Skip to main content

Functional Neural Systems Analyzed by Use of Interregional Correlations of Glucose Metabolism

  • Chapter
Visuomotor Coordination

Abstract

In order to learn which brain regions are functionally associated with one another in a specific group of subjects during a particular experimental paradigm, a computer-assisted quantitative method was developed for analyzing regional rates of glucose uptake. For each pair of brain regions, the partial correlation coefficient, controlling for whole brain glucose utilization, is calculated between the regional cerebral metabolic rates for glucose for all the subjects. A mathematically derived correlation matrix is constructed in which the statistically significant relationships are displayed. Applications of this novel approach to both human and animal studies are discussed. Similar techniques using electrical data (obtained from both micro-electrodes and scalp electrodes) are reviewed, and the strengths and weaknesses of these approaches are examined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ackermann RF, Finch DM, Babb TL, Engel J (1984) Increased glucose metabolism during long-duration recurrent inhibition of hippocampal pyramidal cells. JNeurosci 4: 251–264

    CAS  Google Scholar 

  • Arendt T, Bigl V, Tennstedt A, Arendt A (1985) Neuronal loss in different parts of the nucleus basalis is relatad to neuritic plaque formation in cortical target areas in Alzheimer’s disease. Neurosci 14: 1–14

    Article  CAS  Google Scholar 

  • Chang JY, Duara R, Barker W, Apicella A, Finn R (1987) Two behavioral states studied in a single PET/FDG procedure: theory, method, and preliminary results. JNucl Med 28: 852–860

    CAS  Google Scholar 

  • Clark CM, Kessler R, Buchsbaum MS, Margolin RA, Holcomb HH (1984) Correlational methods for determining regional coupling of cerebral glucose metabolism. A pilot study. Biol Psychiat 19: 663678

    Google Scholar 

  • Cohen LB, Salzberg BM, Grinvald A (1978) Optical methods of monitoring neuron activity. Ann Rev Neurosci 1: 171–182

    Article  PubMed  CAS  Google Scholar 

  • Duara R, Grady C, Haxby J, Ingvar D, Sokoloff L, Margolin RA, Manning RG, Cutler NR, Rapoport SI (1984) Human brain glucose utilization and cognitive function in relation to age. Ann Neurol 16: 702–713

    Article  CAS  Google Scholar 

  • Efron B (1981) Nonparametric estimates of standard error: the jackknife, the bootstrap, and other methods. Biometrika 68: 589–599

    Article  Google Scholar 

  • Folstein MF, Folstein SE, McHugh PR (1975) “Mini-Mental State”–a practical method for grading the cognitive state of patients for the clinician. JPsychiat Res 12: 189–198

    Google Scholar 

  • Fox PT, Mintun MA, Raichle ME, Herscovitch P (1984) A non-invasive approach to quantitative functional brain mapping with H2150 and positron emission tomography. J Cereb Blood Flow Metabol4: 329–333

    Google Scholar 

  • Gerstein GL (1970) Functional association of neurons: detection and interpretations. In: Schmitt FO, Quarton GC, Melnechuk T, Adelman G (eds) The neurosciences: second study program. Rockefeller University Press, New York, pp 648–661

    Google Scholar 

  • Gerstein GL (1974) Plasticity in small neuronal assemblies. Acta Neurobiol By 34: 81–92

    CAS  Google Scholar 

  • Gerstein GL (1987) Information flow and state in cortical neural networks: interpreting multi-neuron experiments. In: Seelen W v, Shaw G, Leinhos UM (eds) Organization of neural networks: structures and models. Verlag Chemie Verlagsgesellschaft, Weinheim, FR of Germany (in press) Gerstein GL, Aersten AMHJ (1985) Representation of cooperative firing activity among simultaneously recorded neurons. J Neurophysiol 54: 1513–1528

    Google Scholar 

  • Gerstein GL, Perkel DH, Subramanian KN (1978) Identification of functionally related neural assemblies. Brain Res 140: 43–62

    Article  PubMed  CAS  Google Scholar 

  • Gerstein GL, Perkel DH, Dayhoff JE (1985) Cooperative firing activity in simultaneously recorded populations of neurons: detection and measurement. J Neurosci 5: 881–889

    PubMed  CAS  Google Scholar 

  • Getting PA, Dekin MS (1985) Tritonia swimming: a model system for integration within rhythmic motor systems. In: Selverston AI (ed) Model neural networks and behavior. Plenum Press, New York, pp 3–20

    Google Scholar 

  • Gevins AS, Cutillo BA (1986) Signals of cognition. In: Lopes da Silva FA, van Leeuwen WS, Remond A (eds) Handbook of electroencephalography and clinical neurophysiology, Vol 2. Elsevier, Amsterdam, pp 335–381

    Google Scholar 

  • Gevins AS, Doyle JC, Cutillo BA, Schaffer RE, Tannehill RS, Bressler SL (1985) Neurocognitive pattern analysis of a visuospatial task: rapidly-shifting foci of evoked correlations between electrodes. Psych ophysi of 22: 32–43

    CAS  Google Scholar 

  • Gevins AS, Morgan NH, Bressler SL, Cutillo BA, White RM, Illes J, Greer DS, Doyle JC, Zeitlin GM (1987) Human neuroelectric patterns predict performance accuracy. Science 235: 580–585

    Article  PubMed  CAS  Google Scholar 

  • Grinvald A (1985) Real-time optical mapping of neuronal activity: from single growth cones to the intact mammalian brain. Ann Rev Neurosci 8: 263–305

    Article  PubMed  CAS  Google Scholar 

  • Grinvald A, Anglister L, Freeman JA, Hildesheim R, Manker A (1984) Real-time optical imaging of naturally evoked electrical activity in intact frog brain. Nature 308: 848–850

    Article  PubMed  CAS  Google Scholar 

  • Haxby JV, Duara R, Grady CL, Cutler NR, Rapoport SI (1985) Relations between neuropsychological and cerebral metabolic asymmetries in early Alzheimer’s disease. J Cereb Blood Flow Metabol 5: 193–200

    Article  CAS  Google Scholar 

  • Herscovitch P, Markham J, Raichle ME (1983) Brain blood flow measured with intravenous H2150. Theory and error analysis. JNucl Med 24: 782–789

    CAS  Google Scholar 

  • Horwitz B (1987) Brain metabolism and blood flow during aging. In: Ellington RJ, Murray NMF, Halliday AM (eds) The London symposium (EEG Suppl 39). Elsevier Science Publishers, Amsterdam, pp 396–402

    Google Scholar 

  • Horwitz B, Duara R, Rapoport SI (1984) Intercorrelations of glucose metabolic rates between brain regions: application to healthy males in a state of reduced sensory input. J Cereb Blood Flow Metabol4: 484–499

    Google Scholar 

  • Horwitz B, Duara R, Rapoport SI (1986) Age differences in intercorrelations between regional cerebral metabolic rates for glucose. Ann Neural 19: 60–67

    Article  CAS  Google Scholar 

  • Horwitz B, Grady CL, Schlageter NL, Duara R, Rapoport SI (1987) Intercorrelations of regional cerebral glucose metabolic rates in Alzheimer’s disease. Brain Res 407: 294–306

    Article  CAS  Google Scholar 

  • Horwitz B, Rumsey J. Grady C, Rapoport SI (1988) The cerebral metabolic landscape in autism: intercorrelations of regional glucose utilization. Arch Neurol 45: 749–755

    CAS  Google Scholar 

  • Kruger JA (1982) A 12-fold microelectrode for recording from vertically aligned cortical neurons. J Neurosci Methods 6: 347–350

    Article  PubMed  CAS  Google Scholar 

  • Livanov MN, Gavrilova NA, Aslanov AS (1973) Correlation of biopotentials in the frontal parts of the human brain. In: Pribram K, Luria A (eds). Psychophysiology of the frontal lobes. Academic Press, New York, pp 91–107

    Google Scholar 

  • London JA, Zecevic D, Cohen LB (1986) Simultaneous monitoring of activity of many neurons from invertebrate ganglia using a multielement detecting system. In: De Weer P, Salzberg BM (eds) Optical methods in cell physiology. Wiley, New York, pp 115–132

    Google Scholar 

  • Metter EI, Riege WH, Kameyama M, Kuhl DE, Phelps ME (1984a) Cerebral metabolic relationships for selected brain regions in Alzheimer’s, Huntington’s, and Parkinson’s diseases. J Cereb Blood Flow Metabol4: 500–506

    Google Scholar 

  • Metter EJ, Riege WIT, Kuhl DE, Phelps ME (1984b) Cerebral metabolic relationships for selected brain regions in healthy adults. J Cereb Blood Flow Metabol4: 1–7

    Google Scholar 

  • Pearson RCA, Esiri MM, Hiorns RW, Wilcock GK, Powell TPS (1985) Anatomical correlates of the distribution of the pathological changes in the neocortex in Alzheimer’s disease. Proc Natl Acad Sci USA 82: 4531. 4534

    Google Scholar 

  • Phelps ME, Hoffman EJ, Huang SC, Kuhl DE (1978): A new computerized tomographie imaging system for positron-emitting radiopharmaceuticals. JNud Med 19: 635–647

    CAS  Google Scholar 

  • Phelps ME, Mazziotta J, Schelbert H (eds) (1986) Positron emission tomography and autoradiography. Raven Press, New York

    Google Scholar 

  • Rapoport SI, Horwitz B, Haxby JV, Grady CL (1986) Alzheimer’s disease: metabolic uncoupling of associative brain regions. Canadian J Neural Sci 13: 540–545

    CAS  Google Scholar 

  • Reitboeck HJA (1983) A 19-channel matrix drive with individually controllable fiber microelectrodes for neurophysiological applications. IEEE Trans Syst Man Lybern SMC13: 676–682

    Google Scholar 

  • Reivich M, Kuhl D, Wolf A, Greenberg J, Phelps M, Ido T, Casella V, Fowler J, Hoffman E, Alavi A, Som P, Sokoloff L (1979) The (18-F)fluorodeoxyglucose method for the measurement of local cerebral glucose utilization in man. Cire Res 44: 127–137

    Article  CAS  Google Scholar 

  • Rogers J, Morrison JH (1985) Quantitative morphology and regional and laminar distribution of senile plaques in Alzheimer’s disease. J Neurosci S: 2801–2808

    Google Scholar 

  • Roy CS, Sherrington CS (1890) On the regulation of the blood supply of the brain. JPhysiol (Lond)11: 85108

    Google Scholar 

  • Smith CB (1983) Localization of activity-associated changes in metabolism of the central nervous system with the demo/glucose method: prospects for cellular resolution. In: Barker JL, McKelvy JF (eds) Current methods in cellular neurobiology Vol. L Wiley, New York, pp 269–317

    Google Scholar 

  • Sokoloff L (1981) The relationship between function and energy metabolism: its use in the localization of functional activity in the nervous system. Neurosci Res Prog Bull19: 159–210.

    Google Scholar 

  • Sokoloff L, Reivich M, Kennedy C, Des Rosiers MH, Patlak CS; Pettiigrew KD, Sakurada O, Shinohara M (1977) The (14C)-deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure, and normal values in the conscious and anesthetized albino rat. J Neurochem 28: 897–916

    Article  PubMed  CAS  Google Scholar 

  • Soncrant Ti’, Horwitz B, Holloway HH, Rapoport SI (1986a) The pattern of functional coupling of brain regions in the awake rat. Brain Res 369: 1–11

    Article  Google Scholar 

  • Soncrant Ti’, Horwitz B, Sato S, Holloway HH, Rapoport SI (1986b) Left-right regional brain functional interactions are disrupted by corpus callosotomy in the rat. Soc Neurosci Abstrl2: 177

    Google Scholar 

  • Thorndike RM (1978) Correlational procedures for research. Gardner Press, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer Science+Business Media New York

About this chapter

Cite this chapter

Horwitz, B. (1989). Functional Neural Systems Analyzed by Use of Interregional Correlations of Glucose Metabolism. In: Ewert, JP., Arbib, M.A. (eds) Visuomotor Coordination. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0897-1_30

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0897-1_30

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0899-5

  • Online ISBN: 978-1-4899-0897-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics