholar 

  3. R. L. Mössbauer,Naturwissenshaften 45, 538 (1958).

    Article  Google Scholar 

  4. R. V. Hanks, Phys. Rev. 124, 1319 (1961).

    Article  CAS  Google Scholar 

  5. R. V. Pound, G. B. Benedek, and R. Drever, Phys. Rev. Lett. 7, 405 (1961).

    Article  Google Scholar 

  6. H. G. Drickamer, in Solid State Physics, F. Seitz and D. Turnbull, eds., Vol. 17, p. 1, Academic Press, New York (1965).

    Google Scholar 

  7. H. G. Drickamer, Chem. Br. 9, 353 (1973).

    CAS  Google Scholar 

  8. H. G. Drickamer and C. W. Frank, Ann. Rev. Phys. Chem. 23, 39 (1972).

    Article  CAS  Google Scholar 

  9. H. G. Drickamer, R. W. Vaughan, and G. K. Lewis, Jr., Comments Solid State Phys. 1, 163 (1968).

    CAS  Google Scholar 

  10. H. Frauenfelder and R. Ingalls, in Applications of Mössbauer Effect in Chemistry and Solid State Physics, Technical Report Series, No. 50, p. 37, International Atomic Energy Agency, Vienna (1966).

    Google Scholar 

  11. W. B. Holzapfel, CRC Critical Reviews in Solid State Sciences, 89 (1975).

    Google Scholar 

  12. M. Abd-Elmeguid and G. Wortmann, private communications.

    Google Scholar 

  13. G. J. Piermarini and S. Block, Rev. Sci. Instrum. 46, 973 (1975).

    Article  CAS  Google Scholar 

  14. H. K. Mao and P. M. Bell, Carnegie Institution of Washington Year Book 77, 824 (1979).

    Google Scholar 

  15. L. Merrill and W. A. Bassett, Rev. Sci. Instrum. 45, 290 (1974).

    Article  Google Scholar 

  16. The maximum pressure reported with a 300-μm culet anvil was 50 GPa. See: E. Sterer, M. P. Pasternak, and R. D. Taylor in High-Pressure Science and Technology — 1993, S. C. Schmidt, J. W. Shaner, G. A. Samara, and M. Ross, eds., p. 1453, American Institute of Physics, New York (1994).

    Google Scholar 

  17. Current suppliers of diamond anvils are: Harris Diamond Corp., agents of Drukker Diamond Anvils, 100 Stierli Court, Mount Arlington, NJ 07856 USA, Tel: +1 (201) 770-1420, FAX: +1 (201) 770-1549; Lazare-Kaplan & Sons, Inc., 666 5th Ave., New York, NY 10103; Ramot of Tel Aviv University, 32 H. Levanon St., Tel-Aviv 61392, Israel, Tel: +972-3-5450113, FAX: +972-3-6429865, e-mail: anvils@ccsg.tau.ac.il; D. Drukker & Zn, 12 Sarphatikade, 1001 MC Amsterdam, The Netherlands, Tel: (020)-267321.

    Google Scholar 

  18. A. Van Valkenburg, Conférence Internationale Sur les Hautes Pressions, Le Creusot, Saône et Loire, France (1965).

    Google Scholar 

  19. R. A. Forman, G. J. Piermarini, J. D. Barnett, and S. Block, Science 176, 284 (1972).

    Article  CAS  Google Scholar 

  20. H. K. Mao and P. M. Bell, Science 200, 1145 (1978).

    Article  CAS  Google Scholar 

  21. R. H. Herber and J. Spijkerman, J. Chem. Phys. 42, 4312 (1965).

    Article  CAS  Google Scholar 

  22. F. E. Huggins, H. K. Mao, and D. Virgo, Carnegie Institution of Washington Year Book 74, 405 (1975).

    Google Scholar 

  23. G. Cort, R. D. Taylor, and J. O. Willis, J. Appl. Phys. 53, 2064 (1982).

    Article  CAS  Google Scholar 

  24. J. N. Farrell, Ph.D. Thesis, University of North Carolina, 1984.

    Google Scholar 

  25. L. Chow, P. A. Dean, J. N. Farrell, P. A. Magill, and L. D. Roberts, Phys. Rev. B 33, 3039 (1986).

    Article  CAS  Google Scholar 

  26. M. Pasternak, J. N. Farrell, and R. D. Taylor, Hyp. Interact. 28, 837 (1985).

    Article  Google Scholar 

  27. S. Nasu, K. Kurimoto, S. Nagatomo, S. Endo, and F. E. Fujita, Hyp. Interact. 29, 1583 (1985).

    Article  Google Scholar 

  28. R. D. Taylor and J. N. Farrell, J. Appl Phys. 61, 3669 (1987).

    Article  CAS  Google Scholar 

  29. R. D. Taylor and M. P. Pasternak, Hyp. Interact. 53, 159 (1990).

    Article  CAS  Google Scholar 

  30. M. P. Pasternak and R. D. Taylor, Hyp. Interact. 62, 89 (1990).

    Article  CAS  Google Scholar 

  31. R. D. Taylor and M. P. Pasternak, High Pressure Res. 9, 263 (1992).

    Article  Google Scholar 

  32. R. D. Taylor and M. P. Pasternak, Hyp. Interact. 72, 241 (1992)

    Article  CAS  Google Scholar 

  33. G. R. Hearne, M. P. Pasternak, and R. D. Taylor, Hyp. Interact. 92, 1155 (1994)

    Article  CAS  Google Scholar 

  34. G. R. Hearne, M. P. Pasternak, and R. D. Taylor, Rev. Sci. Instrum. 65, 3787 (1994).

    Article  CAS  Google Scholar 

  35. The high temperature limit depends on the characteristics of the metals from which the cell and gaskets are made. With some Inconel alloys and rhenium, temperatures well above 1000 K can be reached. At high temperatures the diamond anvils should be kept either in high vacuum or in a non-oxidizing atmosphere.

    Google Scholar 

  36. E. Sterer, M. P. Pasternak, and R. D. Taylor, Rev. Sci. Instrum. 61, 1117 (1990).

    Article  CAS  Google Scholar 

  37. The cell can be purchased as a kit from Ramot of Tel Aviv University, 32 H. Levanon St., Tel Aviv 61392, Israel, Tel: +972-3-5450113, FAX: +972-3-6429865, e-mail: anvils@ccsg.tau.ac.il.

    Google Scholar 

  38. M. P. Pasternak, R. D. Taylor, R. Jeanloz, X. Li, and C. McCammon, to be published.

    Google Scholar 

  39. S. Nasu, Hyp. Interact. 90, 59 (1994).

    Article  CAS  Google Scholar 

  40. M. P. Pasternak and R. D. Taylor, unpublished.

    Google Scholar 

  41. M. Pasternak and R. D. Taylor, Phys. Rev. B 37, 8130 (1988).

    Article  CAS  Google Scholar 

  42. P. Vulliet, J. P. Sanchez, J. Thomasson, B. Malaman, and R. Welter, in Proceedings of ICAME 95, Rimini, Italy, to be published.

    Google Scholar 

  43. C. Meyer, J. P. Sanchez, J. Thomasson, and J. P. Itié, Phys. Rev. B 51, 12187 (1995).

    Article  CAS  Google Scholar 

  44. F. M. Mulder, Ph.D. Thesis, Rijksuniversiteit of Leiden, 1994.

    Google Scholar 

  45. F. M. Mulder and R. C. Thiel, Europhys. Lett. 25, 657 (1994)

    Article  CAS  Google Scholar 

  46. F. M. Mulder and R. C. Thiel, Rev. Sci. Instrum. 65, 707 (1994).

    Article  CAS  Google Scholar 

  47. J. G. Bednorz and K. A. Müller, Z Phys. B 64, 189 (1986).

    Article  CAS  Google Scholar 

  48. S. Jin, M. McCormack, and T. H. Tiefel, J. Appl Phys. 76, 6929 (1994).

    Article  CAS  Google Scholar 

  49. J. B. Torrance, P. Lacorre, A. I. Nazzal, E. I. Ansaldo, and C. H. Niedemayer, Phys. Rev. B 45, 8209 (1992).

    Article  CAS  Google Scholar 

  50. M. P. Pasternak, R. D. Taylor, and R. Jeanloz, J. Appl. Phys. 70, 5956 (1991).

    Article  CAS  Google Scholar 

  51. M. P. Pasternak, R. D. Taylor, and R. Jeanloz, in Frontiers of High-Pressure Research, H. D. Hochheimer and R. D. Etters, eds., p. 227, Plenum Press, New York (1991).

    Google Scholar 

  52. S. A. Carter, T. F. Rosenbaum, M. Lu, H. M. Jaeger, P. Metcalf, J. M. Honig, and J. Spalek, Phys. Rev. B 49, 7898 (1994).

    Article  CAS  Google Scholar 

  53. M. P. Pasternak, R. D. Taylor, A. Chen, C. Meade, L. M. Falicov, A. Giesekus, R. Jeanloz, and P. Yu, Phys. Rev. Lett. 65, 790 (1990).

    Article  CAS  Google Scholar 

  54. J. B. Torrance, P. Lacorre, C. Asavaroengchai, and R. Metzger, J. Solid State Chem. 90, 168 (1991).

    Article  CAS  Google Scholar 

  55. T. Mizokawa, H. Namatame, A. Fujimori, K. Akeyama, H. Kondoh, H. Kuroda, and N. Kosugi, Phys. Rev. Lett. 67, 1638 (1991).

    Article  CAS  Google Scholar 

  56. J. Zaanen, G. A. Sawatzky, and J. W. Allen, Phys. Rev. Lett. 55, 418 (1985).

    Article  CAS  Google Scholar 

  57. M. P. Pasternak, G. Hearne, E. Sterer, R. D. Taylor, and R. Jeanloz, in AIP Conference Proceeding No. 319, S. C. Schmidt, J. W. Shaner, G. A. Samara, and M. Ross, eds., p. 335, AIP Press, New York (1994). G. Hearne, E. Sterer, M. P. Pasternak, and R. D. Taylor, ibid, p. 1461.

    Chapter  Google Scholar 

  58. M. P. Pasternak and R. D. Taylor, Physica C 209, 113 (1993).

    Article  CAS  Google Scholar 

  59. R. W. G. Wyckoff, Crystal Structures, Vol. I, Interscience, New York (1963).

    Google Scholar 

  60. L. G. Van Uitert, H. J. Williams, R. D. Sherwood, and J. J. Rubin, J. Appl. Phys. 36, 1029 (1965).

    Article  CAS  Google Scholar 

  61. S. R. Kuindersma, J. P. Sanchez, and C. Haas, Physica B 111, 231 (1981).

    Article  CAS  Google Scholar 

  62. G. R. Hearne, M. P. Pasternak, and R. D. Taylor, Il Nuovo Cimento, in press.

    Google Scholar 

  63. G. Hearne, M. P. Pasternak, G. Rozenberg, E. Sterer, and R. D. Taylor, to be published.

    Google Scholar 

  64. S.E. Dann, M. T. Weller, D. B. Currie, M. F. Thomas, and A. D. Al-Rawwas, J. Mater. Chem. 3, 1231 (1993).

    Article  CAS  Google Scholar 

  65. M. Takano, S. Nasu, T. Abe, K. Yamamoto, S. Endo, Y. Takeda, and J. B. Goodenough, Phys. Rev. Lett. 67, 3267 (1991).

    Article  CAS  Google Scholar 

  66. S. Nasu, T. Abe, K. Yamamoto, S. Endo, M. Takano, and H. Takeda, Hyp. Interact. 70, 1063 (1992).

    Article  CAS  Google Scholar 

  67. G. R. Hearne, M. P. Pasternak, G. Kh. Rozenberg, A. P. Milner, and R. D. Taylor, in Proceedings of ICAME 95, Rimini, Italy, to be published.

    Google Scholar 

  68. S. E. Dann, M. T. Weller, D. B. Currie, M. F. Thomas, and A. D. Al-Rawwas, J. Mater. Chem. 3, 1231 (1993).

    Article  CAS  Google Scholar 

  69. P. Adler, A. F. Goncharov, and K. Syassen, Hyp. Interact. 95, 71 (1995).

    Article  CAS  Google Scholar 

  70. T. Mizokawa, H. Namatame, A. Fujimori, K. Akeyama, H. Kondoh, H. Kuroda, and N. Kosugi, Phys. Rev. Lett. 67, 1638 (1991).

    Article  CAS  Google Scholar 

  71. D. D. Sarma, J. Solid State Chem. 88, 45 (1990).

    Article  CAS  Google Scholar 

  72. Y. Fujii, M. Kowaka, and A. Onodera, J. Phys. C 18, 789 (1985).

    Article  CAS  Google Scholar 

  73. S. Sugai, J. Phys. C 18, 799 (1985).

    Article  CAS  Google Scholar 

  74. M. P. Pasternak and R. D. Taylor, Phys. Rev. B 37, 8130 (1988).

    Article  CAS  Google Scholar 

  75. A. L. Chen, P. Y. Yu, and M. P. Pasternak, Phys. Rev. B 44, 2883 (1991).

    Article  CAS  Google Scholar 

  76. M. P. Pasternak, R. D. Taylor, M. B. Kruger, R. Jeanloz, J-P. Itié, and A. Polian, Phys. Rev. Lett. 72, 2733 (1994).

    Article  CAS  Google Scholar 

  77. M. Van der Heyden, M. P. Pasternak, and G. Langouche, J. Phys. Chem. Solids 46, 1221 (1985).

    Article  Google Scholar 

  78. W. Williamson and S. A. Lee, Phys. Rev. B 44, 9853 (1991).

    Article  CAS  Google Scholar 

  79. G. R. Hearne, M. P. Pasternak, and R. D. Taylor, Phys. Rev. B 52, 9209 (1995).

    Article  CAS  Google Scholar 

  80. S. S. Hafner, J. Stanek, and M. Stanek, J. Phys. Chem. Solids 51, 203 (1990).

    Article  CAS  Google Scholar 

  81. Q. Williams, E. Knittke, R. Reichlin, S. Martin, and R. Jeanloz, J. Geophys. Res. 95, 21549 (1990).

    Article  CAS  Google Scholar 

  82. M. B. Kruger, R. Jeanloz, M. P. Pasternak, R. D. Taylor, B. S. Snyder, A. M. Stacy, and S. R. Bohlen, Science 255, 703 (1992).

    Article  CAS  Google Scholar 

  83. K. Moorjani and J. M. D. Coey, Magnetic Glasses, Elsevier, Amsterdam (1984).

    Google Scholar 

  84. J. J. Hauser, Phys. Rev. B 22, 2554 (1980).

    Article  CAS  Google Scholar 

  85. M. P. Pasternak, R. D. Taylor, and E. Millner, private communication.

    Google Scholar 

  86. Y. Syono, A. Ito, S. Morimoto, T. Suzuki, T. Yagi, and S. Akimoto, Solid State Commun. 50, 97 (1984).

    Article  CAS  Google Scholar 

  87. J. Staun Olsen, C. S. G. Cousins, L. Gerward, and H. Jhans, Physica Scripta 43, 327 (1991).

    Article  Google Scholar 

  88. M. P. Pasternak, S. Nasu, K. Wada, and S. Endo, Phys. Rev. B 50, 6446 (1994).

    Article  CAS  Google Scholar 

  89. H. Mao, T. Takahashi, W. Bassett, G. L. Kinsland, and L. Merrill, J. Geophys. Res. 79, 1165 (1974).

    Article  CAS  Google Scholar 

  90. F. Koch and J. B. Cohen, Acta Cryst. B 25, 275 (1975).

    Article  Google Scholar 

  91. R. M. Hazen and R. Jeanloz, Rev. Geophysics Space Phys. 22, 37 (1984).

    Article  CAS  Google Scholar 

  92. G. J. Long and F. Grandjean, Adv. Solid-State Chem. 2, 187 (1991).

    CAS  Google Scholar 

  93. C. A. McCammon, J. Magn. Magn. Mat. 104–107, 1937 (1992).

    Article  Google Scholar 

  94. Q. Williams, R. Jeanloz, J. Bass, B. Svendsen, and T. J. Ahrens, Science 236, 181 (1987).

    Article  CAS  Google Scholar 

  95. D. Bancroft, E. L. Peterson, and S. Minshall, J. Appl. Phys. 27, 291 (1956).

    Article  CAS  Google Scholar 

  96. P. M. Giles, M. H. Longenbach, and A. R. Marder, J. Appl. Phys. 42, 4290 (1971).

    Article  CAS  Google Scholar 

  97. H. G. Drickamer, Rev. Sci. Instrum. 41, 1667 (1970).

    Article  CAS  Google Scholar 

  98. R. D. Taylor, G. Cort, and J. O. Willis, J. Appl. Phys. 53, 8199 (1982).

    Article  CAS  Google Scholar 

  99. R. D. Taylor, M. P. Pasternak, and R. Jeanloz, J. Appl. Phys. 69, 6126 (1991).

    Article  CAS  Google Scholar 

  100. N. von Bargen and R. Boehler, High Pressure Res. 6, 133 (1990).

    Article  Google Scholar 

  101. M. Ross and A. K. McMahan, in Physics of Solids Under Pressure, J. S. Schilling and R. N. Shelton, eds., p. 161, North-Holland, New York (1981).

    Google Scholar 

  102. N. Sakai, K. Takemura, and K. Tsuji, J. Phys. Soc. Japan 51, 1811 (1982).

    Article  CAS  Google Scholar 

  103. K. Takemura, S. Minomura, O. Shimomura, and Y. Fuji, Phys. Rev. Lett. 45, 1881 (1980).

    Article  CAS  Google Scholar 

  104. O. Shimomura, K. Takemura, and K. Aoki, in Proc. of the Eighth AIRAPT Int. Conf, Upsalla, Sweden, 1981, C. M. Blackman, T. Johannisson, and L. Tegner, eds., Arkitekkopia, Upsalla (1982).

    Google Scholar 

  105. M. Pasternak, A. Simopoulos, and Y. Hazoni, Phys. Rev. 140, A1892 (1965).

    Article  Google Scholar 

  106. M. Pasternak, J. N. Farrell, and R. D. Taylor, Phys. Rev. Lett. 58, 575 (1987).

    Article  CAS  Google Scholar 

  107. J. Moser, G. M. Kalvius, and W. Zinn, Hyp. Interact. 41, 499 (1988).

    Article  CAS  Google Scholar 

  108. See also A. Gleissner, W. Potzel, J. Moser, and G. M. Kalvius, Phys. Rev. Lett. 70, 2032 (1993)

    Article  CAS  Google Scholar 

  109. H. J. Hesse and G. Wortmann, Hyp. Interact. 93, 1505 (1994) for 151Eu Mössbauer spectroscopy in a diamond anvil cell studies on EuAl2 and EuM2Ge2, respectively.

    Article  Google Scholar 

  110. R. D. Taylor and J. N. Farrell, J. Appl. Phys. 63, 4108 (1988).

    Article  CAS  Google Scholar 

  111. M. M. Abd-Elmeguid and R. D. Taylor, Phys. Rev. B 42, 1048 (1990).

    Article  CAS  Google Scholar 

  112. H. G. Zimmer, K. Takemura, K. Syassen, and K. Fisher, Phys. Rev. B 29, 2350 (1984).

    Article  CAS  Google Scholar 

  113. D. DiMarzio, M. Croft, N. Sakai, and M. W. Shafer, Phys. Rev. B 35, 499 (1987).

    Article  Google Scholar 

  114. M. Matlak and W. Nolting, Z. Phys. B 55, 103 (1984).

    Article  CAS  Google Scholar 

  115. J. N. Farrell and R. D. Taylor, Phys. Rev. Lett. 58, 2478 (1987).

    Article  CAS  Google Scholar 

  116. G. Parthasarathy and W. B. Holzapfel, Phys. Rev. B 37, 8499 (1988).

    Article  CAS  Google Scholar 

  117. U. Ladewig, B. Perscheid, and G. Kaindl, Hyp. Interact. 10, 957 (1981).

    Article  CAS  Google Scholar 

  118. M. Pasternak and A. L. Spijkervet, Phys. Rev. 188, 574 (1969).

    Article  Google Scholar 

  119. J. M. Hastings, L. M. Corliss, and M. Pasternak, Phys. Rev. B 31, 3209 (1970).

    Article  Google Scholar 

  120. J. Akella, G. S. Smith, and A. P. Jephcoat, J. Phys. Chem. Solids 49, 573 (1988).

    Article  CAS  Google Scholar 

  121. R. Coehoorn, unpublished results.

    Google Scholar 

  122. Z. Fisk and M. B. Maple, J. Alloys Comp. 183, 303 (1992).

    Article  CAS  Google Scholar 

  123. S. Nasu, High Pressure Research, in press.

    Google Scholar 

  124. H. F. Grünsteudel, H. J. Hesse, A. I. Chumakov, H. Grünsteudel, O. Leupold, J. Metge, R. Rüffer, and G. Wortmann, in Proc. of the Int. Conf. on Hyperfine Interactions, Leuven, Belgium (1995).

    Google Scholar 

  125. U. van Bürck and G. V. Smirnov, Hyp. Interact. 90, 313 (1994) and references therein.

    Article  Google Scholar 

  126. U. van Bürck, D. P. Siddons, J. B. Hastings, U. Bergmann, and R. Hollatz, Phys. Rev. B 46, 6207 (1992).

    Article  Google Scholar 

  127. R. Röhlsberger, E. Gerdau, W. Sturhahn, E. E. Alp, and R. Rüffer, in ICAME-95 proceedings, to be published in Il Nuovo Cimento.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media New York

About this chapter

Cite this chapter

Pasternak, M.P., Taylor, R.D. (1996). High Pressure Mössbauer Spectroscopy: The Second Generation. In: Long, G.J., Grandjean, F. (eds) Mössbauer Spectroscopy Applied to Magnetism and Materials Science. Modern Inorganic Chemistry, vol 2. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1763-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1763-8_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1765-2

  • Online ISBN: 978-1-4899-1763-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics