Skip to main content

Central Representation of Arousal

  • Chapter
Visuomotor Coordination

Abstract

There are two types of mechanism by which the brain modulates its own responsiveness, those of arousal and attention. Comparative studies suggest that in fish and amphibia the nondirectional arousal component of the orientation reaction (OR) predominates over the directed attention component, the latter of which is more advanced in mammals. Fish and amphibia are therefore useful subjects for the study of arousal. Associated with behavioral arousal in these animals is an increase in amplitude and apparent synchrony of high frequency waveforms in the electroencephalogram (EEG). A model is presented of how such waveforms may sensitize neurons and thus increase responsiveness to subsequent stimuli. Also associated with neuronal responses to sensory experience are sustained potential shifts (SPSs) of probably glial origin. These SPSs may represent a change in the environment of neurons deeper in the sensory processing pathway which would increase the probability of these neurons responding to activation of that pathway. Hyperactivity of the brain, associated with seizures is also correlated with high levels of measures of arousal and clinically with a gliosis. Fundamental studies on the neuronal sensitization which occurs during arousal may also reveal the causes of neuronal hyperactivity in clinical disorders like epilepsy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson P, Anderson SA (1968) Physiological basis of the alpha rhythm. Meredith Corporation, New York

    Google Scholar 

  • Ayala GF (1983) The paroxysmal depolarising shift. Prog Clin Bio! Res 124: 15–21

    CAS  Google Scholar 

  • Barry RJ (1984) Preliminary processes in OR elicitation. Acta Physiol55: 109–142

    Google Scholar 

  • Barth DS, Engle WSJ, Beatty J (1984) Neuromagnetic evidence of spatially distributed sources underlying epileptiform spikes in the human brain. Science 223: 293–296

    Article  PubMed  CAS  Google Scholar 

  • Bauer H, Nimberger G (1981) Concept identification as a function of preceding negative or positive spontaneous shifts in slow brain potentials. Psychophysiol 18(4): 466–469

    Google Scholar 

  • Birukow G (1951) Ermüdung and Umstimmung bei Gleichgewichtsreaktionen der Amphibien. Verhandl Deutsch Zool Ges 16: 144–150

    Google Scholar 

  • Borchers H-W (1982) Correlation between behavior patterns and single unit responses from the optic tectum in the freely moving toad (Bufo bufo). In: Trappe! R, Ricciardi L, Pask G (eds) Progress in biorybernetics research, VoL 9. McGraw-Hill, London, pp 109–117

    Google Scholar 

  • Bowman CL, Kimelberg HK (1984) Excitatory amino acids directly depolarise rat brain astrocytes in primary culture. Nature 311: 656–659

    Article  PubMed  CAS  Google Scholar 

  • Bridger WH, Reiser MF (1959) Psychophysiological studies of the neonate: an approach toward the methodological and theoretical problems involved. Psychosomatic Med 21: 165–176

    Google Scholar 

  • Buno W, Velluti R, Handler P, Garcia-Austt E (1966) Neural control of the cochlear input in the wakeful-free guinea pig. Physiol Behavl: 23–35

    Google Scholar 

  • Caspers H, Speckmann EJ (1969) DC potential shifts in paroxysmal states. In: Jaspers HH, Ward AA, Pope A (eds) Basic mechanisms of the epilepsies Little Brown and Co, Boston, pp 375–388

    Google Scholar 

  • Chalazonitis N (1978) Some intrinsic and synaptic properties of abnormal oscillators. In: Chalazonitis N, Boisson M (eds) Abnormal neuronal discharges. Raven Press, New York, pp 115–132

    Google Scholar 

  • Chapman AA (1985) Cerebral energy metabolism and seizures. In: Pedley TA, Meldrum BS (eds) Recent advances in epilepsy IL Churchill Livingstone, Edinburgh London New York, pp 19–63

    Google Scholar 

  • Chen RC, Huang YH, How SW (1986) Systemic penicillin as an experimental model of epilepsy. Pap Neurol 93: 533–540

    Google Scholar 

  • Cohen MW (1970) The contribution of glial cells to surface recordings from the optic nerve of an amphibian. J Physiol 210: 565–580

    PubMed  CAS  Google Scholar 

  • Coles JA, Orkand RK (1983) Modification of potassium movement through the retina of the drone (Apis mellifera) by glial uptake. J Physiol 340: 157–174

    PubMed  CAS  Google Scholar 

  • Creutzfeldt OD, Houchin J (1974) Neuronal basis of EEG waves. In: Remond A (ed) Handbook ofelectroencephalography and clinical neurophysiology, Vol. 2. Elsevier, Amsterdam, pp 5–55

    Google Scholar 

  • Creutzfeldt OD, Kuhn V, Benevento LA (1974) An intracellular analysis of visual cortical neurones to moving stimuli: responses in a cooperative neuronal network. Fxp Brain Res 21: 251–274

    CAS  Google Scholar 

  • Crispino L (1983) Modification of responses from specific sensory systems in midbrain by cerebellar stimulation: experiments in a teleost fish. JNeurophysio149(1): 3–15

    Google Scholar 

  • Crispino L, Bullock TH (1984) Cerebellum mediates modality-specific modulation of sensory responses of midbrain and forebrain in rat. ProcNatl Acad Sci USA 81: 2917–1920

    Article  CAS  Google Scholar 

  • Degtyar EN (1963) Conditions required for the formation of a CR system at various functional levels of children’s nervous activity. Zhur Vyssei New Deiate113: 631–637

    Google Scholar 

  • Durkovic RG, Cohen DH (1966) DC potential activity in a nervous system lacking neocortex the pigeon telencephalon. Anat Record 154: 341

    Google Scholar 

  • Durkovic RG, Cohen DH (1968) Spontaneous, evoked and defensively conditioned steady potential changes in the pigeon telencephalon. Electroenceph Clin Neurophysiol24: 474–481

    Article  PubMed  CAS  Google Scholar 

  • Eason RG, Dudley LM (1971) Physiological and behavioral indicants of activation. Psychophysiol 7(2): 223–232

    Google Scholar 

  • Eason RG, Harter MR, White CT (1969) Effects of attention and arousal on visually evoked cortical potentials and reaction time in man. Physiol Behav4: 283–289

    Google Scholar 

  • Elul R (1972) The genesis of the EEG. In: Pfeiffer CC, Smythies JR (eds) International review of neurobiology, Vol. 15. Academic Press, New York London, pp 228–272.

    Google Scholar 

  • Enger PS (1957) The electroencephalogram of the codfish. Acta Physiol Scand 39: 55–72

    Article  PubMed  CAS  Google Scholar 

  • Ewert J-P (1980) Neuroethology: an introduction to the neurophysiological fundamentals of behavior. Springer-Verlag, Berlin Heidelberg New York

    Google Scholar 

  • Ewert J-P (1984) Tectal mechanisms that underlie prey-catching and avoidance behaviors in toads. In: Vanegas H (ed) Comparative neurology of the optic tectum. Plenum Press, New York London, pp 247–416

    Google Scholar 

  • Faught E, Lee SI (1984) Pattern-reversal visual evoked potentials in photosensitive epilepsy. Electroenceph Clin Neurophysio 159: 125–133

    Article  Google Scholar 

  • Finkenstädt T (1987) Verschaltung, Interaktion und Funktion visuell beeinfluBbarer Hirngebiete bei Amphibien. Habilitation Thesis, Univ of Kassel

    Google Scholar 

  • Finkenstädt T, Ewert J-P (1985) Glucose utilization in the toad’s brain during anesthesia and stimulation of the ascending reticular arousal system: a 14C-2-deoxyglucose study. Naturwissenschaften 72: 161–162

    Google Scholar 

  • Fox SS, Norman RJ (1968) Functional congruence: an index of neural homogeneity and a new measure of brain activity. Science 159: 1257–1259

    Article  PubMed  CAS  Google Scholar 

  • Frost JD, Gol A (1966) Computer determination of relationships between EEG activity and single unit discharges in isolated cerebral cortex. Erp Neuro11: 4 506–519

    Google Scholar 

  • Futamachi KJ, Pedley TA (1976) Glial cells and extracellular potassium: their relationship in mammalian cortex. Brain Res 109: 311–322

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Austt E, Bogacz J, Venzulli A (1964) Effects of attention and inattention upon visual evoked response. Electroencephal Clin Neurophysiol 17: 136–143

    Article  CAS  Google Scholar 

  • Gardner-Medwin AR (1983) Analysis of potassium dynamics in mammalian brain tissue. J Physiol 335: 393–426

    PubMed  CAS  Google Scholar 

  • Gilbert PW, Hodgson ES, Mathewson RF (1964) Electroencephalogram of sharks. Science 145: 949–951

    Article  PubMed  CAS  Google Scholar 

  • Godet R, Bert J, Collomb H (1964) Apparition de la reaction d’eveil telencephalique chez Protopterus annectens et cycle biologique. Comptes Rendus des Seances de la Societe de Biologie 158: 146–149

    CAS  Google Scholar 

  • Gola M (1978) A model for the production of slow potential waves and associated spiking in molluscan neurons. In: Chalazonitis N, Boisson M (eds) Abnormal neuronal dischargeand Raven Press, New York, pp 243–262

    Google Scholar 

  • Gonzalez-Lima F, Scheich H (1984) Functional activation of the auditory system of the rat produced by arousing reticular stimulation: a 2-deoxyglucose study. Brain Res 299: 201–214

    Article  PubMed  CAS  Google Scholar 

  • Goodman DA, Weinberger NM (1969) An electroencephalographic study of Necturus maculosus (mud puppy). Physiol Zoo142: 398–410

    Google Scholar 

  • Greenwood RS, Takato M, Goldring S (1981) Potassium activity and changes in glial and neuronal membrane potentials during initiation and spread of after discharges in cerebral cortex of cat. Brain Res 218: 279–298

    Article  PubMed  CAS  Google Scholar 

  • Grossman RG (1978) Glial-neural interaction studies with intracellular injection of ions into cortical glia. In: Schoffeniels E, Franck G, Hertz L, Tower DB (eds) Dynamic properties of glial cells. Pergamon Press, New York, pp. 105–113

    Google Scholar 

  • Gumnit RJ (1961) The distribution of direct current responses evoked by sounds in the auditory cortex of the cat. Electroenceph Clin Neurophysiol 13: 889–895

    Article  Google Scholar 

  • Gutnick MJ, Connors BW, Ransom BR (1981) Dye coupling between glial cells in the guinea pig neocortical slice. Brain Res 213: 486–492

    Article  PubMed  CAS  Google Scholar 

  • Hamberger A, Cotman CW, Sellstrom A, Weiler CT (1978) Glutamine, glial cells and their relationship to transmitter glutamate. In: Schoffeniels E, Franck G, Hertz L, Tower DB (eds) Dynamic properties of glial cells. Pergamon Press, Oxford New York, pp 163–172

    Google Scholar 

  • Hara TJ, Ileda K, Gorbrian A (1965) Electroencephalographic studies of homing salmon. Science 149: 884885

    Google Scholar 

  • Harris AB (1975) Cortical neuroglia in experimental epilepsy. Exp Neurol49: 691–715

    Google Scholar 

  • Hatton JD, Ellisman MH (1984) Orthoganal arrays are redistributed in the membranes of astroglia from alumina-induced epileptic foci. Epilepsia 25 (2): 145–151

    Article  PubMed  CAS  Google Scholar 

  • Heinemann U, Dietzel I (1984) Extracellular potassium concentration in chronic alumina cream foci of cats. JNeurophysiol 52: 421–434.

    CAS  Google Scholar 

  • Heinemann U, Konnerth A, Lux HD (1981) Stimulation induced changes in extracellular free calcium in normal cortex and chronic alumina cream foci of cats. Brain Res 213: 246–250

    Article  PubMed  CAS  Google Scholar 

  • Hertz L (1965) Possible role of neuroglia: a potassium-mediated neuronal-neuroglial-neuronal impulse transmission system. Nature 4989: 1091–1094

    Article  Google Scholar 

  • Hobson JA (1967) Respiration and EEG synchronisation in the frog. Nature 213: 988–989

    Article  Google Scholar 

  • Hodgkin AL, Keynes RD (1955) Active transport of cations in giant axons from Sepia and Loligo. J Physiology (London) 128: 28–60

    CAS  Google Scholar 

  • Hubbard JI, Llinas R, Quastel DMJ (1969) Electrophysiological analysis of synaptic transmission. Monographs of the physiological society. Edward Arnold, London, p 372

    Google Scholar 

  • Jakobsson E, Guttmann R (1981) Continuous stimulation and threshold of axons. In: Adelman WJ, Goldman DE (eds) The biophysical approach to excitable systems. Plenum-Press, New York London, pp 197–213

    Chapter  Google Scholar 

  • Jane JA, Smirnov GD, Jasper HH (1962) Effects of distraction upon simultaneous auditory and visual evoked potentials. Electroenceph Clin Neurophysiol 14: 344–357

    Article  PubMed  CAS  Google Scholar 

  • Jasper HH (1960) Unspecific thalamocortical relations. In: Field JJ, Magoun HW, Hall VE (eds) Handbook of physiology, section L neurophysiology, Vol IL American Physiological Society, Washington, pp 1307–1321

    Google Scholar 

  • Johnston D, Brown TH (1981) Giant synaptic potential hypothesis for epileptiform activity. Science 211: 294–297

    Article  PubMed  CAS  Google Scholar 

  • Kaplan H (1981) Effects of fostering on seizure activity in the Mongolian gerbil. Developmental Psychobiol 14 (6): 565–570

    Article  CAS  Google Scholar 

  • Karmanova IG, Belekhova MG, Tchurnosov, EU (1971) Specifics of behavioral and electrographic patterns of sleep and wakefulness in reptiles. Sechenov Physiol J USSR 57: 504–511

    CAS  Google Scholar 

  • Kelly JP, Van Essen DC (1974) Cell structures and function in the visual cortex of the cat. J Physiol 238: 515–547

    PubMed  CAS  Google Scholar 

  • King JS (1966) A comparative investigation of neuroglia in representative vertebrates. J Morphol119: 435466

    Google Scholar 

  • Klein M (1963) Etude polygraphique et phylogenique des etats de sommeil. Bosc, Lyons France

    Google Scholar 

  • Kohler W, Wegener J (1955) Currents of the human auditory cortex. J Celi Comp Physiol Supp! 1: 25–54

    Article  Google Scholar 

  • Koroleva VI, Bures J (1983) Cortical penicillin focus as a generator of repetitive spike-triggered waves of spreading depression in rats. Exp Brain Res 51: 291–297

    Article  PubMed  CAS  Google Scholar 

  • Kostopoulos G, Avoli M (1983) Enhanced response of cortical neurons to thalamic stimuli precedes the appearance of spike and wave discharges in feline generalized penicillin epilepsy. Brain Res 278: 207–217

    Article  PubMed  CAS  Google Scholar 

  • Kuffler SW (1967) Neuroglial cells: physiological properties and a potassium-mediated effect of neuronal activity on the glial membrane potential. ProcRoyal SocB 168: 1–21

    Article  CAS  Google Scholar 

  • Kuffler SW, Nicholls JG, Orkand RK (1966) Physiological properties of glial cells in the central nervous system of amphibia. JNeurophysio l29: 768–787

    Google Scholar 

  • Lacey JI, Lacey BC (1974) On heart rate responses and behavior. a reply to Elliot. J Personal Soc Psycho! 30: 1–18

    Article  CAS  Google Scholar 

  • Laming PR (1980) Electroencephalographic studies on arousal in the goldfish (Carassius auratus). J Comp Physiol Psycho! 94: 238–254

    Article  CAS  Google Scholar 

  • Laming PR (1981) The physiological basis of alert behaviour in fish. In: Laming PR (ed) Brain mechanisms of behaviour in lower vertebrates. Cambridge Univ Press, Cambridge England, pp 203–224

    Google Scholar 

  • Laming PR (1982) Electroencephalographic correlates of behavior in the anurans Bufo regularis and Rana temporada. Behav Neural Bio! 34: 296–306

    Article  CAS  Google Scholar 

  • Laming PR (1983) Relationship between the responses of visual units, EEGs, and slow potential shifts in the tectum of the toad, Bufo bufa In: Ewert J-P, Capranica RR, Ingle DJ (eds) Advances in vertebrate neuroethology. Plenum-Press, New York London, pp 595–603

    Google Scholar 

  • Laming PR (1987) Behavioural arousal and its habituation in the squirrel fish (Holocentrus tutus); the role of the telencephalon. Behav Neural Bio1 47: 80–104

    Article  CAS  Google Scholar 

  • Laming PR, Brooks M (1985) Effects of visual, chemical, and tactile stimuli on the auditory evoked response of the teleost Rutilus radius. Comp Biochem Physio 182A(3): 667–673

    Google Scholar 

  • Laming PR, Ebbesson SOE (1984) Arousal and fright responses and their habituation in the slippery dick, Halichoeres bivittatus Erperientia 40: 767–769

    Google Scholar 

  • Laming PR, Ewert J-P (1983) The effects of pretectal lesions on neuronal, sustained potential shift, and electroencephalographic responses of the toad tectum to presentation of a visual stimulus. Comp Biochem Physiol 76A(2): 247–252

    Google Scholar 

  • Laming PR, Ewert J-P (1984) Visual unit, EEG, and sustained potential shift responses to biologically significant stimuli in the brain of toads (Bufo bufo). J Comp Physiol 154: 89–101

    Article  Google Scholar 

  • Laming PR, Hornby P (1981) The effect of unilateral telencephalic lesions on behavioral arousal and its habituation in the roach, Rutilus rutilus. Behav Neural Biol 33: 59–65

    Article  Google Scholar 

  • Laming PR, McKee M (1981) Deficits in habituation of cardiac arousal responses incurred by telencephalic ablation in goldfish (Carassius auratus) and their relation to other telencephalic functions. J Comp Physiol Psycho! 95(3): 460467

    Google Scholar 

  • Laming PR, Savage GE (1978) Flow changes in visceral blood vessels of the chub (Leuciscus cephalus) during behavioural arousal. Comp Biochem Physiol A 59 (3): 291–293

    Google Scholar 

  • Laming PR, Savage GE (1980) Physiological changes observed in the goldfish (Carassius auratus) during behavioural arousal and fright. Behav Neural Bio! 29: 255–275

    Article  CAS  Google Scholar 

  • Laming PR, Savage GE (1981) Seasonal differences in brain activity and responsiveness shown by the goldfish ( Carassius auratus ). Behav Neural Bio! 32: 386–389

    Google Scholar 

  • Laming PR, Borchers HW, Ewert J-P (1984a) Visual unit, EEG, and sustained potential shift responses in the brains of toads (Bufo bufo) during alert and defensive behavior. Physiol Behav32: 463–468

    Google Scholar 

  • Laming PR, Ewert J-P, Borchers HW (1984b) The effects of telencephalic ablation on unit, EEG, and sustained potential shift responses of the toad tectum to a visual stimulus. Behav Neurosci 98 (1): 118–124

    Article  PubMed  CAS  Google Scholar 

  • Laming PR, Rooney DJ, Ferguson J (1987) Epileptogenesis is associated with heightened arousal responses in fish. Physiol Behav 40: 617–624

    Article  PubMed  CAS  Google Scholar 

  • Laming PR, Elwood RW, Best PM (1988) Arousal, attention, and epilepsy in the gerbil. Behav Neural Bio! (in press)

    Google Scholar 

  • Lansing RW, Lindsley DB, Schwartz E (1959) Reaction time and EEG activation under alerted and non-alerted conditions. JExp Psycho! 58: 1–7

    CAS  Google Scholar 

  • Laufer M, Verzeano M (1967) Periodic activity in the visual system of the cat. Vision Res7: 215–219 Lehmann HJ (1963) Praparoxymale Weckreaktionen bei pyknoleptischen Absenzen. Arch Psychiat Nervenkr204: 417–426

    Google Scholar 

  • Lickey ME, Fox SS (1966) Localisation and habituation of sensory evoked DC responses in cat cortex. Exp Neurol 15: 437. 454

    Google Scholar 

  • Livingstone MS, Hubel DH (1981) Effects of sleep and arousal on the processing of visual information in the cat. Nature 291: 554–561

    Article  PubMed  CAS  Google Scholar 

  • London ID (1954) Research on sensory interaction in the Soviet Union. Psychol Bull 51: 531–568

    Article  Google Scholar 

  • Loveless NE (1979) Event-related slow potentials of the brain as expressions of orienting function. In: Kimmel HD, von Olst EM, Orlebeke JF (eds) The orienting reflex in humans Eribaum, Hillsdale, pp 77–100

    Google Scholar 

  • Maltzman I (1979) Orienting reflexes and significance: a reply to O’Gorman. Psychophysiol 16: 274–282

    Article  CAS  Google Scholar 

  • Marston JH, Chang MC (1965) The breeding management and reproductive physiology of the Mongolian gerbil (Mesiones unguiculatus). Lab Anim Care 15: 34–48

    PubMed  CAS  Google Scholar 

  • Maxson SC, Fine MD, Ginsburg BE, Konieck DL (1983) A mutant for spontaneous seizures in C57BLI10Bg mice. Epilepsia 24: 15–24

    Article  PubMed  CAS  Google Scholar 

  • McIntyre DC, Chew GL (1986) Power-spectral analysis of electroencephalographic activity in kindled rats. Exp Neurol92: 261–266

    Google Scholar 

  • Mihaly A, Joo F, Szente M (1983) Neuropathological alterations in the neocortex of rats subject to focal aminopyridene seizures. Acta Neuropathol 61: 85–94

    Article  PubMed  CAS  Google Scholar 

  • Mori S, Mitarai G, Takagi S, Usui S (1981) Electroencephalographic analysis of activities in the optic tectum of unrestrained carp. Behav Brain Res2: 335–346

    Google Scholar 

  • Morrell F (1960) Micro-electrode and steady potential studies suggesting a dendritic locus of closure. Electroenceph Clin Neurophysiol 13: 1553–1593

    Google Scholar 

  • Moruzzi G, Magoun HW (1949) Brain stem reticular formation and activation of the EEG. Electroenceph Clin Neurophysiol 1: 455–473

    PubMed  CAS  Google Scholar 

  • Mouritzen-Dam A (1982) Hippocampal neuron loss in epilepsy and after experimental seizures. Acta Neural Scand 66: 601–642

    Article  Google Scholar 

  • Niedermeyer E (1972) The generalized epilepsies Thomas, Springfield

    Google Scholar 

  • Niedermeyer E (1982) Epileptic seizure disorders. In: Niedermeyer E, Lopes da Silva F (eds) Electroencephalography. Urban and Schwarzenberg, Baltimore Munich, pp. 339–428

    Google Scholar 

  • Oatman LC (1971) Role of visual attention on auditory evoked potential in unanaesthetised cats. Exp Neurol 32: 341–356

    Article  PubMed  CAS  Google Scholar 

  • Obraztsova LF, Pomazanskaya LN, Stelmakh VA, Troshikhin VA (1958) On the orientation reaction to neutral and signal stimuli in dogs and rabbits in ontogenesis. In: Lynn R (ed) Attention, arousal and the orientation reaction. Pergamon Press, Oxford 1966, p 118

    Google Scholar 

  • Orkand RK, Nicholls JG, Kuffler SW (1966) The effect of nerve impulses on the membrane potential of glial cells in the central nervous system of amphibia. JNeurophysiol 29: 788–806

    CAS  Google Scholar 

  • Papini M, Pasquinelli A, Armellini M, Orlandi D (1984) Alertness and incidence of seizures in patients with Lennox-Gastaut syndrome. Epilepsia 25 (2): 161–167

    Article  PubMed  CAS  Google Scholar 

  • Pavlov IP (1927) Conditioned reflexes. Oxford Univ Press, London

    Google Scholar 

  • Peters TJ, Vonderahe AR (1954) Electroencephalographic studies, induced seizures, and their modification by phenobarbitol, dilantin, and phenurone in the salamanders Trituras viridescens and Ambystoma tigrinum. Electroenceph Clin Neurophysiol 6: 253–260

    Article  CAS  Google Scholar 

  • Petsche H, Pockberger H, Rappelsberger P (1984) On the search for the sources of the electroencephalogram. Neurosci 11 (1): 1–27

    Article  CAS  Google Scholar 

  • Petsche H, Prohaska O, Rappelsberger P, Vollmer R, Kaiser A (1974). Cortical seizure patterns in multidimensional view. The information content of equipotential maps. Epilepsia 15: 439–463

    Article  PubMed  CAS  Google Scholar 

  • Picker S, Pieper CF, Goldring S (1981) Glial membrane potentials and their relationship to [K+]o in man and guinea pig. JNeurosurg 55: 347–363

    Article  CAS  Google Scholar 

  • Piddington RW (1971a) Central control of auditory input in the goldfish. I: Effects of shocks to the midbrain. JExp Biol 55: 569–584

    CAS  Google Scholar 

  • Piddington RW (1971b) Central control of auditory input in the goldfish. II: Evidence of action in the free swimming animal. J Exp Bio! 55: 585–610

    CAS  Google Scholar 

  • Pope A (1978) Neuroglia: quantitative aspects. In: Schoffeniels E, Franck G, Hertz L, Tower DB (eds) Dynamic properties ofgu ai cells. Pergamon Press, Oxford New York, pp 13–20

    Google Scholar 

  • Posner MI, Snyder CRR (1975) Facilitation and inhibition in the processing of signals. In: Rabbitt PMA, Dornic S (eds) Attention and performance V. Academic Press, London New York, pp 669–682

    Google Scholar 

  • Pribram KH, McGuinness D (1975) Arousal activation and effort in the control of attention. Psycho! Review82: 116–149

    Google Scholar 

  • Quastel JH (1978) Cerebral glutamate-glutamine interrelations in vivo and in vitra In: Schoffeniels E, Franck G, Hertz I., Tower DB (eds) Dynamic properties of glial cells. Pergamon Press, New York, pp 153–162

    Google Scholar 

  • Quesney LF (1984) Pathophysiology of generalised photosensitive epilepsy in the cat. Epilepsia 25 (1): 6169

    Google Scholar 

  • Rakic P (1984) Emergence of neuronal and glial cell lineages in primate brain. In: Black IB (ed) Cellular and molecular biology of neuronal development Plenum Press, New York, pp 29–50

    Google Scholar 

  • Rakic P, Stensaas LI, Sayre EP, Sidman RL (1974) Computer aided three-dimensional reconstruction and quantitative analysis of cells from serial electron microscope montages of fetal monkey brain. Nature 250: 31–34

    Article  PubMed  CAS  Google Scholar 

  • Ransom BR, Goldring S (1973a) Ionic determinants of membrane potential of cells presumed to be glia in cerebral cortex of cat. J Neurophysiol 36: 855–868

    CAS  Google Scholar 

  • Ransom BR, Goldring S (1973b) Slow depolarisation in cells presumed to be glia in cerebral cortex of cat. J Neurophysiol 36: 869–878

    CAS  Google Scholar 

  • Ransom BR, Goldring S (1973c) Slow hyperpolarisation in cells presumed to be glia in cerebral cortex of cat. J Neurophysiol 36: 879–892

    CAS  Google Scholar 

  • Rappelsberger P, Petsche H, Vollmer R, Lapins R (1979) Rhythmicity in seizure patterns; intracortical aspects. In: Speckmann EI, Caspers H (eds) Origin of cerebral field potentials Georg Thieme, Stuttgart, pp 80–97

    Google Scholar 

  • Rassmussen T (1983) Characteristics of a pure culture of frontal lobe epilepsy. Epilepsia 24: 482–493

    Article  Google Scholar 

  • Reynolds R, Herschkowitz N (1986) Selective uptake of neuroactive amino acids by both oligodendrocytes and astrocytes in primary dissociated culture: a possible role for oligodendrocytes in neurotransmitter metabolism. Brain Res 371: 253–266

    Article  PubMed  CAS  Google Scholar 

  • Rizzolatti G (1983) Mechanisms of selective attention in mammals. In: Ewert J-P, Capranica RR, Ingle DJ (eds) Advances in vertebrate neuroethology. Plenum Press, New York, pp 261–297

    Chapter  Google Scholar 

  • Rogozea R, Flores Ciocoiu V, Constantinovici A (1983) Habituation of the orienting reaction in patients with epileptogenic cerebral tumours. Bio! Psychol16: 65–84

    Google Scholar 

  • Roitback AI, Fanardjhyan VV, Melkonyan DS, Melkonyan AA (1982) Glial origin of slow negative potential of the cortical direct response. Neirofiziologiia 14 (1): 76–84

    Google Scholar 

  • Rooney D, Laming PR (1986) Cardiac and ventilatory arousal responses and their habituation in goldfish: effects of intensity of the eliciting stimulus. Physiol Behav37: 11–14

    Google Scholar 

  • Rowland V (1968) Cortical steady potential (direct current potential) in reinforcement and learning. In: Stellar E, Sprague JM (eds) Progress in physiological psychology, Volt Academic Press, New York, pp 2–77

    Google Scholar 

  • Rowland V, Goldstone M (1963) Appetitively conditioned and drive-related bioelectric baseline shift in cat cortex. Electroenceph Clin Neurophysio1 15: 474–485

    Article  CAS  Google Scholar 

  • Rowland V, Bradley H, School P, Deutschman D (1967) Cortical steady potential shifts in conditioning. Cond Reflex 2: 3–22

    Google Scholar 

  • Rutecki DA, Lebeda FJ, Johnston D (1985) Epileptiform activity induced by changes in extracellular potassium in hippocampus. J Neurophysio1 54(5): 1363–1374

    Google Scholar 

  • Savage GE 1971. Behavioural effects of electrical stimulation of the telencephalon of the goldfish (Carassins auratus). Anim Behav 19: 661–8.

    Article  PubMed  CAS  Google Scholar 

  • Schade JP (1959) Bilateral synchrony and arousal in EEG of fish. Electroenceph Clin Neurophysiol 11: 613–614

    Google Scholar 

  • Schade JP, Weiler IJ (1959) EEG patterns of the goldfish. JExp Bio! 36: 435–52

    Google Scholar 

  • Schousboe A (1978) Glutamate, GABA, and taurine in cultured, normal glia cells. In: Schoffeniels E, Franck G, Hertz L, Tower DB (eds) Dynamic properties of glia celland Pergamon Press, Oxford New York, pp 173–183

    Google Scholar 

  • Schousboe A (1981) Transport and metabolism of glutamate and GABA in neurons and glial cells. Intern Rev Neurobiol 22: 1–45

    Article  CAS  Google Scholar 

  • Schwartzkroin PA, Knowles WD (1984) Intracellular study of human epileptic cortex; in vitro maintenance of epileptiform activity? Science 223: 709–712

    Article  PubMed  CAS  Google Scholar 

  • Segura ET, DeJuan A (1966) Electroencephalographic studies in toads. Electroenceph Clin Neurophysiol 21: 373–380

    Article  PubMed  CAS  Google Scholar 

  • Segura ET, Kacelnik A (1977) Cardiorespiratory and electroencephalographic responses to stimulation of the mesencephalic tegmentum in toads, lizards, and rats. Exp Neurol 57: 363–373

    Article  Google Scholar 

  • Servit Z (1977) Phylogenetic aspects of synchronisation in the electrogenesis of epileptic phenomena. Thalamo-cortical mechanisms in lower vertebrates. In: Petsche H, Brazier MA (eds) Epilepsies. Springer-Verlag, New York Berlin Heidelberg, pp 291–306

    Google Scholar 

  • Shaefor PJ, Rowland V (1974) Dissociation of cortical steady potential shifts from mass action potentials in cats awaiting food rewards. Physiol Psycho! 2 (4): 471–480

    Google Scholar 

  • Singer W (1973) The effect of mesencephalic reticular stimulation on intracellular potentials of cat lateral geniculate neurons. Brain Res 61: 35–54

    Article  PubMed  CAS  Google Scholar 

  • Singer W (1979) Central core control of visual-cortex functions. In: Schmitt FO, Worden FG (eds) The neurosciences fourth study program. MIT Press, Cambridge, pp 1093–1110

    Google Scholar 

  • Sokolov EN (1960) Neuronal models and the orienting reflex. In: Brazier MA (ed) The central nervous system and behavior. Macey, New York, pp 187–276

    Google Scholar 

  • Sokolov EN (1963a) Higher nervous functions: the OR. Ann Rev Physiol 25: 545–580

    Article  CAS  Google Scholar 

  • Sokolov EN (1963b) Perception and the conditioned reflex. Pergamon Press, Oxford

    Google Scholar 

  • Soper H v, Strain GM, Babb TL, Lieb JP, Crandall PH (1978) Chronic alumina temporal lobe seizures in monkeys. Exp Neurol 62: 99–121

    Article  PubMed  CAS  Google Scholar 

  • Spinks JA, Siddle D (1983) The functional significance of the orienting response. In: Siddle D (ed) Orienting and habituation: perspectives in human research. John Wiley, New York, pp 237–314

    Google Scholar 

  • Strain GM, Babb TL, Soper HV, Perryman KM, Lieb JP, Crandall PH (1979) Effects of chronic cerebellar stimulation on chronic limbic seizures in monkeys. Epilepsia 20: 651–664

    Article  PubMed  CAS  Google Scholar 

  • Susuki J, Nakamoto Y, Shinkawa Y (1983) Local cerebral glucose utilisation in epileptic seizures of the mutant El mouse. Brain Res 266: 359–363

    Article  Google Scholar 

  • Suzuki TA, Jacobson JH (1971) Reticular stimulation and the light-adapted discharges of the visually-evoked cortical response in cat. Tohoku JExp Med 103: 269–283

    Article  CAS  Google Scholar 

  • Swann JW, Brady RJ (1983) Penicillin-induced epileptogenesis in immature rat CA3 hippocampal pyramidal cells. Develop Brain Res 12: 243–254

    Article  Google Scholar 

  • Swann JW, Smith KL, Brady RJ (1986) Extracellular K+ accumulation during penicillin induced epileptogenesis in the CA3 region of immature rat hippocampus. Develop Brain Res 30: 243–255

    Article  CAS  Google Scholar 

  • Symons JR (1963) The effects of various heteromodal stimuli on visual sensitivity. Quart J Exp Psycho! 15: 243–251

    Article  Google Scholar 

  • Tasaki I (1978) Chemical stimulants and real-time spectrum analyzer used for studying properties of membrane excitable sites. In: Chalazonitis N, Boisson M (eds) Abnormal neuronal discharges Raven Press, New York, pp 233–242

    Google Scholar 

  • Tauber ES, Rojas-Ramirez J, Hernandez-Peon R (1968) Electrophysiological and behavioural correlates of wakefulness and sleep in the lizard Ctenosaura pectinata. Electroenceph Clin Neurophysiol 24: 424433

    Google Scholar 

  • Taylor DC, Bower BD (1971) Prevention in epileptic disorders. The Lancet 2: 1136–1138

    Article  CAS  Google Scholar 

  • Taylor-Courval D, Gloor P (1984) Behavioural alterations associated with generalised spike and wave discharges in the EEG of the cat. Exp Neurol 83: 167–186.

    Article  PubMed  CAS  Google Scholar 

  • Thiessen DD, Lindzey G, Friend HC (1968) Spontaneous seizures in the Mongolian gerbil. Psychon Sci 11: 227–228.

    Google Scholar 

  • Thompson RF, Voss JF, Brogden WJ (1965) Effects of brightness of simultaneous visual stimulation on absolute auditory sensitivity. JExp Psycho! 55: 45–50

    Google Scholar 

  • Turpin G (1983) Unconditioned reflexes and the autonomic nervous system. In: Siddle D (ed) Orienting and habituation: perspectives in human research. John Wiley, New York Toronto, pp 1–71

    Google Scholar 

  • Verzeano M (1972) Pacemakers, synchronisation, and epilepsy. In: Petsche H, Brazier MA (eds) Synchronisation of EEG activity in epilepsies Springer-Verlag, Wien New York, pp 154–188

    Google Scholar 

  • Verzeano M, Laufer M, Spear P, McDonald S (1970) The activity of neuronal networks in the thalamus of the monkey. In: Pribram KH, Broadbent DE (eds) Biology of memory. Academic Press, New York, pp 239–271

    Google Scholar 

  • Vinogradova OS (1961) The orientation reaction and its neurophysiological mechanisms. Acad Ped Sci RSFSR, Moscow

    Google Scholar 

  • Ward AA (1978) Glia and epilepsy. In: Schoffeniels E, Franck G, Hertz L, Tower DB (eds) Dynamic properties ofglial cells. Pergamon Press, New York, pp 413–427

    Google Scholar 

  • Ward AA (1983) Physiological basis of chronic epilepsy and mechanisms of spread. In: Delgado Escueta AV, Wasterlain CG, Treiman DM, Porter RJ (eds) Advances in neurology, 34: status epilepticus. Raven Press, New York, pp 189–197

    Google Scholar 

  • Watkins WH, Feehrer CE (1965) Acoustic facilitation of visual detection. JErp Psycho! 70: 332–333

    CAS  Google Scholar 

  • Wolff JR, Guldner FH (1978) Perisynaptic astroglial reactions to neural activity. In: Schoffeniels E, Franck G, Hertz L, Tower DB (eds) Dynamic properties of glial cells. Pergamon Press, New York, pp 115–118

    Google Scholar 

  • Yasuzumi G, Aoyama N, Yabimoto N (1983) Ultrastructural changes of basal laminae and protoplasmic astrocytes in craniostenosis with epilepsy. J Submicrosc Cytol 15 (2): 583–592

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer Science+Business Media New York

About this chapter

Cite this chapter

Laming, P.R. (1989). Central Representation of Arousal. In: Ewert, JP., Arbib, M.A. (eds) Visuomotor Coordination. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0897-1_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0897-1_24

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0899-5

  • Online ISBN: 978-1-4899-0897-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics