Skip to main content

Studying how Cetaceans use Sound to Explore their Environment

  • Chapter
Communication

Part of the book series: Perspectives in Ethology ((PEIE,volume 12))

Abstract

Many biologists implicitly assume that mechanisms for echolocation and communication are separate and compartmentalized. For example, the high-frequency vocal and auditory specializations of dolphins are typically only discussed in terms of echolocation and the low-frequency sounds of baleen whales are usually presented as signals for long-range communication. However, signals that evolved for one purpose may develop other functions. Some porpoises appear to use rhythmic patterns of “echolocation” clicks as communicative signals. When a whale makes a low-frequency sound for communication, the sound may echo from the seafloor and possibly provide the whale with important information about its environment. Research on the evolution of echolocation in marine mammals suffers from a dearth of studies of ecological function and from a lack of broad comparative reviews. If studies of marine mammal sonar included more analysis of the problems for which sonar may have evolved, we might discover fascinating new kinds of biosonar. For example, low-frequency sound is better suited than high frequency for long-range sonar in the sea, and many targets of great importance to marine mammals, such as large bathymetric features and fish with resonant swim bladders are also well suited to low-frequency sonar. Some marine mammals have the skills required to engage in bistatic sonar, in which one animal may listen to how the sounds of another individual are modified by the environment. Targets such as concentrations of fish with resonant swim bladders may absorb more energy than they scatter, leading to significant advantages for bistatic sonar in a forward propagation mode. These examples blend features typically associated with the domains of sonar and communication. I suggest that auditory and vocal skills evolved to function in one of these domains may preadapt animals for developing abilities in the other domain. Vocal learning, in particular, is required for many forms of sonar, and it also enables the evolution of very different communication systems than are possible when vocal output is unaffected by auditory input.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Amundin, M. (1991). Click repetition rate patterns in communicative sounds from the harbour porpoise, Phocoena phocoena. Chapter in Ph.D. thesis, Sound production in odontocetes with emphasis on the harbour porpoise, Phocoena phocoena, University of Stockholm.

    Google Scholar 

  • Astrup, J., Møhl, B. (1993). Detection of intense ultrasound by the cod Gadus morhua. J Exp Biol 182: 71–80.

    Google Scholar 

  • Au, W. W. L. (1980). Echolocation signals of the Atlantic bottlenose dolphin (Tursiops truncatus) in open waters. In: Busnel R-G, Fish JF (eds) Animal sonar systems, New York: Plenum, pp 251–282.

    Google Scholar 

  • Au, W. W. L. (1993). The sonar of dolphins. New York: Springer.

    Google Scholar 

  • Au, W. W. L., Carder, D. A., Penner, R. H., Scronce, B. L. (1985). Demonstration of adaptation in beluga whale echolocation signals. J Acoust Soc Am 77:726–730.

    CAS  Google Scholar 

  • Au, W. W. L., Pawloski, J. L., Nachtigall, P. E., Blonz, M., Gisiner, R. C. (1995). Echolocation signals and transmission beam pattern of a false killer whale (Pseudorca crassidens). J Acoust Soc Am 98: 51–59.

    CAS  Google Scholar 

  • Backus, R., Schevill, W. E. (1962). Physeter clicks. In: Norris KS (ed) Whales, dolphins, and porpoises. Berkeley: University of California Press, pp 510–528.

    Google Scholar 

  • Barrett-Lennard, L. G., Ford, J. F. B., Heise, K. A. (1996). The mixed blessing of echolocation: differences in sonar use by fish-eating and mammal-eating killer whales. Anim Behav 51: 553–565.

    Google Scholar 

  • Batzier, W. E., Pickwell, G. V. (1970). Resonant acoustic scattering from gas-bladder fish. In: Farquhar GB (ed) Proceedings of an international symposium on biological sound scattering in the ocean. Washington DC: Govt Printing Office.

    Google Scholar 

  • Berkley, D. A. (1987). Hearing in rooms. In: Yost WA, Gourevitch G (eds) Directional hearing. New York: Springer, pp 249–260.

    Google Scholar 

  • Bodenhamer, R. D., Pollak, G. D. (1983). Response characteristics of single units in the inferior colliculus of mustache bats to sinusoidally frequency modulated signals. J Comp Physiol 153: 67–19.

    Google Scholar 

  • Braham, H. W., Fraker, M. A., Krogman, B. D. (1980). Spring migration of the Western Arctic population of bowhead whales. Mar Fish Rev 42:36–46.

    Google Scholar 

  • Brill, R. L., Pawloski, J. L., Helweg, D. A., Au, W. W., Moore, P. W. B. (1992). Target detection, shape discrimination, and signal characteristics of an echolocating false killer whale (Pseudorca crassidens). J Acoust Soc Am 92:1324–1330.

    CAS  Google Scholar 

  • Buchwald, J. S., Shipley, C. (1985). A comparative model of infant cry. In: Lester BM, Boukydis CFZ (eds) Infant crying. New York: Plenum, pp 279–305.

    Google Scholar 

  • Busnel, R.-G., Dziedzic, A. (1966). Acoustic signals of the pilot whale, Globicephala melaena and of the porpoises Delphinus delphis and Phocoenaphocoena. In: Norris KS (ed) Whales, dolphins, and porpoises. Berkeley: University of California Press, pp 607–646.

    Google Scholar 

  • Caldwell, M. C., Caldwell, D. K. (1967). Intraspecific transfer of information via the pulsed sound in captive odontocete cetaceans. In: Busnel R-G (ed) Animal Sonar Systems. NATO Advanced Study Institute, Jouy-en-Josas: Laboratoire de physiologie acoustique, vol 2, pp 879–936.

    Google Scholar 

  • Caldwell, M. C., Caldwell, D. K. (1972). Vocal mimicry in the whistle mode by an Atlantic bottlenosed dolphin. Cetology 9:1–8.

    Google Scholar 

  • Cheney, D. L., Seyfarth, R. M. (1990). How monkeys see the world. Chicago: University of Chicago Press.

    Google Scholar 

  • Clapham, P. J., Mattila, D. K. (1990). Humpback whale songs as indicators of migration routes. Marine Mammal Science 6:155–160.

    Google Scholar 

  • Clark, C. W. (1989). The use of bowhead whale call tracks based on call characteristics as an independent means of determining tracking parameters. Rep Int Whal Comm 39:111–113.

    Google Scholar 

  • Clark, C. W. (1993). Bioacoustics of baleen whales: from infrasonics to complex songs. J Acoust Soc Am 94:1830, Abstract.

    Google Scholar 

  • Clark, C. W., Ellison, W. T., Beeman, K. (1986). Acoustic tracking of migrating bowhead whales. Proceedings of the IEEE Oceans 86 Conference 86:341–346.

    Google Scholar 

  • Clay, C. S., Medwin, H. (1977). Acoustical oceanography. New York: Wiley.

    Google Scholar 

  • Covey, E., Casseday, J. H. (1995). The lower brainstem auditory pathways. In A. N. Popper & R. R. Fay (Eds.), Hearing by bats. New York: Springer, pp 235–295.

    Google Scholar 

  • Curran, T. A., Lemon, D., Ye, Z. (1994). The acoustic scintillation flowmeter: application for a new environmental tool. Journal of the Canadian Hydrographic Association 49:25–29.

    Google Scholar 

  • Dawkins, R., Krebs, J. R. (1978). Animal signals: information or manipulation? In J. R. Krebs & N. B. Davies (Eds.), Behavioural ecology. Oxford: Blackwell, pp 282–309.

    Google Scholar 

  • Dawson, S., Thorpe, C. W. (1990). A quantitative analysis of the sounds of Hector’s dolphin. Ethology 86:131–145.

    Google Scholar 

  • Dawson, S. (1991). Clicks and communication: the behavioral and social contexts of Hector’s dolphin vocalizations. Ethology 88: 265–276.

    Google Scholar 

  • Diachok, O. (1996). Fish absorption spectroscopy. In J. Papadakis (Ed.), Proceedings of the third European conference on underwater acoustics. Luxembourg: EC Press.

    Google Scholar 

  • Diachok, O., Ferla, C. (1996). Measurement and simulation of the effects of absorptivity due to fish on transmission loss in shallow water. Oceans 96 Conference Proceedings, Piscataway NJ: IEEE Service Center.

    Google Scholar 

  • Dorsey, E. M. (1983). Exclusive adjoining ranges in individually identified minke whales (Balaenoptera acutorostrata) in Washington state. Can J Zool 61:174–181.

    Google Scholar 

  • Dudok, van Heel, W. H. (1981). Investigations on cetacean sonar. III. A proposal for an ecological classification of cetaceans in relation to sonar. Aquatic Mammals 8:65–68.

    Google Scholar 

  • Dunning, D. J., Ross, Q. E., Geoghegan, P., Reichle, J. J., Menezes, J. K., Watson, J. K. (1992). Alewives avoid high-frequency sound. North American Journal of Fisheries Management 12:407–416.

    Google Scholar 

  • Eaton, R. L. (1979). A beluga whale imitates human speech. Carnivore 2:22–23.

    Google Scholar 

  • Ellison, W. T., Clark, C. W., Bishop, G. C. (1987). Potential use of surface reverberation by bowhead whales, Balaena mysticetus, in under-ice navigation. Rep Int Whal Comm 37:329–332.

    Google Scholar 

  • Endler, J. A. (1992). Signals, signal conditions, and the direction of evolution. Am Nat 139S:S125–S153.

    Google Scholar 

  • Esser, K.-H., Schmidt, U. (1989). Mother-infant communication in the lesser spear-nosed bat, Phyllostomus discolor (Chiroptera, Phyllostomatidae) — evidence for acoustic learning. Ethology 82:156–168.

    Google Scholar 

  • Evans, W. E. (1967). Vocalization among marine mammals. In: Tavolga WN (ed) Marine bioacoustics. Oxford: Pergamon, vol 2, pp 159–186.

    Google Scholar 

  • Evans, W. E., Awbrey, F. T., Hackbarth, H. (1988). High frequency pulse produced by free ranging Commerson’s dolphin Cephalorhynchus commersonii compared with those of phocoenids. Rep Int Whal Comm Special Issue 9:173–181.

    Google Scholar 

  • Fenton, M. B. (1995). Natural history and biosonar signals. In A. N. Popper & R. R. Fay (Eds.), Hearing by bats. New York: Springer, pp 37–86.

    Google Scholar 

  • Fletcher, S., Le Boeuf, B. J., Costa, D. P., Tyack, P. L., Blackwell, S. B. (1996). Onboard acoustic recording from diving northern elephant seals. J Acoust Soc Am 100:2531–2539.

    CAS  Google Scholar 

  • Fodor, J. A. (1983). The modularity of mind. Cambridge: MIT Press.

    Google Scholar 

  • Ford, J. K. B. (1989). Acoustic behavior of resident killer whales (Orcinus orca) off Vancouver Island, British Columbia. Can J Zool 67:727–745.

    Google Scholar 

  • Ford, J. K. B. (1991). Vocal traditions among resident killer whales (Orcinus orca) in coastal waters of British Columbia. Can J Zool 69:1454–1483.

    Google Scholar 

  • Frankel, A. S., Clark, C. W., Herman, L. M., Gabriele, C. M. (1995). Spatial distribution, habitat utilization, movements, and social interactions of humpback whales, Megaptera novaeangliae, off Hawaii using acoustic and visual techniques. Can J Zool 73:1134–1136.

    Google Scholar 

  • George, J. C., Clark, C., Carroll, G. M., Ellison, W. T. (1989). Observations on the ice-breaking and ice navigation behavior of migrating bowhead whales (Balaena mysticetus) near Point Barrow, Alaska, spring 1985. Arctic 42:24–30.

    Google Scholar 

  • Griffin, D. R. (1955). Hearing and acoustic orientation in marine animals. Deep-Sea Research, supplement to 3:406–417.

    Google Scholar 

  • Griffin, D. R. (1974). Listening in the dark. New York: Dover.

    Google Scholar 

  • Griffin, D. R. (1980). Early history of research on echolocation. In: Busnel R-G, Fish JF (eds) Animal sonar systems. New York: Plenum, pp 1–8.

    Google Scholar 

  • Grinnell, A. D. (1995). Hearing in bats: an overview. In: Popper AN, Fay RR (eds) Hearing by bats. New York: Springer, pp 1–36.

    Google Scholar 

  • Guinee, L., Chu, K., Dorsey, E. M. (1983). Changes over time in the songs of known individual humpback whales (Megaptera novaeangliae). In R. Payne (Ed.), Communication and behavior of whales. Boulder: Westview Press.

    Google Scholar 

  • Harvey, P. H., Pagel, M. D. (1991). The comparative method in evolutionary biology. Oxford: Oxford University Press.

    Google Scholar 

  • Hatakeyama, Y, Soeda, H. (1990). Studies on echolocation of porpoises taken in salmon gillnet fisheries. In J. A. Thomas & R. Kastelein (Eds.), Sensory abilities of cetaceans. New York: Plenum, pp 269–281.

    Google Scholar 

  • Herman, L. M. (1980). The communication systems of cetaceans. In L. M. Herman (Ed.), Cetacean behavior: mechanisms and functions. New York: Wiley-Interscience, pp 149–209.

    Google Scholar 

  • Herman, L. M., Arbeit, W. R. (1972). Frequency discrimination limens in the bottlenosed dolphin: 1-70 KC/S. J Aud Res 2:109–120.

    Google Scholar 

  • Hersey, J. B., Backus, R. H. (1962). Sound scattering by marine organisms. In M. N. Hill (Ed.), The sea. New York: Interscience Publishers, vol 1, pp 498–539.

    Google Scholar 

  • Horton, J. W. (1959). Fundamentals of sonar. Annapolis: United States Naval Institute.

    Google Scholar 

  • Hui, C. A. (1994). Lack of association between magnetic patterns and the distribution of free-ranging dolphins. J Mammal 75:399–405.

    Google Scholar 

  • Hunt, F. V. (1954). Electroacoustics. New York: Wiley and Harvard University Press.

    Google Scholar 

  • Jacobs, D. W. (1972). Auditory frequency discrimination in the Atlantic bottlenose dolphin Tursiops truncatus Montagu: a preliminary report. J Acoust Soc Am 52:696–698.

    Google Scholar 

  • Jones, G., Ransome, R. D. (1993). Echolocation calls of bats are influenced by maternal effects and change over a lifetime. Proc Roy Soc Lond B 252:125–128.

    CAS  Google Scholar 

  • Kamminga, C. (1988). Echolocation signal types of odontocetes. In P. E. Nachtigall & P. W. B. Moore (Eds.), Animal sonar: processes and performance. New York: Plenum, pp 9–22.

    Google Scholar 

  • Kamminga, C., Wiersma, H. (1981). Investigations on cetacean sonar II. Acoustical similarities and differences in odontocete sonar signals. Aquatic Mammals 8:41–62.

    Google Scholar 

  • Kamminga, C., Wiersma, H. (1982). Investigations on cetacean sonar V. The true nature of the sonar sound of Cephalorhynchus commersonii. Aquatic Mammals 9:95–104.

    Google Scholar 

  • Kellogg, W. N. (1961). Porpoises and sonar. Chicago: University of Chicago Press.

    Google Scholar 

  • Ketten, D. R. (1994). Functional analyses of whale ears: adaptations for underwater hearing. IEEE Proceedings in Underwater Acoustics 1:264–270.

    Google Scholar 

  • Kick, S. A., Simmons, J. A. (1984). Automatic gain control in the bat’s sonar receiver and the neuroethology of echolocation. J Neurosci 4:2725–2737.

    CAS  Google Scholar 

  • Kinne, O. (1975). Marine ecology. London: Wiley, volume 2, part 2.

    Google Scholar 

  • Klinowska, M. (1985). Cetacean live stranding dates relate to geomagnetic disturbances. Aquatic Mammals 11:109–119.

    Google Scholar 

  • Kroodsma, D., Konishi, M. (1991). A suboscine bird (eastern phoebe, Sayornis phoebe) develops song without auditory feedback. Anim Behav 42:477–487.

    Google Scholar 

  • Kruse, S. (1991). The interactions between killer whales and boats in Johnstone Strait, B.C. In K. Pryor & K. S. Noms (Eds.), Dolphin societies. Berkeley: University of California Press, pp 149–159.

    Google Scholar 

  • Kuhn, G. F. (1987). Physical acoustics and measurements pertaining to directional hearing. In W. A. Yost & G. Gourevitch (Eds.), Directional hearing. New York: Springer, pp 3–25.

    Google Scholar 

  • Le Boeuf, B. J., Costa, D. P., Huntley, A. C., Feldcamp, S. D. (1988). Continuous deep diving in female northern elephant seals, Mirounga angustirostris. Can J Zool 66:446–458.

    Google Scholar 

  • Le Boeuf, B. J., Laws, R. M. (1994). Elephant seals. Berkeley: University of California Press.

    Google Scholar 

  • Love, R. H. (1973). Target strengths of humpback whales Megaptera novaeangliae. J Acoust Soc Am 54:1312–1315.

    Google Scholar 

  • Mahne, C. I. (1994). Development of a high target strength passive acoustic reflector for low-frequency sonar applications. IEEE J Oceanic Eng 19:438–448.

    Google Scholar 

  • Marier, P., Karakashian, S., Gyger, M. (1990). Do animals have the option of withholding signals when communication is inappropriate? In C. A. Ristau (Ed.), Cognitive ethology: The minds of other animals (essays in honor of Donald R Griffin). Hillsdale, NJ: Erlbaum.

    Google Scholar 

  • Marten, K., Norris, K. S., Moore, P. W. B., Englund, K. A. (1988). Loud impulse sounds in odontocete predation and social behavior. In P. E. Nachtigall & P. W. B. Moore (Eds.), Animal sonar: processes and performance. New York: Plenum, pp 567–579.

    Google Scholar 

  • Martin, A. R. (1995). How do whales find the next breathing site when travelling under heavy sea-ice? In: Abstracts, Eleventh Biennial Conference on the Biology of Marine Mammals, p 73.

    Google Scholar 

  • Mate, B. (1989). Satellite monitored radio tracking as a method for studying cetacean movements and behavior. Rep Int Whal Comm 39:389–391.

    Google Scholar 

  • McDonald, M. A., Hildebrand, J. A., Webb, S. C. (1995). Blue and fin whales observed on a seafloor array in the Northeast Pacific. J Acoust Soc Am 98:712–721.

    CAS  Google Scholar 

  • McGregor, P. K., Krebs, J. R. (1984). Sound degradation as a distance cue in great tit (Parus major) song. Behav Ecol Sociobiol 16:49–56.

    Google Scholar 

  • McGregor, P. K., Krebs, J. R., Ratcliffe, L. M. (1983). The response of great tits (Parus major) to the playback of degraded and undegraded songs: the effect of familiarity with the stimulus song type. Auk 100:898–906.

    Google Scholar 

  • Menne, D., Kaipf, I., Wagner, I., Ostwald, J., Schnitzler, H.-U. (1989). Range estimation by echolocation in the bat Eptesicus fuscus: trading of phase versus time cues. J Acoust Soc Am 85:2642–2650.

    CAS  Google Scholar 

  • Miller, L. A. (1983). How insects detect and avoid bats. In F. Huber & H. Markl (Eds.), Neuroethology and behavioral physiology: roots and growing pains. New York: Springer.

    Google Scholar 

  • Moore, P. W. B. (1980). Cetacean obstacle avoidance. In: Busnel R-G, Fish JF (eds) Animal sonar systems. New York: Plenum, pp 97–108.

    Google Scholar 

  • Moore, P. W. B., Pawloski, D. (1991). Investigation on the control of echolocation pulses in the dolphin (Tursiops truncatus). In J. Thomas & R. Kastelein (Eds.), Sensory abilities of cetaceans. New York: Plenum, pp 305–316.

    Google Scholar 

  • Morton, E. S. (1982). Grading, discreteness, redundancy, and motivation-structural rules. In D. E. Kroodsma & E. H. Miller (Eds.), Acoustic communication in birds. New York: Academic Press, vol 1, pp 183–212.

    Google Scholar 

  • Morton, E. S. (1986). Predictions from the ranging hypothesis for the evolution of long distance signals in birds. Behaviour 99:65–86.

    Google Scholar 

  • Morton, E. S., Gish, S. L., van der Voort, M. (1986). On the learning of degraded and undegraded songs in the Carolina wren. Anim Behav 34:815–820.

    Google Scholar 

  • Murchison, A. E. (1980). Detection range and range resolution of echolocating bottlenose porpoise (Tursiops truncatus). In R.-G. Busnel & J. F. Fish (Eds.), Animal sonar systems. New York: Plenum, pp 43–70.

    Google Scholar 

  • Myrberg, A. A., Jr. (1981). Sound communication and interception in fishes. In W. N. Tavolga, A. N. Popper & R. R. Fay (Eds.), Hearing and sound communication in fishes. New York: Springer.

    Google Scholar 

  • Nestler, J. M., Ploskey, G. R., Pickens, J., Menezes, J., Schilt, C. (1992). Responses of blueback herring to high-frequency sound and implications for reducing entrainment at hydropower dams. North American Journal of Fisheries Management 12:667–683.

    Google Scholar 

  • Neuweiler, G. (1990). Auditory adaptations for prey capture in echolocating bats. Physiol Rev 70:615–641.

    CAS  Google Scholar 

  • Neuweiler, G., Link, A., Marimuthu, G., Rübsamen, R. (1988). Detection of prey in echocluttering environments. In P. E. Nachtigall & P. W. B. Moore, (Eds.), Animal sonar: processes and performance. New York: Plenum, pp 613–618.

    Google Scholar 

  • Norris, K. S. (1967). Some observations on the migration and orientation of marine mammals. In R. M. Storm (Ed.), Animal orientation and navigation. Corvallis: Oregon State University Press.

    Google Scholar 

  • Norris, K. S. (1969). The echolocation of marine mammals. In H. T. Andersen (Ed.), The biology of marine mammals. New York: Academic Press.

    Google Scholar 

  • Norris, K. S. (1974). The porpoise watcher. New York: Norton.

    Google Scholar 

  • Norris, K. S., Møhl, B. (1983). Can odontocetes debilitate prey with sound? Am Nat 122:85–104.

    Google Scholar 

  • Offut, C. G. (1968). Auditory response in the goldfish. J Aud Res 8:391–400.

    Google Scholar 

  • Owren, M. J., Dieter, J. A., Seyfarth, R. M., Cheney, D. L. (1993). Vocalizations of rhesus (Macaca mulatto) and Japanese (Macaca fuscata) macaques cross-fostered between species show evidence of only limited modification. Developmental Psychobiology 26:389–406.

    CAS  Google Scholar 

  • Pack, A. A., Herman, L. M. (1995). Sensory integration in the bottlenosed dolphin: immediate recognition of complex shapes across the senses of echolocation and vision. J Acoust Soc Am 98:722–733.

    CAS  Google Scholar 

  • Papastavrou, V., Smith, S. C, Whitehead, H. (1989). Diving behaviour of the sperm whale, Physeter macrocephalus, off the Galapagos Islands. Can J Zool 67:839–846.

    Google Scholar 

  • Papi, F. (1992). Animal homing. New York: Chapman and Hall.

    Google Scholar 

  • Parsons, T. R., Takahashi, M., Hargrave, B. (1984). Biological oceanographic processes. Oxford: Pergamon.

    Google Scholar 

  • Payne, K., Payne, R. (1985). Large scale changes over 19 years in the songs of humpback whales in Bermuda. Zeitschrift für Tierpsychologie 58:89–114.

    Google Scholar 

  • Payne, K. B., Tyack, P., Payne, R. S. (1983). Progressive changes in the songs of humpback whales. In R. S. Payne (Ed.), Communication and behavior of whales. AAAS Selected Symposia Series. Boulder: Westview Press, pp 9–59.

    Google Scholar 

  • Payne, R. S., Webb, D. (1971). Orientation by means of long range acoustic signalling in baleen whales. Ann NY Acad Sci 188:110–141.

    CAS  Google Scholar 

  • Pike, G. (1962). Migration and feeding of the grey whale (Eschrichtius gibbosus). J Fish Res Board Can 19:815–838.

    Google Scholar 

  • Pollak, G. D. (1992). Adaptations of basic structures and mechanisms in the cochlea and central auditory pathway of the mustache bat. In A. N. Popper, R. R. Fay, & D. B. Webster (Eds.), Evolutionary biology of hearing. New York: Springer, pp 751–778.

    Google Scholar 

  • Popper, A. N. (1980). Sound emission and detection by delphinids. In L. M. Herman (Ed.), Cetacean behavior: mechanisms and functions. New York: Wiley-Interscience, pp 1–52.

    Google Scholar 

  • Rails, K., Fiorelli, P., Gish, S. (1985). Vocalizations and vocal mimicry in captive harbor seals, Phoca vitulina. Can J Zool 63:1050–1056.

    Google Scholar 

  • Reiss, D., McCowan, B. (1993). Spontaneous vocal mimicry and production by bottlenose dolphins (Tursiops truncatus): evidence for vocal learning. J Comp Psychol 107:301–312.

    CAS  Google Scholar 

  • Renaud, D. L., Popper, A. N. (1975). Sound localization by the bottlenose porpoise, Tursiops truncatus. J Exp Biol 63:569–585.

    CAS  Google Scholar 

  • Rice, C. E. (1969). Perceptual enhancement in the early blind? The Psychological Record 19:1–14.

    Google Scholar 

  • Richards, D. G. (1981). Estimation of distance of singing conspecifics by the Carolina wren. Auk 98:127–133.

    Google Scholar 

  • Richards, D. G., Wolz, J. P., Herman, L. M. (1984). Vocal mimicry of computer-generated sounds and vocal labeling of objects by a bottlenosed dolphin, Tursiops truncatus. J Comp Psychol 98:10–28.

    CAS  Google Scholar 

  • Ridgway, S. H., Carder, D. A., Jeffries, M. M. (1985). Another “talking” male white whale. Abstracts, Sixth Biennial Conference on the Biology of Marine Mammals, p 67.

    Google Scholar 

  • Ryan, M. J. (1994). Mechanisms underlying sexual selection. In L. A. Real (Ed.), Behavioral mechanisms in evolutionary ecology. Chicago: University of Chicago Press, pp 190–215.

    Google Scholar 

  • Schmidt-Koenig, K. (1975). Migration and homing in animals. New York: Springer.

    Google Scholar 

  • Schnitzler, H.-U. (1968). Die Ultraschall-Ortungslaute der Hufeisen Fledermäuse (Chiroptera-Rhinolophidae) in verschiedenen Orientierungssituationen. Z vergl Physiol 57:376–408.

    Google Scholar 

  • Schnitzler, H.-U., Ostwald, J. (1983). Adaptation for the detection of fluttering insects by echolocation in horseshoe bats. In J. P. Ewert, R. R. Capranica, D. J. Ingle (Eds.), Advances in vertebrate neuroethology. New York: Plenum, pp 801–827.

    Google Scholar 

  • Schuller, G., Beuter, K., Schnitzler, H.-U. (1974). Responses to frequency shifted artificial echoes in the bat, Rhinolophus ferrumequinum. J Comp Physiol A 89:275–286.

    Google Scholar 

  • Schuller, G., Pollak, G. D. (1979). Disproportionate frequency representation in the inferior colliculus of Doppler-compensating greater horseshoe bats: evidence for an acoustic fovea. J Comp Physiol A 132:47–54.

    Google Scholar 

  • Schusterman, R. J. (1972). Visual acuity in pinnipeds. In H. E. Winn, & B. L. Olla (Eds.), Behavior of marine animals. New York: Plenum, vol 2, pp 469–492.

    Google Scholar 

  • Schusterman, R. J. (1981). Behavioral capabilities of seals and sea lions: a review of their hearing, visual learning and diving skills. The Psychological Record 31:125–143.

    Google Scholar 

  • Scronce, B. L., Johnson, C. S. (1976). Bistatic target detection by a bottlenosed porpoise. J Acoust Soc Am 59:1001–1002.

    CAS  Google Scholar 

  • Simmons, J. A., Ferragamo, M. J., Saillant, P. A., Haresign, T., Wotton, J. M., Dear, S. P., Lee, D. N. (1995). Auditory dimensions of acoustic images in echolocation. In A. N. Popper, R. R. Fay (Eds.), Hearing by bats. New York: Springer.

    Google Scholar 

  • Simmons, J. A., Kick, S. A. (1983). Interception of flying insects by bats. In F. Huber, H. Markl (Eds.), Behavioral physiology and neuroethology: roots and growing points. New York: Springer.

    Google Scholar 

  • Stanton, T. K. (1989). Simple approximate formulas for backscattering of sound by spherical and elongated objects. J Acoust Soc Am 86:1499–1510.

    Google Scholar 

  • Thompson, R. K. R., Herman, L. M. (1975). Underwater frequency discrimination in the bottlenosed dolphin (1–140 kHz) and human (1–8 kHz). J Acoust Soc Am 57:943–948.

    CAS  Google Scholar 

  • Thompson, T. J., Winn, H. E., Perkins, P. J. (1979). Mysticete sounds. In H. E. Winn, B. L. Olla (Eds.), Behavior of marine animals. New York: Plenum, vol 3, pp 403–431.

    Google Scholar 

  • Turl, C. W., Penner, R. H. (1989). Differences in echolocation click patterns of the beluga (Delphinapterus leucas) and the bottlenose dolphin (Tursiops truncatus). J Acoust Soc Am 86:497–502.

    Google Scholar 

  • Tyack, P. (1981). Interactions between singing Hawaiian humpback whales and conspecifics nearby. Behav Ecol Sociobiol 8:105–116.

    Google Scholar 

  • Tyack, P. L., Sayigh, L. S. (1997). Vocal learning in cetaceans. In C. Snowdon, M. Hausberger (Eds.), Social influences on vocal development. Cambridge: Cambridge University Press, pp 208–233.

    Google Scholar 

  • Urick, R. J. (1983). Principals of underwater sound. New York: McGraw-Hill.

    Google Scholar 

  • von der Emde, G., Menne, D. (1989). Discrimination of insect wingbeat-frequencies by the bat Rhinolophus ferrumequinum. J Comp Physiol A 167:423–430.

    Google Scholar 

  • Walker, M. M., Kirschvink, J. L., Ahmed, G., Dizon, A. E. (1992). Evidence that fin whales respond to the geomagnetic field during migration. J Exp Biol 171:67–78.

    CAS  Google Scholar 

  • Watkins, W. A., Daher, M. A., Fristrup, K. M., Howald, T. J., di Sciara, G. N. (1993). Sperm whales tagged with transponders and tracked underwater by sonar. Marine Mammal Science 9:55–61.

    Google Scholar 

  • Watkins, W. A., Schevill, W. E. (1979). Aerial observations of feeding behavior in four baleen whales: Eubalaena glacialis, Balaenoptera borealis, Megaptera novaeangliae, and Balaenoptera physalus. J Mammal 60:155–163.

    Google Scholar 

  • Watkins, W. A., Schevill, W. E., Best, P. B. (1977). Underwater sounds of Cephalorhynchus heavisidii (Mammalia: Cetacea). J Mammal 58:316–320.

    Google Scholar 

  • Watkins, W. A., Tyack, P., Moore, K. E., Bird, J. E. (1987). The 20-Hz signals of finback whales Balaenoptera physalus). J Acoust Soc Am 82:1901–1912.

    CAS  Google Scholar 

  • Watkins, W. A., Wartzok, D. (1985). Sensory biophysics of marine mammals. Marine Mammal Science 1:219–260.

    Google Scholar 

  • Weilgart, L., Whitehead, H. (1988). Distinctive vocalizations from mature male sperm whales. Can J Zool 66:1931–1937.

    Google Scholar 

  • West, M. J., King, A. P. (1988). Female visual displays affect the development of male song in the cowbird. Nature 334:244–246.

    CAS  Google Scholar 

  • West, M. J., King, A. P. (1990). Mozart’s starling. Am Sci 78:106–114.

    Google Scholar 

  • Weston, D. E. (1967). Sound propagation in the presence of bladder fish. In V. M. Albers (Ed.), Underwater acoustics. New York: Plenum, vol 2.

    Google Scholar 

  • Williams, H., Nottebohm, F. (1985). Auditory responses on avian vocal motor neurons: a motor theory for song perception in birds. Science 229:279–282.

    CAS  Google Scholar 

  • Winter, P., Handley, P., Ploog, D., Schott, D. (1973). Ontogeny of squirrel monkey calls under normal conditions and under acoustic isolation. Behaviour 47:230–239.

    CAS  Google Scholar 

  • Wrangham, R. W., Gittleman, J. L., Chapman, C. A. (1993). Constraints on group size in primates and carnivores: population density and day-range as assays of exploitation competition. Behav Ecol Sociobiol 32:199–209.

    Google Scholar 

  • Würsig, B., Clark, C. W. (1993). Behavior. In J. J. Burns, J. J. Montague, C. J. Cowles (Eds.), The bowhead whale. Lawrence, KS: The Society for Marine Mammalogy.

    Google Scholar 

  • Würsig, B., Würsig, M. (1979). Behavior and ecology of the dusky dolphin, Lagenorhynchus obscurus, in the south Atlantic. Fish Bull 77:871–890.

    Google Scholar 

  • Xitco, M. J., Jr., Roitblat, H. L. (1996). Object recognition through eavesdropping: passive echolocation in bottlenose dolphins. Animal Learning & Behavior 24:355–365.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Tyack, P.L. (1997). Studying how Cetaceans use Sound to Explore their Environment. In: Owings, D.H., Beecher, M.D., Thompson, N.S. (eds) Communication. Perspectives in Ethology, vol 12. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1745-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1745-4_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1747-8

  • Online ISBN: 978-1-4899-1745-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics