Skip to main content

PI 3-Kinase and Receptor-Linked Signal Transduction

  • Chapter
Lipid Second Messengers

Part of the book series: Handbook of Lipid Research ((HLRE,volume 8))

Abstract

Classical phosphoinositide (PI) metabolism leading to the well-known second messengers diacylglycerol (DAG) and inositol-1,4,5-trisphosphate (InsP3), was elucidated more than 10 years ago (Fig. 4-1A). Many mitogenic signals stimulate PI turnover and transformed cells have constitutively activated PI turnover. It was work on this classical pathway that eventually led to the discovery of the novel PI pathway. Let us first look briefly at the classical pathway, in which phosphatidylinositol (Ptdlns) is phosphorylated by PtdIns 4-kinase to PtdIns-4-P, which is subsequently phosphorylated by PtdIns-4-P 5-kinase to form PtdIns-4,5-P2. Much of the PtdIns-4,5-P2 in the cell is found on the inner leaflet of the plasma membrane. This lipid can serve as a substrate for PI-specific phospholipase C (PLC), liberating DAG and IP3. IP3 is a water-soluble molecule which, when released into the cytosol, acts to liberate intracellular stores of Ca2+, increasing the intracellular concentration of Ca2+ from the resting level of ~110 nM to 400–1000 nM, which in turn can activate a number of Ca2+-sensitive enzymes and channels. The DAG released from Ptdlns-4,5-P2 remains in the membrane and serves as a cofactor in activating many of the protein kinase C (PKC) isotypes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arcaro, A., and Wymann, M. P., 1993, Wortmannin is a potent phosphatidylinositol 3-kinase inhibitor: The role of phosphatidylinositol 3,4,5-trisphosphate in neutrophil responses, Binchem. J. 296: 297–301.

    CAS  Google Scholar 

  • Auger, K. R., Serunian, L. A., Soltoff, S. P., Libby, P., and Cantley, L. C., 1989, PDGF-dependent tyrosine phosphorylation stimulates production of novel polyphosphoinositides in intact cells, Cell 57: 167–175.

    Article  PubMed  CAS  Google Scholar 

  • Auger, K. R., Carpenter, C. L., Shoelson, S. E., Piwnica, W. H., and Cantley, L. C., 1992, Polyoma virus middle T antigen—pp60c-src complex associates with purified phosphatidylinositol 3-kinase in vitro, J BioL Chem. 267: 5408–5415.

    PubMed  CAS  Google Scholar 

  • Backer, J. M., Myers, M. J., Shoelson, S. E., Chin, D. J., Sun, X. J., Miralpeix, M., Hu, P., Margolis, B., Skolnik, E. Y., Schlessinger, J., and White, M. E, 1992a, Phosphatidylinositol 3’-kinase is activated by association with IRS•1 during insulin stimulation, EMBO J 11: 3469–3479.

    PubMed  CAS  Google Scholar 

  • Backer, J. M., Schroeder, G. G., Kahn, C. R., Myers, M.J., Wilden, P. A., Cahill, D. A., and White, M. F., 1992b, Insulin stimulation of phosphatidylinositol 3-kinase activity maps to insulin receptor regions required for endogenous substrate phosphorylation, J. Biol. Chem. 267: 1367–1374.

    PubMed  CAS  Google Scholar 

  • Berger, J., Hayes, N., Szalkowski, D. M., and Zhang, B., 1994, PI 3-kinase activation is required for insulin stimulation of glucose transport into L6 myotubes, Biochem. Biophys. Res. Commun. 205: 570–576.

    Article  PubMed  CAS  Google Scholar 

  • Berra, E., Diaz, M. M., Dominguez, I., Municio, M. M., Sanz, L., Lozano, J., Chapkin, R. S., and Moscat, J., 1993, Protein kinase C zeta isoform is critical for mitogenic signal transduction, Cell 74: 555–563.

    Article  PubMed  CAS  Google Scholar 

  • Blaikie, P., Immanuel, D., Wu, J., Li, N., Yajnik, V., and Margolis, B., 1994, A region in Shc distinct from the SH2 domain can bind tyrosine-phosphorylated growth factor receptors, J. Biol. Chem. 269: 32031–32034.

    PubMed  CAS  Google Scholar 

  • Blumer, K. J., and Johnson, G. L., 1994, Diversity in function and regulation of MAP kinase pathways, Trends Biochem. Sci. 19: 236–240.

    Article  PubMed  CAS  Google Scholar 

  • Boguski, M. S., and McCormick, E, 1993, Proteins regulating Ras and its relatives, Nature 366: 643–654.

    Article  PubMed  CAS  Google Scholar 

  • Booker, G. W., Breeze, A. L., Downing, A. K., Panayotou, G., Gout, I., Waterfield, M. D., and Campbell, I. D., 1992, Structure of an SH2 domain of the p85 alpha subunit of phosphatidylinositol-3-OH kinase, Nature 358: 684–687.

    Article  PubMed  CAS  Google Scholar 

  • Booker, G. W., Gout, I., Downing, A. K., Driscoll, P. C., Boyd, J., Waterfield, M. D., and Campbell, I. D., 1993, Solution structure and ligand-binding site of the SH3 domain of the p85 alpha subunit of phosphatidylinositol 3-kinase, Cell 73: 813–822.

    Article  PubMed  CAS  Google Scholar 

  • Burgering, B. M. T., and Bos, J. L., 1995, Regulation of Ras-mediated signalling; more than one way to skin a cat, Trends Biochem. Sci. 20: 18–22.

    Article  PubMed  CAS  Google Scholar 

  • Cacace, A. M., Guadagno, S. N., Krauss, R. S., Fabbro, D., and Weinstein, I. B., 1993, The epsilon isoform of protein kinase C is an oncogene when overexpressed in rat fibroblasts, Oncogene 8: 2095–2104.

    PubMed  CAS  Google Scholar 

  • Campbell, K. S., Ogris, E., Burke, B., Su, W., Auger, K. R., Druker, B.J., Schaffhausen, B. S., Roberts, T. M., and Pallas, D. C., 1994, Polyoma middle tumor antigen interacts with SHC protein via the NPTY (Asn-Pro-Thr-Tyr) motif in middle tumor antigen, Proc. Natl. Acad. Sci. USA 91: 6344–6348.

    Article  PubMed  CAS  Google Scholar 

  • Cantley, L. C., Auger, K. R., Carpenter, C., Duckworth, B., Graziani, A., Kapeller, R., and Soltoff, S., 1991, Oncogenes and signal transduction, Cell 64: 281–302.

    Article  PubMed  CAS  Google Scholar 

  • Carpenter, C. L., Duckworth, B. C., Auger, K. R., Cohen, B., Schaffhausen, B. S., and Cantley, L. C., 1990, Purification and characterization of phosphoinositide 3-kinase from rat liver, J Biol. Chem. 265: 19704–19711.

    PubMed  CAS  Google Scholar 

  • Carpenter, C. L., Auger, K. R., Chanudhuri, M., Yoakim, M., Schaffhausen, B., Shoelson, S., and Cantley, L. C., 1993a, Phosphoinositide 3-kinase is activated by phosphopeptides that bind to the SH2 domains of the 85-kDa subunit, J. Biol. Chem. 268: 9478–9483.

    PubMed  CAS  Google Scholar 

  • Carpenter, C. L., Auger, K. R., Duckworth, B. C., Hou, W. M., Schaffhausen, B., and Cantley, L. C., 1993b, A tightly associated serine/threonine protein kinase regulates phosphoinositide 3-kinase activity, Mol. Cell. Biol. 13: 1657–1665.

    PubMed  CAS  Google Scholar 

  • Carraway, K. L., III, and Cantley, L. C., 1994, A neu acquaintance for erbB3 and erbB4: A role for receptor heterodimerization in growth signaling, Cell 78: 5–8.

    Article  PubMed  CAS  Google Scholar 

  • Carraway, K. L., III, Soltoff, S. P., Diamonti, A. J., and Cantley, L. C., 1995, Heregulin stimulates mitogenesis and phosphatidylinositol 3-kinase in mouse fibroblasts transfected with erbB2/neu and erb3, J. Biol. Chem. 270: 7111–7116.

    Article  PubMed  CAS  Google Scholar 

  • Carter, A. N., and Downes, C. P., 1992, Phosphatidylinositol 3-kinase is activated by nerve growth factor and epidermal growth factor in PC12 cells [published erratum appears in J. Biol. Chem. 1992, 267:23434], J. Biol. Chem. 267: 14563–14567.

    PubMed  CAS  Google Scholar 

  • Chant, J., and Stowers, L., 1995, GTPase cascades choreographing cellular behavior: Movement, morphogenesis, and more, Cell 81: 1–4.

    Article  PubMed  CAS  Google Scholar 

  • Cheatham, B., Vlahos, C. J., Cheatham, L., Wang, L., Blenis, J., and Kahn, C. R., 1994, Phosphatidylinositol 3-kinase activation is required for insulin stimulation of pp70 S6 kinase, DNA synthesis, and glucose transporter translocation, Mol. Cell. Biol. 14: 4902–4911.

    PubMed  CAS  Google Scholar 

  • Chen, H. C., and Guan, J. L., 1994a, Association of focal adhesion kinase with its potential substrate phosphatidylinositol 3-kinase, Proc. Natl. Acad. Sci. USA 91: 10148–10152.

    Article  PubMed  CAS  Google Scholar 

  • Chen, H. C., and Guan, J. L., 1994b, Stimulation of phosphatidylinositol 3’-kinase association with focal adhesion kinase by platelet-derived growth factor, J Biol. Chem. 269: 31229–31233.

    PubMed  CAS  Google Scholar 

  • Chen, W.J., Goldstein, J. L., and Brown, M. S., 1990, NPXY, a sequence often found in cytoplasmic tails, is required for coated pit-mediated internalization of the low density lipoprotein receptor, J. Biol. Chem. 265: 3116–3128.

    PubMed  CAS  Google Scholar 

  • Cherniack, A. D., Klarlund, J. K., and Czech, M. P., 1994, Phosphorylation of the Ras nucleotide exchange factor son of sevenless by mitogen-activated protein kinase, J. Biol. Chem. 269: 47174720.

    Google Scholar 

  • Choudhury, G. G., Wang, L. M., Pierce, J., Harvey, S. A., and Sakaguchi, A. Y., 1991, A mutational analysis of phosphatidylinositol-3-kinase activation by human colony-stimulating factor-1 receptor, J. Biol. Chem. 266: 8068–8072.

    PubMed  CAS  Google Scholar 

  • Chung, J., Grammer, T. C., Lemon, K. P., Kazlauskas, A., and Blenis, J., 1994, PDGF- and insulin-dependent pp70S6k activation mediated by phosphatidylinositol-3-OH kinase, Nature 370: 71–75.

    Google Scholar 

  • Clarke, F. J., Young, P. W., Yonezawa, K., Kasuga, M., and Holman, G. D., 1994, Inhibition of the translocation of GLUT1 and GLUT4 in 3T3–L1 cells by the phosphatidylinositol 3-kinase inhibitor, wortmannin, Biochem. j 306: 631–635.

    Google Scholar 

  • Cohen, B., Yoakim, M., Piwnica, W. H., Roberts, T. M., and Schaffhausen, B. S., 1990, Tyrosine phosphorylation is a signal for the trafficking of pp85, an 85-kDa phosphorylated polypeptide associated with phosphatidylinositol kinase activity, Proc. Natl. Acad. Sci. USA 87: 4458–4462.

    Article  PubMed  CAS  Google Scholar 

  • Cooper, J. A., and Kashishian, A., 1993, In vivo binding properties of SH2 domains from GTPaseactivating protein and phosphatidylinositol 3-kinase, Mol. Cell. Biol. 13: 1737–1745.

    PubMed  CAS  Google Scholar 

  • Coughlin, S. R., Escobedo, J. A., and Williams, L. T., 1989, Role of phosphatidylinositol kinase in PDGF receptor signal transduction, Science 243: 1191–1194.

    Article  PubMed  CAS  Google Scholar 

  • Courtneidge, S. A., and Heber, A., 1987, An 81 kd protein complexed with middle T antigen and pp60c-5«: A possible phosphatidylinositol kinase, Cell 50: 1031–1037.

    Article  PubMed  CAS  Google Scholar 

  • Cross, D. A., Alessi, D. R., Vandenheede, J. R., McDowell, H. E., Hundal, H. S., and Cohen, P., 1994, The inhibition of glycogen synthase kinase-3 by insulin or insulin-like growth factor 1 in the rat skeletal muscle cell line L6 is blocked by wortmannin, but not by rapamycin: Evidence that wortmannin blocks activation of the mitogen-activated protein kinase pathway in L6 cells between Ras and Raf, Biochem. j 303: 21–26.

    PubMed  CAS  Google Scholar 

  • Dhand, R., Hara, K., Hiles, I., Box, B., Gout, I., Panayotou, G., Fry, M.J., Yonezawa, K., Kasuga, M., and Waterfield, M. D., 1994a, PI 3-kinase: Structural and functional analysis of intersubunit interactions, EMBO J. 13: 511–521.

    Google Scholar 

  • Dhand, R., Hiles, I., Panayotou, G., Roche, S., Fry, M. J., Gout, I., Totty, N. F., Truong, O., Vicendo, P., Yonezawa, K., Kasuga, M., Courtneidge, S. A., and Waterfield, M. D., 1994b, PI 3-kinase is a dual specificity enzyme: Autoregulation by an intrinsic protein-serine kinase activity, EMBO j 13: 522–533.

    Google Scholar 

  • Dilworth, S. M., Brewster, C. E., Jones, M. D., Lanfrancone. L., Pelicci, G., and Pelicci, P. G., 1994, Transformation by polyoma virus middle T-antigen involves the binding and tyrosine phosphorylation of Shc, Nature 367: 87–90.

    Article  PubMed  CAS  Google Scholar 

  • Druker, B. J., Ling, L. E., Cohen, B., Roberts, T. M., and Schaffhausen, B. S., 1990, A completely transformation-defective point mutant of polyomavirus middle T antigen which retains full associated phosphatidylinositol kinase activity, J. Virol. 64: 4454–4461.

    PubMed  CAS  Google Scholar 

  • Eck, M. J., Shoelson, S. E., and Harrison, S. C., 1993, Recognition of a high-affinity phosphotyrosyl peptide by the Src homology-2 domain of p561Vk, Nature 362: 87–91.

    Article  PubMed  CAS  Google Scholar 

  • Eck, M.J., Atwell, S. K., Shoelson, S. E., and Harrison, S. C., 1994, Structure of the regulatory domains of the Src-family tyrosine kinase Lck, Nature 368: 764–769.

    Article  PubMed  CAS  Google Scholar 

  • End, P., Gout, I., Fry, M. J., Panayotou, G., Dhand, R., Yonezawa, K., Kasuga, M., and Waterfield, M. D., 1993, A biosensor approach to probe the structure and function of the p85 alpha subunit of the phosphatidylinositol 3-kinase complex, J. Biol. Chem. 268: 10066–10075.

    Google Scholar 

  • Endemann, G., Yonezawa, K, and Roth, R. A., 1990, Phosphatidylinositol kinase or an associated protein is a substrate for the insulin receptor tyrosine kinase, J Biol. Chem. 265: 396–400.

    PubMed  CAS  Google Scholar 

  • Escobedo, J. A., Navankasattusas, S., Kavanaugh, W. M., Milfay, D., Fried, V. A., and Williams, L. T., 1991, cDNA cloning of a novel 85 kd protein that has SH2 domains and regulates binding of PI3-kinase to the PDGF beta-receptor, Cell 65: 75–82.

    Google Scholar 

  • Fanti, W. J., Escobedo, J. A., Martin, G. A., Turck, C. W., del Rosario, M., McCormick, E, and Williams, L. T., 1992, Distinct phosphotyrosines on a growth factor receptor bind to specific molecules that mediate different cellular signaling pathways, Cell 69: 413–423.

    Article  Google Scholar 

  • Fedi, P., Pierce, J. H., di Fiore, P., and Kraus, M. H., 1994, Efficient coupling with phosphatidylinositol 3-kinase, but not phospholipase C gamma or GTPase-activating protein, distinguishes ErbB-3 signaling from that of other ErbB/EGFR family members, Mol. Cell. Biol. 14: 492–500.

    PubMed  CAS  Google Scholar 

  • Feng, S., Chen, J. K., Yu, H., Simon, J. A., and Schreiber, S. L., 1994, Two binding orientations for peptides to the Src SH3 domain: Development of a general model for SH3—ligand interactions, Science 266: 1241–1247.

    Google Scholar 

  • Flanagan, C. A., Schnieders, E. A., Emerick, A. W., Kunisawa, R., Admon, A., and Thorner, J., 1993, Phosphatidylinositol 4-kinase: Gene structure and requirement for yeast cell viability, Science 262: 1444–1448.

    Article  PubMed  CAS  Google Scholar 

  • Folli, F., Saad, M. J., Backer, J. M., and Kahn, C. R., 1992, Insulin stimulation of phosphatidylinositol 3-kinase activity and association with insulin receptor substrate 1 in liver and muscle of the intact rat, J. Biol. Chem. 267: 22171–22177.

    Google Scholar 

  • Fry, M. J., Panayotou, G., Dhand, R., Ruiz, L. F., Gout, I., Nguyen, O., Courtneidge, S. A., and Waterfield, M. D., 1992, Purification and characterization of a phosphatidylinositol 3-kinase complex from bovine brain by using phosphopeptide affinity columns, Biochem. J 288: 383–393.

    Google Scholar 

  • Fukui, Y, Saltiel, A. R., and Hanafusa, H., 1991, Phosphatidylinositol-3 kinase is activated in v-src, v-yes, and v-fps transformed chicken embryo fibroblasts, Oncogene 6: 407–411.

    PubMed  CAS  Google Scholar 

  • Giorgetti, S., Ballotti, R., Kowalski, C. A., Cormont, M., and Van Obberghen, E., 1992, Insulin stimulates phosphatidylinositol-3-kinase activity in rat adipocytes, Eur. J Biochem. 207: 599–606.

    Article  PubMed  CAS  Google Scholar 

  • Giorgetti, S., Ballotti, R., Kowalski, C. A., Tartare, S., and Van Obberghen, E., 1993, The insulin and insulin-like growth factor-I receptor substrate IRS-1 associates with and activates phosphatidylinositol 3-kinase in vitro, J Biol. Chem. 268: 7358–7364.

    PubMed  CAS  Google Scholar 

  • Goldschmidt-Clermont, P. J., Machesky, L. M., Baldassare, J. J., and Pollard, T. D., 1990, The actin-binding protein profilin binds to PIP2 and inhibits its hydrolysis by phospholipase C, Science 247: 1575–1578.

    Article  PubMed  CAS  Google Scholar 

  • Goldschmidt-Clermont, P. J., Kim, J. W., Machesky, L. M., Rhee, S. G., and Pollard, T. D., 1991, Regulation of phospholipase C-gamma 1 by profilin and tyrosine phosphorylation, Science 251: 1231–1233.

    Google Scholar 

  • Graziani, A., Ling, L. E., Endemann, G., Carpenter, C. L., and Cantley, L. C., 1992, Purification and characterization of human erythrocyte phosphatidylinositol 4-kinase. Phosphatidylinositol 4-kinase and phosphatidylinositol 3-monophosphate 4-kinase are distinct enzymes, Biochem. J 284: 39–45.

    PubMed  CAS  Google Scholar 

  • Guy, P. M., Platko, J. V., Cantley, L. C., Cerione, R. A., and Carraway, K. L., ííI,1994, Insect cell-expressed p180erbB3 possesses an impaired tyrosine kinase activity, Proc. Natl. Acad. Sci. USA 91: 8132–8136.

    Google Scholar 

  • Hadari, Y. R., Tzahar, E., Nadiv, O., Rotenberg, P., Roberts, C. J., LeRoith, D., Yarden, Y., and Zick, Y., 1992, Insulin and insulinomimetic agents induce activation of phosphatidylinositol 3’-kinase upon its association with pp185 (IRS-1) in intact rat livers [published erratum appears in./ Biol. Chem. 1993, 268:9156], J. Biol. Chem. 267: 17483–17486.

    PubMed  CAS  Google Scholar 

  • Hara, K., Yonezawa, K., Sakaue, H., Ando, A., Kotani, K., Kitamura, T., Kitamura, Y, Ueda, H., Stephens, L., Jackson, T. R., Hawkins, P. T., Dhand, R., Clark, A. E., Holman, G. D., Waterfield, M. D., and Kasuga, M., 1994, 1-Phosphatidylinositol 3-kinase activity is required for insulin-stimulated glucose transport but not for RAS activation in CHO cells, Proc. Natl. Acad. Sci. USA 91:7415–7419.

    Google Scholar 

  • Hawkins, P. T., Jackson, T. R., and Stephens, L. R., 1992, Platelet-derived growth factor stimulates synthesis of Ptdlns(3,4,5)P3 by activating a Ptdlns(4,5)P2 3-OH kinase, Nature 358: 157–159.

    Article  PubMed  CAS  Google Scholar 

  • Hayashi, H., Miyake, N., Kanai, F., Shibasaki, F., Takenawa, T., and Ebina, Y, 1991, Phosphorylation in vitro of the 85 kDa subunit of phosphatidylinositol 3-kinase and its possible activation by insulin receptor tyrosine kinase, Biochem. 280: 769–775.

    CAS  Google Scholar 

  • Hayashi, H., Kamohara, S., Nishioka, Y, Kanai, E, Miyake, N., Fukui, Y, Shibasaki, E, Takenawa, T., and Ebina, Y, 1992, Insulin treatment stimulates the tyrosine phosphorylation of the alpha-type 85kDa subunit of phosphatidylinositol 3-kinase in vivo, j Biol. Chem. 267: 22575–22580.

    PubMed  CAS  Google Scholar 

  • Hayashi, H., Nishioka, Y, Kamohara, S., Kanai, E, Ishii, K, Fukui, Y., Shibasaki, E, Takenawa, T., Kido, H., Katsunuma, N., and Ebina, Y., 1993, The alpha-type 85-kDa subunit of phosphatidylinositol 3-kinase is phosphorylated at tyrosines 368, 580, and 607 by the insulin receptor, J. Biol. Chem. 268: 7107–7117.

    PubMed  CAS  Google Scholar 

  • Heitman, J., Movva, N. R., and Hall, M. N., 1991, Targets for cell cycle arrest by the immunosuppressant rapamycin in yeast, Science 253: 905–909.

    Article  PubMed  CAS  Google Scholar 

  • Herbst, J. J., Andrews, G., Contillo, L., Lamphere, L., Gardner, J., Lienhard, G. E., and Gibbs, E. M., 1994, Potent activation of phosphatidylinositol 3’-kinase by simple phosphatyrosine peptides derived from insulin receptor substrate 1 containing two YMXM motifs for binding SH2 domains, Biochemistry 33: 9376–9381.

    Article  PubMed  CAS  Google Scholar 

  • Herman, P. K., and Emr, S. D., 1990, Characterization of VPS34, a gene required for vacuolar protein sorting and vacuole segregation in Saccharomyces cerevisiae, Mol. Cell. Biol. 10: 6742–6754.

    PubMed  CAS  Google Scholar 

  • Hiles, I. D., Otsu, M., Volinia, S., Fry, M. J., Gout, I., Dhand, R., Panayotou, G., Ruiz, L. E, Thompson, A., Totty, N. F., Hsuan, J. J., Courtneidge, S. A., Parker, P. J., and Waterfield, M. D., 1992, Phosphatidylinositol 3-kinase: Structure and expression of the 110 kd catalytic subunit, Cell 70: 419–429.

    Article  PubMed  CAS  Google Scholar 

  • Holt, K. H., Olson, L., Moye, R. W., and Pessin, J. E., 1994, Phosphatidylinositol 3-kinase activation is mediated by high-affinity interactions between distinct domains within the p110 and p85 subunits, Mol. Cell. Biol. 14: 42–49.

    PubMed  CAS  Google Scholar 

  • Hu, P., and Schlessinger, J., 1994, Direct association of p110 beta phosphatidylinositol 3-kinase with p85 is mediated by an N-terminal fragment of p110 beta, Mol. Cell. Biol. 14: 2577–2583.

    Article  PubMed  CAS  Google Scholar 

  • Hu, P., Margolis, B., Skolnik, E. Y., Lammers, R., Ullrich, A., and Schlessinger, J., 1992, Interaction of phosphatidylinositol 3- kinase-associated p85 with epidermal growth factor and platelet-derived growth factor receptors, Mol. Cell. Biol. 12: 981–990.

    PubMed  CAS  Google Scholar 

  • Hu, P., Mondino, A., Skolnik, E. Y., and Schlessinger, J., 1993, Cloning of a novel, ubiquitously expressed human phosphatidylinositol 3-kinase and identification of its binding site on p85, Mol. Cell. Biol. 13: 7677–7688.

    PubMed  CAS  Google Scholar 

  • Jackson, T. R., Stephens, L. R., and Hawkins, P. T., 1992, Receptor specificity of growth factor-stimulated synthesis of 3-phosphorylated inositol lipids in Swiss 3T3 cells,/ Biol. Chem. 267: 1662716636.

    Google Scholar 

  • Janmey, P. A., 1994, Phosphoinositides and calcium as regulators of cellular actin assembly and disassembly, Annu. Rev. Physiol. 56: 169–191.

    Article  CAS  Google Scholar 

  • Jefferies, H. B., Reinhard, C., Kozma, S. C., and Thomas, G., 1994, Rapamycin selectively represses translocation of the “polypyrimidine tract” mRNA family, Proc. Natl. Acad. Sci. USA 91: 4441–4445.

    Article  PubMed  CAS  Google Scholar 

  • Jhun, B. H., Rose, D. W., Seely, B. L., Rameh, L., Cantley, L., Saltiel, A. R., and Olefsky, J. M., 1994, Microinjection of the SH2 domain of the 85-kilodalton subunit of phosphatidylinositol 3-kinase inhibits insulin-induced DNA synthesis and c-fos expression, Mol. Cell. Biol. 14: 7466–7475.

    PubMed  CAS  Google Scholar 

  • Johnson, D. I., and Pringle, J. R., 1990, Molecular characterization of CDC42, a Saccharomyces cerevisiae gene involved in the development of cell polarity, J Cell Biol. 111: 143–152.

    Article  PubMed  CAS  Google Scholar 

  • Kapeller, R., Chen, K. S., Yoakim, M., Schaffhausen, B. S., Backer, J., White, M. E, Cantley, L. C., and Ruderman, N. B., 1991, Mutations in the juxtamembrane region of the insulin receptor impair activation of phosphatidylinositol 3-kinase by insulin, Mol. Endocrinol. 5: 769–777.

    Article  PubMed  CAS  Google Scholar 

  • Kapeller, R., Prasad, K. V., Janssen, O., Hou, W., Schaffhausen, B. S., Rudd, C. E., and Cantley, L. C., 1994, Identification of two SH3-binding motifs in the regulatory subunit of phosphatidylinositol 3-kinase, J. Biol. Chem. 269: 1927–1933.

    PubMed  CAS  Google Scholar 

  • Kaplan, D. R., Whitman, M., Schaffhausen, B., Pallas, D. C., White, M., Cantley, L., and Roberts, T. M., 1987, Common elements in growth factor stimulation and oncogenic transformation: 85 kd phosphoprotein and phosphatidylinositol kinase activity, Cell 50: 1021–1029.

    Article  PubMed  CAS  Google Scholar 

  • Karnitz, L. M., Sutor, S. L., and Abraham, R. T., 1994, The Src-family kinase, Fyn, regulates the activation of phosphatidylinositol 3-kinase in an interleukin 2-responsive T cell line, J. Exp. Med. 179: 1799–1808.

    Article  PubMed  CAS  Google Scholar 

  • Kavanaugh, W. M., and Williams, L. T., 1994, An alternative to SH2 domains for binding tyrosinephosphorylated proteins, Science 266: 1862–1865.

    Article  PubMed  CAS  Google Scholar 

  • Kazlauskas, A., and Cooper, J. A., 1989, Autophosphorylation of the PDGF receptor in the kinase insert region regulates interactions with cell proteins, Cell 58: 1121–1133.

    Article  PubMed  CAS  Google Scholar 

  • Kazlauskas, A., and Cooper, J. A., 1990, Phosphorylation of the PDGF receptor beta subunit creates a tight binding site for phosphatidylinositol 3 kinase, EMBO J. 9: 3279–3286.

    PubMed  CAS  Google Scholar 

  • Kazlauskas, A., Kashishian, A., Cooper, J. A., and Valius, M., 1992, GTPase-activating protein and phosphatidylinositol 3-kinase bind to distinct regions of the platelet-derived growth factor receptor beta subunit, Mol. Cell. Biol. 12: 2534–2544.

    PubMed  CAS  Google Scholar 

  • Kelly, K L., and Ruderman, N. B., 1993, Insulin-stimulated phosphatidyinositol 3-kinase. Association with a 185-kDa tyrosine-phosphorylated protein (IRS-1) and localization in a low density membrane vesicle, J. Biol. Chem. 268: 4391–4398.

    PubMed  CAS  Google Scholar 

  • Kim, H. H., Sierke, S. L., and Koland, J. G., 1994, Epidermal growth factor-dependent association of phosphatidylinositol 3-kinase with the erbB3 gene product, j Biol. Chem. 269: 24747–24755.

    PubMed  CAS  Google Scholar 

  • Kimura, K., Hattori, S., Kabuyama, Y., Shizawa, Y, Takayanagi, J., Nakamura, S., Toki, S., Matsuda, Y, Onodera, K., and Fukui, Y, 1994, Neurite outgrowth of PC12 cells is suppressed by wortmannin, a specific inhibitor of phosphatidylinositol 3-kinase, J. Biol. Chem. 269: 18961–18967.

    PubMed  CAS  Google Scholar 

  • Klippel, A., Escobedo, J. A., Fantl, W.J., and Williams, L. T., 1992, The C-terminal SH2 domain of p85 accounts for the high affinity and specificity of the binding of phosphatidylinositol 3-kinase to phosphorylated platelet-derived growth factor beta receptor, Mol. Cell. Biol. 12: 1451–1459.

    PubMed  CAS  Google Scholar 

  • Klippel, A., Escobedo, J. A., Hu, Q., and Williams, L. T., 1993, A region of the 85-kilodalton (kDa) subunit of phosphatidylinositol 3-kinase binds the 110-kDa catalytic subunit in vivo, Mol. Cell. Biol. 13: 5560–5566.

    PubMed  CAS  Google Scholar 

  • Klippel, A., Escobedo, J. A., Hirano, M., and Williams, L. T., 1994, The interaction of small domains between the subunits of phosphatidylinositol 3-kinase determines enzyme activity, Mol. Cell. Biol. 14: 2675–2685.

    Article  PubMed  CAS  Google Scholar 

  • Knighton, D. R., Zheng, J. H., Ten, E. L., Ashford, V. A., Xuong, N. H., Taylor, S. S., and Sowadski, J. M., 1991, Crystal structure of the catalytic subunit of cyclic adenosine monophosphate-dependent protein kinase [see comments], Science 253: 407–414.

    Article  PubMed  CAS  Google Scholar 

  • Kodaki, T., Woscholski, R., Hallberg, B., Rodriguez, V. P., Downward, J., and Parker, P. J., 1994, The activation of phosphatidylinositol 3-kinase by Ras, Cura. Biol. 4: 798–806.

    CAS  Google Scholar 

  • Kotani, K., Yonezawa, K., Hara, K., Ueda, H., Kitamura, Y, Sakaue, H., Ando, A., Chavanieu, A., Calas, B., Grigorescu, F., Nishiyama, M., Waterfield, M. D., and Kasuga, M., 1994, Involvement of phosphoinositide 3-kinase in insulin-or IGF-1-induced membrane ruffling, EMBO J. 13: 2313 2321.

    Google Scholar 

  • Koyama, S., Yu, H., Dalgarno, D. C., Shin, T. B., Zydowsky, L. D., and Schreiber, S. L., 1993, Structure of the PI3K SH3 domain and analysis of the SH3 family, Cell 72: 945–952.

    Article  PubMed  CAS  Google Scholar 

  • Lam, K., Carpenter, C. L., Ruderman, N. B., Friel, J. C., and Kelly, K. L., 1994, The phosphatidylinositol 3-kinase serine kinase phosphorylates IRS-1. Stimulation by insulin and inhibition bywortmannin, J. Biol. Chem. 269: 20648–20652.

    PubMed  CAS  Google Scholar 

  • Lamphere, L., Carpenter, C. L., Sheng, Z. F., Kallen, R. G., and Lienhard, G. E., 1994, Activation of PI 3-kinase in 3T3–L1 adipocytes by association with insulin receptor substrate-1, Am. j Physiol. 266: E486 — E494.

    PubMed  CAS  Google Scholar 

  • Lee, C. H., Kominos, D., Jacques, S., Margolis, B., Schlessinger, J., Shoelson, S. E., and Kuriyan, J., 1994, Crystal structures of peptide complexes of the amino-terminal SH2 domain of the Syp tyrosine phosphatase, Structure 2: 423–438.

    Article  PubMed  CAS  Google Scholar 

  • Lim, W. A., Richards, F. M., and Fox, R. 0., 1994, Structural determinants of peptide-binding orientation and of sequence specificity in SH3 domains, Nature 372: 375–379.

    CAS  Google Scholar 

  • Ling, L. E., Druker, B.J., Cantley, L. C., and Roberts, T. M., 1992, Transformation-defective mutants of polyomavirus middle T antigen associate with phosphatidylinositol 3-kinase (PI 3-kinase) but are unable to maintain wild-type levels of PI 3-kinase products in intact cells, J Virol. 66: 1702–1708.

    PubMed  CAS  Google Scholar 

  • Liu, X., Marengere, L. E., Koch, C. A., and Pawson, T., 1993, The v-Src SH3 domain binds phosphatidylinositol 3’ kinase, Mol. Cell. Biol. 13: 5225–5232.

    PubMed  CAS  Google Scholar 

  • Macara, I. G., Marinetti, G. V., and Balduzzi, P. C., 1984, Transforming protein of avian sarcoma virus UR2 is associated with phosphatidylinositol kinase activity: Possible role in tumorigenesis, Proc. Natl. Acad. Sci. USA 81: 2728–2732.

    Article  PubMed  CAS  Google Scholar 

  • Marshall, C. J., 1994, MAP kinase kinase kinase, MAP kinase kinase, and MAP kinase, Curr Opin. Gen. Dev. 4: 82–89.

    Article  CAS  Google Scholar 

  • Miller, E. S., and Ascoli, M., 1990, Anti-phosphotyrosine immunoprecipitation of phosphatidylinositol 3’-kinase activity in different cell types after exposure to epidermal growth factor, Biochem. Biophys. Res. Commun. 173: 289–295.

    Article  PubMed  CAS  Google Scholar 

  • Ming, X. F., Burgering, B. M., Wennstrom, S., Claesson, W. L., Heldin, C. H., Bos, J. L., Kozma, S. C., and Thomas, G., 1994, Activation of p70/p85 S6 kinase by a pathway independent of p2lras, Nature 371: 426–429.

    Article  PubMed  CAS  Google Scholar 

  • Mischak, H., Goodnight, J. A., Kolch, W., Martiny, B. G., Schaechtle, C., Kazanietz, M. G., Blumberg, P. M., Pierce, J. H., and Mushinski, J. E, 1993, Overexpression of protein kinase C-delta and -epsilon in NIH 3T3 cells induces opposite effects on growth, morphology, anchorage dependence, and tumorigenicity, J. Biol. Chem. 268: 6090–6096.

    PubMed  CAS  Google Scholar 

  • Monfar, M., Lemon, K. P., Grammer, T. C., Cheatham, L., Chung, J., Vlahos, C. J., and Blenis, J., 1995, Activation of pp70/85 S6 kinases in interleukin-2-responsive lymphoid cells is mediated by phosphatidylinositol 3-kinase and inhibited by cyclic AMP, Mol. Cell. Biol. 15: 326–337.

    PubMed  CAS  Google Scholar 

  • Morgan, S. J., Smith, A. D., and Parker, P. J., 1990, Purification and characterization of bovine brain type I phosphatidylinositol kinase, Eur. J Biochem. 191: 761–767.

    Article  CAS  Google Scholar 

  • Myers, M.J., Backer, J. M., Sun, X.J., Shoelson, S., Hu, P., Schlessinger,J., Yoakim, M., Schaffhausen, B., and White, M. E, 1992, IRS-1 activates phosphatidylinositol 3’-kinase by associating with src homology 2 domains of p85, Proc. Natl. Acad. Sci. USA 89: 10350–10354.

    CAS  Google Scholar 

  • Nakanishi, H., Brewer, K. A., and Exton, J. H.,1993, Activation of the zeta isozyme of protein kinase C by phosphatidylinositol 3,4,5-trisphosphate, J Biol. Chem. 268:13–16.

    Google Scholar 

  • Nobes, C. D., and Hall, A., 1995, Rho, Rac, and CDC42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia, Cell 81: 53–62.

    Article  PubMed  CAS  Google Scholar 

  • Okada, T., Kawano, Y, Sakakibara, T., Hazeki, O., and Ui, M., 1994a, Essential role of phosphatidylionositol 3-kinase in insulin-induced glucose transport and antilipolysis in rat adipocytes. Studies with a selective inhibitor wortmannin, J Biol. Chem. 269: 3568–3573.

    Google Scholar 

  • Okada, T., Sakuma, L., Fukui, Y., Hazeki, O., and Ui, M., 1994b, Blockage of chemotactic peptide-induced stimulation of neutrophils by wortmannin as a result of selective inhibition of phosphatidylinositol 3-kinase, J. Biol. Chem. 269: 3563–3567.

    PubMed  CAS  Google Scholar 

  • Otsu, M., Hiles, I., Gout, I., Fry, M. J., Ruiz, L. F., Panayotou, G., Thompson, A., Dhand, R., Hsuan, J., Totty, N., Smith, A. D., Morgan, S. J., Courtneidge, S. A., Parker, P.J., and Waterfield, M. D., 1991, Characterization of two 85 kd proteins that associate with receptor tyrosine kinases, middleT/pp60c-src complexes, and PI3-kinase, Cell 65: 91–104.

    Article  PubMed  CAS  Google Scholar 

  • Overduin, M., Rios, C. B., Mayer, B. J., Baltimore, D., and Cowburn, D., 1992, Three-dimensional solution structure of the src homology 2 domain of c-abl, Cell 70: 697–704.

    Article  PubMed  CAS  Google Scholar 

  • Pallas, D. C., Cherington, V., Morgan, W., DeAnda, J., Kaplan, D., Schaffhausen, B., and Roberts, T. M., 1988, Cellular proteins that associate with the middle and small T antigens of polyomavirus, J. Virol. 62: 3934–3940.

    PubMed  CAS  Google Scholar 

  • Pallas, D. C., Shahrik, L. K., Martin, B. L., Jaspers, S., Miller, T. B., Brautigan, D. L., and Roberts, T. M., 1990, Polyoma small and middle T antigens and SV40 small t antigen form stable complexes with protein phosphatase 2A, Cell 60: 167–176.

    Article  PubMed  CAS  Google Scholar 

  • Panayotou, G., Gish, G., End, P., Truong, O., Gout, I., Dhand, R., Fry, M. J., Hiles, I., Pawson, T., and Waterfield, M. D., 1993, Interactions between SH2 domains and tyrosine-phosphorylated platelet-derived growth factor beta-receptor sequences: Analysis of kinetic parameters by a novel biosensor-based approach, Mol. Cell. Biol. 13: 3567–3576.

    PubMed  CAS  Google Scholar 

  • Pascal, S. M., Singer, A. U., Gish, G., Yamazaki, T., Shoelson, S. E., Pawson, T., Kay, L. E., and Forman, K. J., 1994, Nuclear magnetic resonance structure of an SH2 domain of phospholipase C-gamma 1 complexed with a high affinity binding peptide, Cell 77: 461–472.

    Article  PubMed  CAS  Google Scholar 

  • Piccione, E., Case, R. D., Domchek, S. M., Hu, P., Chaudhuri, M., Backer, J. M., Schlessinger, J., and Shoelson, S. E., 1993, Phosphatidylinositol 3-kinase p85 SH2 domain specificity defined by direct phosphospeptide/SH2 domain binding, Biochemistry 32: 3197–3202.

    Article  PubMed  CAS  Google Scholar 

  • Pignataro, O. P., and Ascoli, M., 1990, Studies with insulin and insulin-like growth factor-I show that the increased labeling of phosphatidylinositol-3,4-bisphosphate is not sufficient to elicit the diverse actions of epidermal growth factor on MA-10 Leydig tumor cells, Mol. Endocrinol. 4: 758–765.

    Article  PubMed  CAS  Google Scholar 

  • Pleiman, C. M., Clark, M. R., Gauen, L. K., Winitz, S., Coggeshall, K. M., Johnson, G. L., Shaw, A. S., and Cambier, J. C., 1993, Mapping of sites on the Src family protein tyrosine kinases p55blk, p59fyn, and p561yn which interact with the effector molecules phospholipase C-gamma 2, microtubuleassociated protein kinase, GTPase-activating protein, and phosphatidylinositol 3-kinase, Mol. Cell. Biol. 13: 5877–5887.

    PubMed  CAS  Google Scholar 

  • Pleiman, C. M., Hertz, W. M., and Cambier, J. C., 1994, Activation of phosphatidylinositol-3’ kinase by Src-family kinase SH3 binding to the p85 subunit, Science 263: 1609–1612.

    Article  PubMed  CAS  Google Scholar 

  • Prasad, K. V., Janssen, O., Kapeller, R., Raab, M., Cantley, L. C., and Rudd, C. E., 1993a, Src-homology 3 domain of protein kinase p59fyn mediates binding to phosphatidylinositol 3-kinase in T cells, Proc. Natl. Acad. Sci. USA 90: 7366–7370.

    Article  PubMed  CAS  Google Scholar 

  • Prasad, K. V., Kapeller, R, Janssen, O., Repke, H., Duke, C. J., Cantley, L. C., and Rudd, C. E., 1993b, Phosphatidylinositol (PI) 3-kinase and PI 4-kinase binding to the CD4—p561ack complex: The p561ck SH3 domain binds to PI 3-kinase but not PI 4-kinase, Mol. Cell. Biol. 13: 7708–7717.

    PubMed  CAS  Google Scholar 

  • Prigent, S. A., and Gullick, W. J., 1994, Identification of c-erbB-3 binding sites for phosphatidylinositol 3’-kinase and SHC using an EGF receptor/c-erbB-3 chimera, EMBO J. 13: 2831–2841.

    PubMed  CAS  Google Scholar 

  • Raffioni, S., and Bradshaw, R. A., 1992, Activation of phosphatidylinositol 3-kinase by epidermal growth factor, basic fibroblast growth factor, and nerve growth factor in PC12 pheochromocytoma cells, Proc. Natl. Acad. Sci. USA 89: 9121–9125.

    Article  PubMed  CAS  Google Scholar 

  • Reedijk, M., Liu, X. Q., and Pawson, T., 1990, Interactions of phosphatidylinositol kinase, GTPaseactivating protein (GAP), and GAP-associated proteins with the colony-stimulating factor 1 receptor, Mol. Cell. Biol. 10: 5601–5608.

    PubMed  CAS  Google Scholar 

  • Reedijk, M., Liu, X., van der Geer, P., Letwin, K., Waterfield, M. D., Hunter, T., and Pawson, T., 1992, Tyr721 regulates specific binding of the CSF 1 receptor kinase insert to PI 3’-kinase SH2 domains: A model for SH2-mediated receptor—target interactions, EMBO J 11: 1365–1372.

    PubMed  CAS  Google Scholar 

  • Rickles, R. J., Botfield, M. C., Weng, Z., Taylor, J. A., Green, O. M., Brugge, J. S., and Zoller, M. J., 1994, Identification of Src, Fyn, Lyn, PI3K and Abl SH3 domain ligands using phage display libraries, EMBO J. 13: 5598–5604.

    PubMed  CAS  Google Scholar 

  • Ridley, A.J., Paterson, H. F., Johnston, C. L., Diekmann, D., and Hall, A., 1992, The small GTP-binding protein rac regulates growth factor-induced membrane ruffling, Cell 70: 401–410.

    Article  PubMed  CAS  Google Scholar 

  • Roche, S., Koegl, M., and Courtneidge, S. A.,1994, The phosphatidylinositol 3-kinase alpha is required for DNA synthesis induced by some, but not all, growth factors, Proc. Natl. Sci. USA 91: 9185–9189.

    Google Scholar 

  • Rodriguez-Viciana, P., Warne, P. H., Dhand, R., Vanhaesebroeck, B., Gout, I., Fry, M. J., Waterfield, M. D., and Downward, J., 1994, Phosphatidylinositol-3-OH kinase as a direct target of Ras, Nature 370: 527–532.

    Article  PubMed  CAS  Google Scholar 

  • Ruderman, N. B., Kapeller, R, White, M. E, and Cantley, L. C., 1990, Activation of phosphatidylinositol 3-kinase by insulin, Proc. Natl. Acad. Sci. USA 87: 1411–1415.

    Article  PubMed  CAS  Google Scholar 

  • Sanchez, M. V., Goldfine, I. D., Vlahos, C. J., and Sung, C. K., 1994, Role of phosphatidylinositol-3kinase in insulin receptor signaling: Studies with inhibitor, LY294002, Biochem. Biophys. Res. Commun. 204: 446–452.

    Article  Google Scholar 

  • Satoh, T., Fantl, W. J., Escobedo, J. A., Williams, L. T., and Kaziro, Y, 1993, Platelet-derived growth factor receptor mediates activation of ras through different signaling pathways in different cell types, Mol. Cell. Biol. 13: 3706–3713.

    PubMed  CAS  Google Scholar 

  • Schu, P. V., Takegawa, K, Fry, M.J., Stack, J. H., Waterfield, M. D., and Emr, S. D., 1993, Phosphatidylinositol 3-kinase encoded by yeast VPS34 gene essential for protein sorting, Science 260: 88–91.

    Article  PubMed  CAS  Google Scholar 

  • Serunian, L. A., Haber, M. T., Fukui, T., Kim, J. W., Rhee, S. G., Lowenstein, J. M., and Cantley, L. C., 1989, Polyphosphoinositides produced by phosphatidylinositol 3-kinase are poor substrates for phospholipases C from rat liver and bovine brain, J. Biol. Chem. 264: 17809–17815.

    PubMed  CAS  Google Scholar 

  • Serunian, L. A., Auger, K. R., Roberts, T. M., and Cantley, L. C., 1990, Production of novel polyphosphoinositides in vivo is linked to cell transformation by polyomavirus middle T antigen, J. Virol. 64: 4718–4725.

    PubMed  CAS  Google Scholar 

  • Shepherd, P. R., Nave, B. T., and Siddle, K., 1995, Insulin stimulation of glycogen synthesis and glycogen synthase activity is blocked by wortmannin and rapamycin in 3T3-LI adipocytes: Evidence for the involvement of phosphoinositide 3-kinase and p70 ribosomal protein-S6 kinase, Biochem. J. 305: 25–28.

    PubMed  CAS  Google Scholar 

  • Shibasaki, F., Homma, Y., and Takenawa, T., 1991, Two types of phosphatidylinositol 3-kinase from bovine thymus. Monomer and heterodimer form, J. Biol. Chem. 266: 8108–8114.

    PubMed  CAS  Google Scholar 

  • Shinjo, K., Koland, J. G., Hart, M.J., Narasimhan, V., Johnson, D. I., Evans, T., and Cerione, R. A., 1990, Molecular cloning of the gene for the human placental GTP-binding protein GP (G25K): Identification of this GTP-binding protein as the human homolog of the yeast cell-division-cycle protein CDC42, Proc. Natl. Acad. Sci. USA 87: 9853–9857.

    Article  PubMed  CAS  Google Scholar 

  • Singh, S. S., Chauhan, A., Brockerhoff, H., and Chauhan, V. P., 1993, Activation of protein kinase C by phosphatidylinositol 3,4,5-trisphosphate, Biochem. Biophys. Res. Commun. 195: 104–112.

    Article  PubMed  CAS  Google Scholar 

  • Sjolander, A., and Lapetina, E. G., 1992, Agonist-induced association of the p2lras GTPase-activating protein with phosphatidylinositol 3-kinase, Biochem. Biophys. Res. Commun. 189: 1503–1508.

    Article  PubMed  CAS  Google Scholar 

  • Sjolander, A., Yamamoto, K., Huber, B. E., and Lapetina, E. G., 1991, Association of p2lras with phosphatidylinositol 3-kinase, Proc. Natl. Acad. Sci. USA 88: 7908–7912.

    Article  PubMed  CAS  Google Scholar 

  • Skolnik, E. Y., Margolis, B., Mohammadi, M., Lowenstein, E., Fischer, R., Drepps, A., Ullrich, A., and Schlessinger, J., 1991, Cloning of PI3 kinase-associated p85 utilizing a novel method for expression/cloning of target proteins for receptor tyrosine kinases, Cell 65: 83–90.

    Article  PubMed  CAS  Google Scholar 

  • Sliwkowski, M. X., Schaefer, G., Akita, R. W., Lofgren, J. A., Fitzpatrick, V. D., Nuijens, A., Fendly, B. M., Cerione, R. A., Vandlen, R. L., and Carraway, K. L., III, 1994, Coexpression of erbB2 and erbB3 proteins reconstitutes a high affinity receptor for heregulin, J. Biol. Chem. 269: 14661–14665.

    PubMed  CAS  Google Scholar 

  • Soltoff, S. P., Carraway, K. L., III, Prigent, S. A., Gullick, W. G., and Cantley, L. C., 1994, ErbB3 is involved in activation of phosphatidylinositol 3-kinase by epidermal growth factor, Mol. Cell. Biol. 14: 3550–3558.

    PubMed  CAS  Google Scholar 

  • Songyang, Z., Shoelson, S. E., Chaudhuri, M., Gish, G., Pawson, T., Haser, W. G., King, F., Roberts, T., Ratnofsky, S., Lechleider, R.J., Neel, B. G., Birge, R. B., Fajardo, J. E., Chou, M. M., Hanafusa, H., Schaffhausen, B., and Cantley, L. C., 1993, SH2 domains recognize specific phosphopeptide sequences, Celi 72: 767–778.

    Article  CAS  Google Scholar 

  • Stack, J. H., and Emr, S. D., 1994, Vps34p required for yeast vacuolar protein sorting is a multiple specificity kinase that exhibits both protein kinase and phosphatidylinositol-specific PI 3-kinase activities, J. Biol. Chem. 269: 31552–31562.

    PubMed  CAS  Google Scholar 

  • Stephens, L. R., Hughes, K. T., and Irvine, R. F., 1991, Pathway of phosphatidylinositol(3,4,5)trisphosphate synthesis in activated neutrophils, Nature 351: 33–39.

    Article  PubMed  CAS  Google Scholar 

  • Stephens, L., Jackson, T., and Hawkins, P. T., 1993a, Synthesis of phosphatidylinositol 3,4,5trisphosphate in permeabilized neutrophils regulated by receptors and G-proteins, J. Biol. Chem. 268: 17162–17172.

    PubMed  CAS  Google Scholar 

  • Stephens, L. R., Jackson, T. R., and Hawkins, P. T., 1993b, Agonist-stimulated synthesis of phosphatidylinositol (3,4,5)-trisphosphate: A new intracellular signalling system? Biochim. Biophys. Acta 1179: 27–75.

    Article  PubMed  CAS  Google Scholar 

  • Stephens, L., Smrcka, A., Cooke, F. T., Jackson, T. R., Sternweis, P. C., and Hawkins, P. T., 1994, A novel phosphoinositide 3 kinase activity in myeloid-derived cells is activated by G protein beta gamma subunits, Cell 77: 83–93.

    Article  PubMed  CAS  Google Scholar 

  • Sugimoto, Y, and Erikson, R. L., 1985, Phosphatidylinositol kinase activities in normal and Rous sarcoma virus-transformed cells, Mol. Cell. Biol. 5: 3194–3198.

    PubMed  CAS  Google Scholar 

  • Sultan, C., Breton, M., Mauco, G., Grondin, P., Plantavid, M., and Chap, H., 1990, The novel inositol lipid phosphatidylinositol 3,4-bisphosphate is produced in human blood platelets upon thrombin stimulation, Biochem. J 269: 831–834.

    PubMed  CAS  Google Scholar 

  • Sun, X.J., Rothenberg, P., Kahn, C. R., Backer, J. M., Araki, E., Wilden, P. A., Cahill, D. A., Goldstein, B. J., and White, M. E, 1991, Structure of the insulin receptor substrate IRS-1 defines a unique signal transduction protein, Nature 352: 73–77.

    Article  PubMed  CAS  Google Scholar 

  • Sun, X. J., Crimmins, D. L., Myers, M. J., Miralpeix, M., and White, M. F., 1993, Pleiotropic insulin signals are engaged by multisite phosphorylation of IRS-1, Mol. Cell. Biol. 13: 7418–7428.

    PubMed  CAS  Google Scholar 

  • Sung, C. K., and Goldfine, I. D., 1992, Phosphatidylinositol-3-kinase is a nontyrosine phosphorylated member of the insulin receptor signalling complex, Biochem. Biophys. Res. Commun. 189: 1024–1030.

    Article  PubMed  CAS  Google Scholar 

  • Susa, M., Keeler, M., and Varticovski, L., 1992, Platelet-derived growth factor activates membrane-associated phosphatidylinositol 3-kinase and mediates its translocation from the cytosol. Detection of enzyme activity in detergent solubilized cell extracts, J. Biol. Chem. 267: 22951–22956.

    PubMed  CAS  Google Scholar 

  • Talmage, D. A., Freund, R., Young, A. T., Dahl, J., Dawe, C. J., and Benjamin, T. L., 1989, Phosphorylation of middle T by pp60c-src: A switch for binding of phosphatidylinositol 3-kinase and optimal tumorigenesis, Cell 59: 55–65.

    Article  PubMed  CAS  Google Scholar 

  • Toker, A., Meyer, M., Reddy, K. K, Falck, J. R., Aneja, R., Aneja, S., Parra, A., Burns, D. J., Ballas, L. M., and Cantley, L. C., 1994, Activation of protein kinase C family members by the novel polyphosphoinositides Ptdlns-3,4-P2 and Ptdlns-3,4,5-P3, J Biol. Chem. 269: 32358–32367.

    PubMed  CAS  Google Scholar 

  • Tolias, K. F., Cantley, L. C., and Carpenter, C. L., 1995, Rho family GTPases bind to phosphoinositide kinases, J. Biol. Chem. 270: 17656–17659.

    Article  PubMed  CAS  Google Scholar 

  • Valius, M., and Kazlauskas, A., 1993, Phospholipase C-gamma 1 and phosphatidylinositol 3 kinase are the downstream mediators of the PDGF receptor’s mitogenic signal, Cell 73: 321–334.

    Article  PubMed  CAS  Google Scholar 

  • Varticovski, L., Daley, G. Q., Jackson, P., Baltimore, D., and Cantley, L. C., 1991, Activation of phospha- tidylinositol 3-kinase in cells expressing abl oncogene variants, Mol. Cell. Biol. 11: 1107–1113.

    PubMed  CAS  Google Scholar 

  • Varticovski, L., Harrison, F. D., Keeler, M. L., and Susa, M., 1994, Role of PI 3-kinase in mitogenesis, Biochim. Biophys. Acta 1226: 1–11.

    Article  PubMed  CAS  Google Scholar 

  • Vemuri, G. S., and Rittenhouse, S. E., 1994, Wortmannin inhibits serum-induced activation of phosphoinositide 3-kinase and proliferation of CHRF-288 cells, Biochem. Biophys. Res. Commun. 202: 1619–1623.

    Article  PubMed  CAS  Google Scholar 

  • Vogel, L. B., and Fujita, D.J., 1993, The SH3 domain of p561ck is involved in binding to phosphatidylinositol 3’-kinase from T lymphocytes, Mol. Cell. Biol. 13: 7408–7417.

    PubMed  CAS  Google Scholar 

  • Wages, D. S., Keefer, J., Rall, T. B., and Weber, M. J., 1992, Mutations in the SH3 domain of the src oncogene which decrease association of phosphatidylinositol 3’-kinase activity with pp60v-src and alter cellular morphology, j Viral. 66: 1866–1874.

    CAS  Google Scholar 

  • Waksman, G., Kominos, D., Robertson, S. C., Pant, N., Baltimore, D., Birge, R. B., Cowburn, D., Hanafusa, H., Mayer, B. J., Overduin, M., Resh, M. D., Rios, C. B., Silverman, L., and Kuriyan, J., 1992, Crystal structure of the phosphotyrosine recognition domain SH2 of v-src complexed with tyrosine-phosphorylated peptides [see comments], Nature 358: 646–653.

    Article  PubMed  CAS  Google Scholar 

  • Waksman, G., Shoelson, S. E., Pant, N., Cowburn, D., and Kuriyan, J., 1993, Binding of a high affinity phosphotyrosyl peptide to the Src SH2 domain: Crystal structures of the complexed and peptide-free forms, Cell 72: 779–790.

    Article  PubMed  CAS  Google Scholar 

  • Welsh, G. I., Foulstone, E.J., Young, W. S., Tavare, J. M., and Proud, C. G., 1994, Wortmannin inhibits the effects of insulin and serum on the activities of glycogen synthase kinase-3 and mitogenactivated protein kinase, Biochem. J. 303: 15–20.

    PubMed  CAS  Google Scholar 

  • Wennstrom, S., Hawkins, P., Cooke, F., Hara, K., Yonezawa, K., Kasuga, M., Jackson, T., Claesson, W. L., and Stephens, L., 1994a, Activation of phosphoinositide 3-kinase is required for PDGF-stimulated membrane ruffling, Curr. Biol. 4: 385–393.

    Article  PubMed  CAS  Google Scholar 

  • Wennstrom, S., Siegbahn, A., Yokote, K., Arvidsson, A. K, Heldin, C. H., Mori, S., and Claesson, W. L., 1994b, Membrane ruffling and chemotaxis transduced by the PDGF beta-receptor require the binding site for phosphatidylinositol 3’ kinase, Oncogene 9: 651–660.

    PubMed  CAS  Google Scholar 

  • White, M. F., and Kahn, C. R., 1994, The insulin signaling system, J. Biol. Chem. 269: 1–4.

    PubMed  CAS  Google Scholar 

  • White, M. F., Maron, R., and Kahn, C. R., 1985, Insulin rapidly stimulates tyrosine phosphorylation of a Mr-185,000 protein in intact cells, Nature 318: 183–186.

    Article  PubMed  CAS  Google Scholar 

  • Whitman, M., Kaplan, D. R., Schaffhausen, B., Cantley, L., and Roberts, T. M., 1985, Association of phosphatidylinositol kinase activity with polyoma middle-T competent for transformation, Nature 315: 239–242.

    Article  PubMed  CAS  Google Scholar 

  • Whitman, M., Kaplan, D., Roberts, T., and Cantley, L., 1987, Evidence for two distinct phosphatidyl- inositol kinases in fibroblasts. Implications for cellular regulation, Biochem. J 247: 165–174.

    PubMed  CAS  Google Scholar 

  • Whitman, M., Downes, C. P., Keeler, M., Keller, T., and Cantley, L., 1988, Type I phosphatidylinositol kinase makes a novel inositol phospholipid, phosphatidylinositol-3-phosphate, Nature 332: 644646.

    Google Scholar 

  • Wittekind, M., Mapelli, C., Farmer, B., Suen, K. L., Goldfarb, V., Tsao, J., Lavoie, T., Barbacid, M., Meyers, C. A., and Mueller, L., 1994, Orientation of peptide fragments from Sos proteins bound to the N-terminal SH3 domain of Grb2 determined by NMR spectroscopy, Biochemistry 33: 13531–13539.

    Article  PubMed  CAS  Google Scholar 

  • Wong, K., and Cantley, L. C., 1994, Cloning and characterization of a human phosphatidylinositol 4-kinase, J. Biol. Chem. 269: 28878–28884.

    PubMed  CAS  Google Scholar 

  • Yamamoto, K., Graziani, A., Carpenter, C., Cantley, L. C., and Lapetina, E. G., 1990, A novel pathway for the formation of phosphatidylinositol 3,4-bisphosphate. Phosphorylation of phosphatidylinositol 3-monophosphate by phosphatidylinositol-3-monophosphate 4-kinase, J. Biol. Chem. 265: 220862 2089.

    Google Scholar 

  • Yamauchi, K., Holt, K., and Pessin, J. E., 1993, Phosphatidylinositol 3-kinase functions upstream of Ras and Raf in mediating insulin stimulation of c-fos transcription, J. Biol. Chem. 268: 14597–14600.

    PubMed  CAS  Google Scholar 

  • Yano, H., Nakanishi, S., Kimura, K., Hanai, N., Saitoh, Y, Fukui, Y., Nonomura, Y, and Matsuda, Y., 1993, Inhibition of histamine secretion by wortmannin through the blockade of phosphatidylinositol 3-kinase in RBL-2H3 cells, J. Biol. Chem. 268: 25846–25856.

    PubMed  CAS  Google Scholar 

  • Yeh, J. I., Gulve, E. A., Rameh, L., and Birnbaum, M. J., 1995, The effects of wortmannin on rat skeletal muscle. Dissociation of signaling pathways for insulin-and contraction-activated hexose transport, J Biol. Chem. 270: 2107–2111.

    Article  PubMed  CAS  Google Scholar 

  • Yoakim, M., Hou, W., Liu, Y, Carpenter, C. L., Kapeller, R., and Schaffhausen, B. S., 1992, Interactions of polyomavirus middle T with the SH2 domains of the pp85 subunit of phosphatidylinositol-3kinase, J. Virol. 66: 5485–5491.

    PubMed  CAS  Google Scholar 

  • Yonezawa, K., Ueda, H., Hara, K, Nishida, K., Ando, A., Chavanieu, A., Matsuba, H., Shii, K, Yokono, K, Fukui, Y., Calas, B., Grigorescu, E, Dhand, R., Gout, I., Otsu, M., Waterfield, M. D., and Kasuga, M., 1992a, Insulin-dependent formation of a complex containing an 85-kDa subunit of phosphatidylinositol 3-kinase and tyrosine-phosphorylated insulin receptor substrate 1, J. Biol. Chem. 267: 25958–25965.

    PubMed  CAS  Google Scholar 

  • Yonezawa, K., Yokono, K., Shii, K., Ogawa, W., Ando, A., Hara, K., Baba, S., Kaburagi, Y., Yamamoto, H. R., Momomura, K., Kadowaki, T., and Kasuga, M., 1992b, In vitro association of phosphatidylinositol 3-kinase activity with the activated insulin receptor tyrosine kinase, J. Biol. Chem. 267: 440–446.

    PubMed  CAS  Google Scholar 

  • Yoshida, S., Ohya, Y, Goeb1, M., Nakano, A., and Anraku, Y., 1994, A novel gene, STT4, encodes a phosphatidylinositol 4-kinase in the PKC1 protein kinase pathway of Saccharomyces cerevisiae, J. Biol. Chem. 269: 1166–1172.

    PubMed  CAS  Google Scholar 

  • Zhang, J., King, W. G., Dillon, S., Hall, A., Feig, L., and Rittenhouse, S. E., 1993, Activation of platelet phosphatidylinositide 3-kinase requires the small GTP-binding protein Rho, j Biol. Chem. 268: 22251–22254.

    PubMed  CAS  Google Scholar 

  • Zhang, J., Zhang, J., Benovic, J. L., Sugai, M., Wetzker, R., Gout, I., and Rittenhouse, S. E., 1995, Sequestration of a G-protein ßry subunit or ADP-ribosylation of rho can inhibit thrombin-induced activation of platelet phosphoinositide 3-kinases, J. Biol. Chem. 270: 6589–6594.

    Article  PubMed  CAS  Google Scholar 

  • Zheng, Y, Hart, M. J., Shinjo, K., Evans, T., Bender, A., and Cerione, R. A., 1993, Biochemical comparisons of the Saccharomyces cerevisiae Bem2 and Bem3 proteins. Delineation of a limit Cdc42 GTPase-activating protein domain, J. Biol. Chem. 268: 24629–24634.

    PubMed  CAS  Google Scholar 

  • Zheng, Y., Bagrodia, S., and Cerione, R. A., 1994, Activation of phosphoinositide 3-kinase activity by Cdc42Hs binding to p85, J. Biol. Chem. 269: 18727–18730.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media New York

About this chapter

Cite this chapter

Duckworth, B.C., Cantley, L.C. (1996). PI 3-Kinase and Receptor-Linked Signal Transduction. In: Bell, R.M., Exton, J.H., Prescott, S.M. (eds) Lipid Second Messengers. Handbook of Lipid Research, vol 8. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1361-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1361-6_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1363-0

  • Online ISBN: 978-1-4899-1361-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics