Skip to main content

Intramuscular Pressures for Monitoring Different Tasks and Muscle Conditions

  • Chapter
Fatigue

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 384))

Abstract

Intramuscular fluid pressure (IMP) can easily be measured in man and animals. It follows the law of Laplace which means that it is determined by the tension of the muscle fibers, the recording depth and by fiber geometry (fiber curvature or pennation angle). Thick, bulging muscles create high IMPs (up to 1000 mmHg) and force transmission to tendons becomes inefficient. High resting or postexercise IMPs are indicative of a compartment syndrome due to muscle swelling within a low-compliance osseofascial boundary. IMP increases linearly with force (torque) independent of the mode or speed of contraction (isometric, eccentric, concentric). IMP is also a much better predictor of muscle force than the EMG signal. During prolonged low-force isometric contractions, cyclic variations in IMP are seen. Since IMP influences muscle blood flow through the muscle pump, autoregulating vascular elements, and compression of the intramuscular vasculature, alterations in IMP have important implications for muscle function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aratow M, Ballard RE, Crenshaw AG, Styf J, Watenpaugh DE, Kahan NJ & Hargens AR (1993). Intramuscular pressure and electromyography as indexes of force during isokinetic exercise. Journal of Applied Physiology 74, 2634–2640.

    PubMed  CAS  Google Scholar 

  • Aukland K & Reed RK (1993). Interstitial-lymphatic mechanisms in the control of extracellular fluid volume. Physiological Reviews 73, 1–78.

    PubMed  CAS  Google Scholar 

  • Ballard RE, Styf J, Watenpaugh DE, Aratow M, Crenshaw AG & Hargens AR (1994a). Intramuscular pressure per unit torque varies with joint angle. Transactions Orthopedic Research Society 19, 686.

    Google Scholar 

  • Ballard RE, Watenpaugh DE, Breit GA, Murthy G, Whalen RT & Hargens AR (1994b). Intramuscular pressure measurement for assessing muscle function during locomotion. Medicine and Science in Sports and Exercise 26, 5141

    Article  Google Scholar 

  • Baumann JU, Sutherland DH & Hänggi A (1979). Intramuscular pressure during walking: An experimental study using the wick catheter technique. Clinical Orthopaedics and Related Research 145, 292–299.

    PubMed  Google Scholar 

  • Braakman R, Sipkema P & Westerhof N (1990). Two zero-flow pressure intercepts exist in autoregulating isolated skeletal muscle. American Journal of Physiology 258, H1806–H1814.

    PubMed  CAS  Google Scholar 

  • Cooper DS, Pinczower E & Rice DH (1993). Thyroarytenoid intramuscular pressures. Annals of Otology Rhinology and & Laryngology 102, 167–175.

    CAS  Google Scholar 

  • Crenshaw AG, Styf JR & Hargens AR (1992). Intramuscular pressures during exercise-an evaluation of a fiber optic transducer-tipped catheter system. European Journal of Applied Physiology and Occupational Physiology 65, 178–182.

    Article  PubMed  CAS  Google Scholar 

  • Decramer M, Jiang TX & Reid MB (1990). Respiratory changes in diaphragmatic intramuscular pressure. Journal of Applied Physiology 68, 35–43.

    PubMed  CAS  Google Scholar 

  • Fadnes HO, Reed R & Aukland K (1977). Interstitial fluid pressure in rats measured with a modified wick technique. Microvascular Research 14, 27–36.

    Article  PubMed  CAS  Google Scholar 

  • Folkow B, Gaskell P & Waaler BA (1970). Blood flow through limb muscles during heavy rhythmic exercise. Acta Physiologica Scandinavica 80, 61–72.

    Article  PubMed  CAS  Google Scholar 

  • Fridén J, Sfakianos PN & Hargens AR (1986). Muscle soreness and intramuscular fluid pressure-comparison between eccentric and concentric load. Journal of Applied Physiology 61, 2175–2179.

    PubMed  Google Scholar 

  • Gershuni DH, Yaru NC, Hargens AR, Lieber RL, O’Hara RC & Akeson WH (1984). Ankle and knee position as a factor modifying intracompartmental pressure in the human leg. Journal of Bone and Joint Surgery 66A, 1415–1420.

    Google Scholar 

  • Gullestad L, Hallén J & Sejersted OM (1993). Variable effects of β-adrenoceptor blockade on muscle blood flow during exercise. Acta Physiologica Scandinavica 149, 257–271.

    Article  PubMed  CAS  Google Scholar 

  • Guyton AC (1963). A concept of negative interstitial pressure based on pressures in implanted perforated capsules. Circulation Research 12, 399–414.

    Article  PubMed  CAS  Google Scholar 

  • Hagert CG & Christenson JT (1990). Hyperpressure in the trapezius muscle associated with fibrosis. Acta Orthopaedica Scandinavica 61, 263–265.

    Article  PubMed  CAS  Google Scholar 

  • Hargens AR, Akeson WH, Mubarak SJ, Owen CA, Gershuni DH, Garfin SR, Lieber RL, Danzig LA, Botte MJ & Gelberman RH (1989). Tissue fluid pressures: from basic research tools to clinical applications. Journal of Orthopaedic Research 7, 902–909.

    Article  PubMed  CAS  Google Scholar 

  • Hargens AR, Millard RW, Pettersson K & Johansen K (1987). Gravitational haemodynamics and oedema prevention in the giraffe. Nature 329, 59–60.

    Article  PubMed  CAS  Google Scholar 

  • Henriksson KG & Bengtsson A (1991). Fibromyalgia-a clinical entity? Canadian Journal of Physiology & Pharmacology 69, 672–677.

    Article  CAS  Google Scholar 

  • Hill AV (1948). The pressure developed in muscle during contraction. Journal of Physiology (London) 107, 518–526.

    CAS  Google Scholar 

  • Huisman RM, Sipkema P, Westerhof N & Elzinga G (1980). Comparison of models used to calculate left ventricular wall force. Medical and Biological Engineering and Computing 18, 133–144.

    Article  PubMed  CAS  Google Scholar 

  • Järvholm U (1990). On Shoulder Muscle Load. An Experimental Study of Muscle Pressures, EMG and Blood Flow, (PhD Thesis). Gothenburg: University of Gothenburg.

    Google Scholar 

  • Järvholm U, Palmerud G, Herberts P, Högfors C & Kadefors R (1989). Intramuscular pressure and electromyography in the supraspinatus muscle at shoulder abduction. Clinical Orthopaedics and Related Research 245, 102–109.

    PubMed  Google Scholar 

  • Järvholm U, Palmerud G, Karlsson D, Herberts P & Kadefors R (1991). Intramuscular pressure and electromyography in four shoulder muscles. Journal of Orthopaedic Research 9, 609–619.

    Article  PubMed  Google Scholar 

  • Järvholm U, Palmerud G, Styf J, Herberts P & Kadefors R (1988). Intramuscular pressure in the supraspinatus muscle. Medical and Biological Engineering and Computing 6, 230–238.

    Google Scholar 

  • Jensen BR (1991). Isometric Contractions of Small Muscle Groups, (Ph.D. Thesis). Copenhagen: Danish National Institute of Occupational Health.

    Google Scholar 

  • Leenaerts P & Decramer M (1990). Respiratory changes in parasternal intercostal intramuscular pressure. Journal of Applied Physiology 68, 868–875.

    Article  PubMed  CAS  Google Scholar 

  • Levick JR (1991). Capillary filtration absorption balance reconsidered in light of dynamic extravascular factors. Experimental Physiology 76, 825–857.

    PubMed  CAS  Google Scholar 

  • Mazella H (1954). On the pressure developed by the contraction of striated muscle and its influence on muscular circulation. Archives Internationales de Physiologie 62, 334–347.

    Google Scholar 

  • Meilander S & Albert U (1994). Effects of increased and decreased tissue pressure on haemodynamic and capillary events in cat skeletal muscle. Journal of Physiology (London) 481, 163–175.

    Google Scholar 

  • Mellander S, Maspers M, Björnberg J & Andersson LO (1987). Autoregulation of capillary pressure and filtration in cat skeletal muscle in states of normal and reduced vascular tone. Acta Physiologica Scandinavica 129, 337–351.

    Article  PubMed  CAS  Google Scholar 

  • Mubarak SJ, Owen CA, Hargens AR, Garetto LP & Akeson WH (1978). Acute compartment syndromes: diagnosis and treatment with the aid of the wick catheter. Journal of Bone and Joint Surgery 60A, 1091–1095.

    Google Scholar 

  • Nakhostine M, Styf JR, van Leuven S, Hargens AR & Gershuni DH (1993). Intramuscular pressure varies with depth. The tibialis anterior muscle studied in 12 volunteers. Acta Orthopaedica Scandinavica 64, 377–381.

    Article  PubMed  CAS  Google Scholar 

  • Parker PA, Körner LM & Kadefors R (1984). Estimation of muscle force from intramuscular pressure. Medical and Biological Engineering and Computing 22, 453–457.

    Article  PubMed  CAS  Google Scholar 

  • Pedowitz RA, Hargens AR, Mubarak SJ & Gershuni DH (1990). Modified criteria for the objective diagnosis of chronic compartment syndrome of the leg. American Journal of Sports Medicine 18, 35–40.

    Article  PubMed  CAS  Google Scholar 

  • Qvarfordt P, Christenson JT, Eklöf B, Ohlin P & Saltin B (1983). Intramuscular pressure, muscle blood flow, and skeletal muscle metabolism in chronic anterior tibial compartment syndrome. Clinical Orthopaedics and Related Research 179, 284–291.

    Article  PubMed  Google Scholar 

  • Reed RK & Wiig H (1981). Compliance of the interstitial space in rats. Acta Physiologica Scandinavica 113, 297–305.

    Article  PubMed  CAS  Google Scholar 

  • Sadamoto T, Bonde-Petersen F & Suzuki Y (1983). Skeletal muscle tension, flow, pressure and EMG during sustained isometric contractions in humans. European Journal of Applied Physiology and Occupa-tional Physiology 51, 395–408.

    Article  CAS  Google Scholar 

  • Scholander PF, Hargens AR & Miller SL (1968). Negative pressure in the interstitial fluid of animals. Science 161, 321–328.

    Article  PubMed  CAS  Google Scholar 

  • Sejersted OM & Hargens AR (1986). Regional pressure and nutrition of skeletal muscle during isometric contraction. In: Hargens AR (ed.), Tissue Nutrition and Viability, pp. 263–283. New York: Springer Verlag.

    Chapter  Google Scholar 

  • Sejersted OM, Hargens AR, Kardel KR, Blom P, Jensen O. & Hermansen L (1984). Intramuscular fluid pressure during isometric contraction of human skeletal muscle. Journal of Applied Physiology 56, 287–295.

    PubMed  CAS  Google Scholar 

  • Sejersted OM, Vollestad NK & Medbo JI (1986). Muscle fluid and electrolyte balance during and following exercise. Acta Physiologica Scandinavica Supplementum 556, 119–127.

    PubMed  CAS  Google Scholar 

  • Sheriff DD, Rowell LB & Scher AM (1993). Is rapid rise in vascular conductance at onset of dynamic exercise due to muscle pump. American Journal of Physiology 265, H1227–H1234.

    PubMed  CAS  Google Scholar 

  • Sjøgaard G, Kiens B, Jørgensen K & Saltin B (1986). Intramuscular pressure, EMG and blood flow during low-level prolonged static contraction in man. Acta Physiologica Scandinavica 128, 475–484.

    Article  PubMed  Google Scholar 

  • Sjøgaard G, Savard G & Juel C (1988). Muscle blood flow during isometric activity and its relation to muscle fatigue. European Journal of Applied Physiology and Occupational Physiology 57, 327–335.

    Article  PubMed  Google Scholar 

  • Skalak R (1982). Approximate formulas for myocardial fiber stresses. Journal of Biomechanical Engineering 104, 162–163.

    Article  PubMed  CAS  Google Scholar 

  • Styf J & Körner LM (1986a). Microcapillary infusion technique for measurement of intramuscular pressure during exercise. Clinical Orthopaedics and Related Research 207, 253–262.

    PubMed  Google Scholar 

  • Styf J & Körner LM (1986b). Chronic anterior-compartment syndrome of the leg-results of treatment by fasciotomy. Journal of Bone and Joint Surgery 68A, 1338–1347.

    Google Scholar 

  • Styf J & Körner LM (1987). Diagnosis of chronic anterior compartment syndrome in the lower leg. Acta Orthopaedica Scandinavica 58, 139–144.

    Article  PubMed  CAS  Google Scholar 

  • Styf J, Körner LM & Suurkula M (1987). Intramuscular pressure and muscle blood-flow during exercise in chronic compartment syndrome. Journal of Bone and Joint Surgery 69B, 301–305.

    Google Scholar 

  • Supinski GS, DiMarco AF & Altose MD (1990). Effect of diaphragmatic contraction on intramuscular pressure and vascular impedance. Journal of Applied Physiology 68, 1486–1493.

    PubMed  CAS  Google Scholar 

  • Sylvest O & Hvid N (1959). Pressure measurements in human striated muscles during contraction. Acta Rheumatologica Scandinavica 5, 216–222.

    PubMed  CAS  Google Scholar 

  • Vøllestad NK, Wesche J & Sejersted OM (1990). Gradual increase in leg oxygen uptake during repeated submaximal contractions in humans. Journal of Applied Physiology 68, 1150–1156.

    PubMed  Google Scholar 

  • Westgaard RH (1988). Measurement and evaluation of postural load in occupational work situations. European Journal of Applied Physiology and Occupational Physiology 57, 291–304.

    Article  PubMed  CAS  Google Scholar 

  • Wiig H (1985). Comparison of methods for measurement of interstitial fluid pressure in cat skin subcutis and muscle. American Journal of Physiology 249, H929–H944.

    PubMed  CAS  Google Scholar 

  • Wiig H (1990). Evaluation of methodologies for measurement of interstitial fluid pressure (Pj): physiological implications of recent Pi data. Critical Reviews in Biomedical Engineering 18, 27–54.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sejersted, O.M., Hargens, A.R. (1995). Intramuscular Pressures for Monitoring Different Tasks and Muscle Conditions. In: Gandevia, S.C., Enoka, R.M., McComas, A.J., Stuart, D.G., Thomas, C.K., Pierce, P.A. (eds) Fatigue. Advances in Experimental Medicine and Biology, vol 384. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1016-5_27

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1016-5_27

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1018-9

  • Online ISBN: 978-1-4899-1016-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics