Skip to main content

Designing Drugs for Optimal Nervous System Activity

  • Chapter
New Concepts of a Blood—Brain Barrier

Abstract

The blood-brain barrier (BBB) continues to intrigue and frustrate neuroscientists. Perhaps like no other organ, the brain, together with its BBB challenges, the investigator at a number of levels. This is certainly true at the basic science level in elucidating the mechanisms by which it regulates the microenvironment of the central nervous system, allowing the control and transport of D-glucose, certain amino acids, ions and peptides by selective, saturable and often stereo-specific carrier systems. These systems support cerebral metabolism, neurotransmitter and protein synthesis, and maintain the extracellular environment of the brain to allow it to function under optimal conditions despite wide fluctuations in the environment of the rest of the body. The high metabolic component of the cerebral capillary endothelium, constituting the enzymatic element of the BBB, likewise interests the basic scientist in elucidating the mechanisms by which it separates and protects the brain from a variety of neurotransmitters, hormones and endogenous messengers that possess one role in the periphery and another in brain. Additionally, the manner in which the structural and enzymatic components of the BBB interact to so ably protect the brain from exogenous toxins continues to capture our attention. In as much as the BBB protects and regulates the microenvironment of the brain to allow it to function optimally under diverse conditions during health, it is frustrating from a clinical viewpoint that these same mechanisms thwart our ability to intervene during disease, impeding us in our corrective measures. Specifically, it limits our ability (i) to deliver chemotherapeutic agents, such as during the treatment of infections and cancer, and (ii) to selectively manipulate levels of neurotransmitters and neuropeptides and enzymes, such as in the treatment of Parkinson’s and Alzheimer’s diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ali-Osman, F., Greig, N.H., John, V., and Lieberburg, I.M., 1991, Activity of tertiary butyl chlorambucil ester against 2-chloroethylnitrosourea-resistant human malignant glioma cell lines, Proc. Am. Assoc. Cancer Res. 32:318.

    Google Scholar 

  • Bartus, R.T., Dean, R.L., and Beer, B., 1980, Memory deficts in aged cebus monkeys and facilitation with central cholinomimetics, Neurobiol. Aging 1:145.

    Article  CAS  Google Scholar 

  • Becker, R.E., and Giacobini, E., 1988, Mechanisms of cholinesterase inhibition in senile dementia of Alzheimer’s type: clinical, pharmacological and therapeutic aspects, Drug Dev. Res. 12:163.

    Article  CAS  Google Scholar 

  • Becker, R.E., and Giacobini, E., 1991, “Cholinergic Basis of Alzheimer’s Disease,” Birkhauser, Boston.

    Google Scholar 

  • Becker, R., Moriarty, P., and Unni, L., 1991, The second generation of cholinesterase inhibitors: clinical and pharmacological effects, in: “Cholinergic Basis of Alzheimer’s Disease,” R. Becker and E. Giacobini, eds., Birkhauser, Boston.

    Google Scholar 

  • Bradbury, M.W.B., 1979, “Concept of a Blood-Brain Barrier,” John Wiley, Chichester.

    Google Scholar 

  • Bradbury, M.W.B., 1992, “Physiology and Pharmacology of the Blood-Brain Barrier, Handbook of Experimental Pharmacology Vol. 103”, Springer Verlag, Berlin.

    Book  Google Scholar 

  • Brozostowska, M., He, X.S., Greig, N.H., Rapoport, S., and Brossi, A., 1992, Phenylcarbamates of (−)-eseroline, (−)-N1-noreseroline and (−)-physovenol: selective inhibitors of acetyl-and, or butyrylcholinesterase, Med. Chem. Res. 2:238.

    Google Scholar 

  • Calabresi, P., and Schein, P.S., 1993, “Medical Oncology, Basic Principles and Clinical Management,” McGraw-Hill, New York.

    Google Scholar 

  • Chatanet, A., and Lockridge, O., 1989, Comparison and butyrylcholinesterase and acetylcholinesterase, Biochem. J. 260:625.

    Google Scholar 

  • Davies, P., and Maloney, A.J.F., 1976, Selective loss of central cholinergic neurons in Alzheimer’s type dementia, Nature 288:279.

    Article  Google Scholar 

  • Drachman, D.A., and Leavit, J., 1974, Human memory and the cholinergic system, Arch. Neurol. 30:113.

    Article  PubMed  CAS  Google Scholar 

  • Ehrsson, H., Lonroth, U., Wallin, I., Ehrnebo, M., and Nilsson, S., 1981, Degradation of chlorambucil in aqueous solution: influence of human albumin binding, J. Pharm. Pharmacol. 33:313.

    Article  PubMed  CAS  Google Scholar 

  • Fenstermacher, J.D., 1992, The blood-brain barrier is not a barrier for many drugs, NIDA Res. Mongr. 120:108.

    CAS  Google Scholar 

  • Fenstermacher, J.D., and Cowles, A.L., 1977, Theoretic limitations of intracarotid infusions in brain tumor chemotherapy, Cancer Treat. Rep. 61:519.

    PubMed  CAS  Google Scholar 

  • Fenstermacher, J.D., Gross, P., Sposito, N., Acuff, V., Petersen, S., and Gruber K., 1988, Structural and functional variations in capillary systems within the brain, Ann. NY Acad. Sci. 529:21.

    Article  PubMed  CAS  Google Scholar 

  • Flippen-Anderson, J.L., He, X.S., Brossi, A., Greig, N.H., and Rapoport, S., 1993, Thiaphysovenol phenylcarbamates: x-ray structures of biologically active and inactive anticholinesterase agents, Heterocycles 36:79.

    Article  CAS  Google Scholar 

  • Genka, S., Shetty, U., Stahle, P.L., John, V., Lieberburg, I.M., Ali-Osman, F., Rapoport, S., and Greig, N.H., 1993, Development of lipophilic anticancer agents for the treatment of brain tumors by the esterification of water-soluble chlorambucil, Clin. Exp. Metastasis 11:131.

    Article  PubMed  CAS  Google Scholar 

  • Greig, N.H., 1984, Chemotherapy of brain metastases: current status, Cancer Treat. Rev. 11:157.

    Article  PubMed  CAS  Google Scholar 

  • Greig, N.H., 1987, Optimizing drug delivery to brain tumors, Cancer Treat. Rev. 14:1.

    Article  PubMed  CAS  Google Scholar 

  • Greig, N.H., 1989a, Drug delivery to the brain by blood-brain barrier circumvention and drug modification, in: “Implications of the Blood-Brain Barrier and Its Modification, Vol. 1, Basic Science Studies,” E.A. Neuwelt, ed., Plenum Press, New York.

    Google Scholar 

  • Greig, N.H., 1989b, Brain tumors and the blood-tumor barrier, in: “Implications of the Blood-Brain Barrier and Its Modification, Vol. 2, Clinial Studies,” E.A. Neuwelt, ed., Plenum Press, New York.

    Google Scholar 

  • Greig, N.H., 1992, Drug entry into the brain and its pharmacologic manipulation, in: “Physiology and Pharmacology of the Blood-Brain Barrier, Handbook of Experimental Pharmacology Vol. 103,” M.W.B. Bradbury, ed., Springer Verlag, Berlin.

    Google Scholar 

  • Greig, N.H., Momma, S., Sweeney, D.J., Smith, Q.R., and Rapoport, S., 1987, Facilitated transport of melphalan at the rat blood-brain barrier by the large neutral amino acid transport system, Cancer Res. 47:1571.

    PubMed  CAS  Google Scholar 

  • Greig, N.H., Sweeney, D.J., and Rapoport, S., 1988, Comparative brain and plasma pharmacokinetics of chlorambucil and melphalan in the rat, Cancer Chemother. Pharmacol. 21:1.

    Article  PubMed  CAS  Google Scholar 

  • Greig, N.H., Soncrant, T.T., Shetty, U., Momma, S., Smith, Q.R., and Rapoport, S., 1990a, Brain uptakes and anticancer activities of vincristine and vinblastine are restricted by their low cerebrovascular permeability and binding to plasma constituents, Cancer Chemother. Pharmacol. 26:263.

    Article  PubMed  CAS  Google Scholar 

  • Greig, N.H., Ries, L., Yancik, R., and Rapoport, S., 1990b, Increasing annual incidence of primary malignant brain tumors in the elderly, J. Natl. Cancer Inst. 82:1621.

    Article  PubMed  CAS  Google Scholar 

  • Greig, N.H., Genka, S., and Rapoport, S., 1990c, Delivery of vital drugs to the brain for the treatment of brain tumors, J. Controlled Release 11:61.

    Article  CAS  Google Scholar 

  • Greig, N.H., Genka, S., Daly, E.M., Sweeney, D.J., and Rapoport, S., 1990d, Physicochemical and pharmacokinetic parameters of seven lipophilic chlorambucil esters designed for brain penetration, Cancer Chemother. Pharmacol. 25:311.

    Article  PubMed  CAS  Google Scholar 

  • Greig, N.H., Daly, E.M., Sweeney, D.J., and Rapoport, S., 1990e, Pharmacokinetics of chlorambucil tertiary butyl ester, a lipophilic chlorambucil derivative that achieves and maintains high concentrations in brain, Cancer Chemother. Pharmacol. 25:320.

    Article  PubMed  CAS  Google Scholar 

  • Greig, N.H., Pei, X.F., Soncrant, T.T., Ingram, D.K., and Brossi, A., 1995a, Phenserine and ring C hetero-analogues: drug candidates for the treatment of Alzheimer’s disease, Med. Res. Rev. 15:3.

    Article  PubMed  CAS  Google Scholar 

  • Greig, N.H., Pei, X.F., Soncrant, T.T., De Micheli, E., Ingram, D.K., Holloway, H.W., Deutsch, J., and Brossi, A., 1995b, Phenserine, a selective and long-acting acetylcholinesterase inhibitor for the treatment of Alzheimer’s disease: in vivo pharmacokinetics and pharmacodynamics in the rat, J. Am. Geriatr. Soc. in press.

    Google Scholar 

  • Hardebo, J.E., and Owman, C., 1991, Enzymatic barrier mechanisms for neurotransmitter monoamines and their precurrsors at the blood-brain barrier, in: “Pathophysiology of the Blood-Brain Barrier,” B.B. Johansson, C. Owman, and H. Widner, eds. Elsevier, Amsterdam.

    Google Scholar 

  • He, X.S., Greig, N.H., Rapoport, S., Brossi, A., Li, Y.Q., and Yu, Q.S., 1992, Thiaphysovenine and carbamate analogues: a new class of potent inhibitors of cholinesterases, Med. Chem. Res. 2:229.

    CAS  Google Scholar 

  • Iijima, S., Greig, N.H., Garofalo, P., Spangler, E.L., Heller, B., Brossi, A., and Ingram, D.K., 1992, The long-acting cholinesterase inhibitor heptyl-physostigmine attenuates the scopolamine-induced learning impairment of rats in a 14-unit T-maze, Neurosci. Lett. 144:79.

    Article  PubMed  CAS  Google Scholar 

  • Iijima, S., Greig, N.H., Garofalo, P., Spangler, E.L., Heller, B., Brossi, A., and Ingram, D.K., 1993, Phenserine: a physostigmie derivative that is a long-acting inhibitor of cholinesterase and demonstrates a wide dose range for attenuating a scopolamine-induced learning impairment of rats in a 14-unit T-maze, Psychopharmacol. 112:415.

    Article  CAS  Google Scholar 

  • Ikari, H., Spangler, E., Greig, N.H., Pei, X-F., Brossi, A., Speer, D., Patel, N., Ingram, D.K., 1995, Maze learning in aged rats is enhanced by phenserine, a novel anticholinesterase. Neuro Report 6:481.

    CAS  Google Scholar 

  • Ingram, D.K., Spangler, E.L., Iijima, S., Kuo, H., Bresnahan, E.L., Greig, N.H., and London, E.D., 1994, New pharmacological strategies for cognitive enhancement using a rat model of age-related memory impairment, Annals NY Acad. Sci. 717:16.

    Article  CAS  Google Scholar 

  • Iversen, L.L., Bentley, G., Dawson, G., Freedman, S.B., Harley, E.A., Iversen, S.D., Rupniak, N.M.J., Tye, S., Tagella, P.G., and Rugarli, P.L., 1991, Heptylphysostigmine — a novel acetylcholinesterase inhibitor: biochemical and behavioral pharmacology, in: “Cholinergic Basis of Alzheimer’s Disease,” R. Becker, and E. Giacobini, eds., Birkhauser, Boston.

    Google Scholar 

  • Jones, D.R., Hall, S.D., Jackson, E.K., Branch, R.A., and Wilkinson, G.R., 1988, Brain uptake of benzodiazepines: effects of lipophilicity and plasma protein binding, J. Pharmacol. Exp. Ther. 245:816.

    PubMed  CAS  Google Scholar 

  • Knapp, M.J., Knopman, D.S., Solomon, P.R., Penlebury, W.W., Davies, C.S., and Gracon, S.I., 1994, A 30-week randomized controlled trial of high-dose tacrine in patients with Alzheimer’s disease, JAMA 271:985.

    Article  PubMed  CAS  Google Scholar 

  • Knapp, S., Wardlow, M.L., Albert, K., Waters, D., and Thal, L.J., 1990, Correlation between plasma physostigmine concentrations and percentage of acetylcholinesterase inhibition over time after controlled release of physostigmine in volunteer subjects, Drug Metab. Disp. 19:400.

    Google Scholar 

  • Leo, A., Hansch, C., and Elkins, D., 1971, Partition coefficients and their uses, Chem. Rev. 71:525.

    Article  CAS  Google Scholar 

  • Levin, V.A., 1980, Relation of octanol/water partition and molecular weight to rat brain capillary permeability, J. Med. Chem. 23:682.

    Article  PubMed  CAS  Google Scholar 

  • Massoulie, J., Sussman, J., Bon, S., and Siman, I., 1993, Structure and functions of acetylcholinesterase and butyrylcholinesterase, Prog. Brain Res. 98:139.

    Article  PubMed  CAS  Google Scholar 

  • Oliverio, V., 1976, Pharmacology of the nitrosoureas: an overview, Cancer Treat. Rep. 60:703.

    PubMed  CAS  Google Scholar 

  • Posner, J., 1977, Management of central nervous system metastases Semin, Oncol. 4:81.

    CAS  Google Scholar 

  • Quinn, D.M., 1987, Acetylcholinesterase: enzyme structure, reaction dynamics, and virtual transition states, Chem. Rev. 87:955.

    Article  CAS  Google Scholar 

  • Reese, T., and Karnovsky, M., 1967, Fine structural localization of a blood-brain barrier to exogenous peroxidase, J. Cell Biol. 34:207.

    Article  PubMed  CAS  Google Scholar 

  • Somani, S.M., and Kahlique, A., 1986, Distribution and pharmacokinetics of physostigmine in rat after intramuscular administration, Fund. Appl. Toxicol. 6:327.

    Article  CAS  Google Scholar 

  • Soncrant, T.T., Raffaele, K.C., and Asthana, A., 1993, Memory improvement without toxicity during chronic low dose intravenous arecoline in Alzheimer’s disease, Psychopharmacol. 112:421.

    Article  CAS  Google Scholar 

  • Soreq, H., and Zakut, H., 1993, “Human Cholinesterases and Anticholinesterases,” Academic Press, New York.

    Google Scholar 

  • Spangler, E.L., Rigby, P., and Ingram, D.K., 1986, Scopolamine impairs learning performance of rats in a 14-unit T-maze, Pharmacol. Biochem. Behav. 25:673.

    Article  PubMed  CAS  Google Scholar 

  • Spangler, E.L., Chachich, M.E., Curtis, N.J, and Ingram, D.K., 1989, Age-related impairment in complex maze learning in rats: relationship to neophobia and cholinergic antagonism, Neurobiol. Aging 10:133.

    Article  PubMed  CAS  Google Scholar 

  • Takada, T., Vistica, D.T., Greig, N.H., Rapoport, S., and Smith, Q.R., 1992, Rapid high-affinity transport of nitrogen mustard amino acid across the blood-brain barrier, Cancer Res. 52:2191.

    PubMed  CAS  Google Scholar 

  • Teraski, T., and Pardridge, W.M., 1988, Restricted transport of 3’-azido-deoxythymidine and dideoxynucleosides through the blood-brain barrier, J. Infect. Dis. 158:630.

    Article  Google Scholar 

  • Torrence, P., Kinjo, J., Khamnei, S., and Greig, N.H., 1993, Synthesis and pharmacokinetics of a dihydropyridine chemical delivery system for the antiimmunodeficiency virus agent dideoxycytidine, J. Med. Chem. 36:529.

    Article  PubMed  CAS  Google Scholar 

  • Tyson, G., Fenstermacher, J.D., and Davis, R., 1989, Vascular factors affecting drug delivery to brain tumors, Basic Life Sci. 50:115.

    PubMed  CAS  Google Scholar 

  • Whitehouse, P.J., Price, D.L., Struble, R.G., Clark, A.W., Coyle, J.T., and De Long, M.R., 1982, Alzheimer’s disease and senile dementia: a quantitative study, Science 215:1237.

    Article  PubMed  CAS  Google Scholar 

  • Yu, Q.S., Liu, C., Brzostowska, M., Chrisey, L., Brossi, A., Greig, N.H., Atack, J.R., Soncrant, T.T., Rapoport, S., and Radunz, H.E., 1991, Physovenines: efficient synthesis of (−)-and (+)-physovenine and synthesis of carbamate analogues of (−)-physovenine. Anticholinesterase activity and analgesic properties of optically active physovenines, Helv. Chim. Acta 74:761.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Greig, N.H., Brossi, A., Pei, XF., Ingram, D.K., Soncrant, T.T. (1995). Designing Drugs for Optimal Nervous System Activity. In: Greenwood, J., Begley, D.J., Segal, M.B. (eds) New Concepts of a Blood—Brain Barrier. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1054-7_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1054-7_25

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1056-1

  • Online ISBN: 978-1-4899-1054-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics