Skip to main content

Part of the book series: Environmental Science Research ((ESRH,volume 43))

Abstract

The oceans have a major influence on the climate of the earth through effects on the global solar radiation budget, on meridional heat transport, and on the trace gas composition of the atmosphere. The climate of the ocean-atmosphere system is sensitive to variations of the solar constant and the orbital characteristics of the earth. However, the properties of surface ocean waters and of the marine atmosphere are modified also by the optical and biochemical properties of marine organisms, in particular, the phytoplankton. It is generally recognized that the global climate would have been quite different through geological time in the absence of life in the sea.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ayers, G. P., Ivey, J. P., and Gillett, R. W., 1991, Coherence between seasonal cycles of dimethyl sulphide, methanesulphonate and sulphate in marine air, Nature, 349:404.

    Article  CAS  Google Scholar 

  • Balch, W. M., Holligan, P. M., Ackelson, S. G., and Voss, K. J., 1991, Biological and optical properties of mesoscale coccolithophore blooms in the Gulf of Maine, Limnol. Oceanogr., 36:629.

    Article  CAS  Google Scholar 

  • Barnola, J.-M., Pimenta, P., Raynaud, D., and Korotkevich, Y. S., 1991, CO2 — climate relationship as deduced from the Vostok ice core: a re-examination based on new measurements and on a re-valuation of the air dating, Tellus, 43B:83.

    CAS  Google Scholar 

  • Barnola, J.-M., Raynaud, D., Korotkevich, Y. S., and Lorius, C., 1987, Vostok ice core provides 160,000-year record of atmospheric CO2, Nature, 329:408.

    Article  CAS  Google Scholar 

  • Berger, W. H., and Keir, R. S., 1984, Glacial-Holocene changes in atmospheric CO2 and the deep-sea record, American Geophys. Union, Geophys. Mono. Series, 29:337.

    Article  Google Scholar 

  • Berner, R. A., 1989, Atmospheric carbon dioxide levels over Phanerozoic time, Science, 249:1382.

    Article  Google Scholar 

  • Blackburn, T. H., 1991, Accumulation and regeneration: Processes at the benthic boundry layer, In: “Ocean Margin Processes in Global Change,” R.F.C. Mantoura, J.-M. Martin, and R. Wollast, eds., John Wiley & Sons, Chichester.

    Google Scholar 

  • Boyle, E. A., 1988, The role of vertical chemical fractionation in controlling late Quaternary atmospheric carbon dioxide, J. Geophys. Res., 93:15701.

    Article  Google Scholar 

  • Broecker, W. S., and Denton, G. H., 1989, The role of ocean-atmosphere reorganisation in glacial cycles, Geochim. Cosmochim. Acta, 53:2465.

    Article  CAS  Google Scholar 

  • Broecker, W. S., and Peng, T.-H., 1987, The role of CaCO3 compensation in the glacial to interglacial atmospheric CO2 change, Global Biogeochem. Cycles, 1:15.

    Article  CAS  Google Scholar 

  • Broecker, W. S., and Peng, T.-H., 1989, The cause of the glacial to interglacial atmospheric CO2 change: A polar alkalinity hypothesis, Global Biogeochem. Cycles, 3:215.

    Article  Google Scholar 

  • Chamberlin, T. C., 1898, The influence of great epochs of limestone formation upon the constitution of the atmosphere, J. Geol., 6:609.

    Article  Google Scholar 

  • Charlson, R. J., Lovelock, J. E., Andreae, M. O., and Warren, S. G., 1987, Oceanic phytoplankton, atmospheric sulphur, cloud albedo and climate, Nature, 326:655.

    Article  CAS  Google Scholar 

  • Dansgaard, W., White, J. W. C., and Johnsen, S. J., 1989, The abrupt termination of the Younger Dryas climate event, Nature, 339:532.

    Article  Google Scholar 

  • Dymond, J., and Lyle, M., 1985, Flux comparisons between sediments and sediment traps in the eastern tropical Pacific: Implications for atmospheric CO2 variations during the Pleistocene, Limnol. Oceanogr., 30:699.

    Article  CAS  Google Scholar 

  • Falkowski, P. G., Kim, Y., Kolber, Z., Wilson, C., Wirick, C., and Cess, R., 1991, Distinguishing between anthropogenic and natural factors affecting low-level cloud albedo over the North Atlantic Ocean, Science, submitted.

    Google Scholar 

  • Foley, J. A., Taylor, K. E., and Ghan, S. J., 1991, Planktonic dimethylsuphide and cloud albedo: An estimate of the feedback response, Climatic Change, 18:1.

    Article  Google Scholar 

  • Gordon, A. S., and Millero, F. J., 1985, Adsorption mediated decrease in the biodegradation rate of organic compounds, Microb. Ecol., 11:289.

    Article  CAS  Google Scholar 

  • Harvey, D. L. D., 1988, Climatic impact of ice-age aerosols, Nature, 334:333.

    Article  Google Scholar 

  • Hegg, D. A., Ferek, R. J., Hobbs, P. V., and Radke, L. F., 1991, Dimethylsulfide and cloud condensation nucleus correlations in the northeast Pacific Ocean, J. Geophys. Res., 96:13189.

    Article  Google Scholar 

  • Herbert, T. D., Curry, W. B., Barron, J. A., Codispoti, L. A., Gersonde, R., Keir, R. S., Mix, A. C., Mycke, B., Schrader, H., Stein, R., Thierstein, H. R., 1989, Geological reconstructions of marine productivity, In: “Productivity of the Ocean: Present and Past,” W. H. Berger, V. S. Smetacek, and G. Wefer, eds., John Wiley & Sons, Chichester.

    Google Scholar 

  • Keir, R. S., 1988, On the late Pleistocene ocean geochemistry and circulation, Paleoceanography, 3:413.

    Article  Google Scholar 

  • Keir, R. S., and Berger, W. H., 1985, Late Holocene carbonate dissolution in the equatorial Pacific: Reef growth or neoglaciation? In: “Natural Variations in Carbon Dioxide and the Carbon Cycle, Archean to Present,” E.T. Sundquist and W.S. Broecker, eds., Geophys. Monogr. Ser., 32:208, AGU, Washington D.C.

    Google Scholar 

  • Keller, M. D., Bellows, W. K., and Guillard, R. R. L., 1989, Dimethylsulphide production in marine phytoplankton, In: “Biogenic Sulphur in the Marine Environment,” E.S. Saltzmanand W.J. Cooper, eds., Am. Chem. Soc. Symp. Ser., 393:167, ACS, Washington.

    Google Scholar 

  • Kiene, R. P., and Bates, T. S., 1990, Biological removal of dimethylsulphide from sea water, Nature, 345:702.

    Article  CAS  Google Scholar 

  • Kirk, J. T. O., 1988, Solar heating of water bodies as influenced by their inherent optical properties, J. Geophys. Res., 93:10897.

    Article  Google Scholar 

  • Lampitt, R. S., 1985, Evidence for the seasonal distribution of detritus to the deep-sea floor and its subsequent resuspension, Deep-Sea Res., 32:885.

    Article  Google Scholar 

  • Legrand, M., Feniet-Saigne, C., Saltzman, E. S., Germain, C. Barkov, N. I., and Petrov, V. N., 1991, Ice-core record of oceanic emissions of dimethylsulphide during the last climate cycle, Nature, 350:544.

    Article  Google Scholar 

  • Lewis, M. R., Cullen, J. J., and Platt, T., 1983, Phytoplankton and thermal structure in the upper ocean; consequences of nonuniformity in chlorophyll profile, J. Geophys. Res., 88:2565.

    Article  CAS  Google Scholar 

  • Lovelock, J. E., 1986, Geophysiology: A new look at earth science, Bull. Amer. Meteorol. Soc, 67:392.

    Google Scholar 

  • Lovelock, J. E., 1991, Geophysiology of the oceans, In: “Ocean Margin Processes in Global Change,” R.F.C. Mantoura, J.-M. Martin, and R. Wollast, eds., John Wiley & Sons, Chichester.

    Google Scholar 

  • Lyle, M., Murray, D. W., Finney, B. P., Dymond, J., Robbins, J. M., and Brooksforce, K., 1988, The record of late Pleistocene biogenic sedimentation in the eastern tropical Pacific Ocean, Paleoceanography, 3:39.

    Article  Google Scholar 

  • Margalef, R., 1978, Life-forms of phytoplankton as survival alternatives in an unstable environment, Oceanol. Acta., 1:493.

    Google Scholar 

  • Martin, J. H., 1990, Glacial-Interglacial CO2 change: The iron hypothesis, Paleooceanography, 5:1.

    Article  Google Scholar 

  • Martin, J. H., this volume.

    Google Scholar 

  • Mclntyre, A., Ruddiman, W. F., and Jantzen, R., 1972, Southward penetrations of the North Atlantic polar front: Faunal and floral evidence of large-scale surface water mass movements over the last 225,000 years, Deep-Sea Res., 19:61.

    Google Scholar 

  • Milliman, J. D., and Takahashi, K., 1991, Carbonate and opal production and accumulation in the ocean, In: “Global Surficial Geofluxes: Modern to Glacial,” T.M. Usselman, W. Hay, and M. Meybeck, eds., in press.

    Google Scholar 

  • Mix, A. C., 1989, Pleistocene paleoproductivity: Evidence from organic carbon and foraminiferal species, In: “Productivity of the Ocean: Present and Past,” W.H. Berger, V.S. Smetacek, and G. Wefer, eds., John Wiley & Sons, Chichester.

    Google Scholar 

  • Mortlock, R. A., Charles, C. D., Froelich, P. N., Zibello, M. A., Saltzman, J., Hays, J. D., and Burckle, L. H., 1991, Evidence for lower productivity in the Antarctic Ocean during the last glaciation, Nature, 351:220.

    Article  Google Scholar 

  • Petit, J. R., Mounier, L., Jouzel, J., Korotkevich, Y. S., Kotlyakov, V. I, and Lorius, C., 1990, Palaeoclimatological and chronological implications of the Vostok core dust record, Nature, 343:56.

    Article  Google Scholar 

  • Raymo, M. E., Ruddiman, W. F., Shackleton, N. J., and Oppo, D. W., 1990, Evolution of Atlantic-Pacific 13C gradients over the last 2.5 m.y., Earth Planet. Sci. Letters, 97:353.

    Article  CAS  Google Scholar 

  • Rind, D., and Chandler, M., 1991, Increased ocean heat transports and warmer climate, J. Geophys. Res., 96:7437.

    Article  Google Scholar 

  • Ruddiman, W. F., and Mclntyre, A., 1981, The north Atlantic Ocean during the last deglaciation, Palaeogeo. Palaeoclim. Palaeoeco., 35:145.

    Article  CAS  Google Scholar 

  • Sarmiento, J. L., Toggweiler, J. R., and Najjar, R., 1988, Ocean carbon-cycle dynamics and atmospheric pCO2, Phil. Trans. R. Soc. Lond. A, 325:3.

    Article  CAS  Google Scholar 

  • Sarnthein, M., Winn, K., and Zahn, R., 1987, Paleoproductivity of oceanic upwelling and the effect on atmospheric CO2 and climatic change during déglaciation times, In: “Abrupt Climatic Change,” W.H. Berger and L.D. Labeyrie, eds., D. Reidel Publ. Co.

    Google Scholar 

  • Sathyendrenath, S., Gouveia, A. D., Shetya, S. R., Ravindran, P., and Platt, T., 1991, Biological control of surface temperature in the Arabian Sea, Nature, 349:54.

    Article  Google Scholar 

  • Shaffer, G., 1989, A model of biogeochemical cycling of phosphorus, nitrogen, oxygen, and sulphur in the ocean: One step toward a global climate model, J. Geophys. Res., 94:1979.

    Article  CAS  Google Scholar 

  • Simonot, J.-Y., Dollinger, E., and Le Treut, H., 1988, Thermodynamic-biological-optical coupling in the oceanic mixed layer, J. Geophys. Res., 93:8193.

    Article  Google Scholar 

  • Slingo, A., 1989, Sensitivity of the earth’s radiation budget to changes in low clouds, Nature, 343:49.

    Article  Google Scholar 

  • Smith, S. V., and Mackenzie, F. T., 1987, The ocean as a net heterotrophic system: Implications from the carbon biogeochemical cycle, Global Biogeochem. Cycles, 1:187.

    Article  CAS  Google Scholar 

  • Suess, E., 1973, Interaction of organic compounds with calcium carbonate — II, Organo-carbonate association in recent sediments, Geochim. Cosmochim. Acta, 37:2435.

    Article  CAS  Google Scholar 

  • Taylor, A. H., Watson, A. J., Ainsworth, M., Robertson, J. E., and Turner, D. R., 1990, A modelling investigation of the role of phytoplankton in the balance of carbon at the surface of the North Atlantic, Global Biogeochem. Cycles, 5:1.

    Google Scholar 

  • Thierstein, H. R., Geitsenauer, K. R., and Molfino, B., 1977, Global synchroneity of late Quaternary coccolith datum levels: Validation by oxygen isotopes, Geology, 5:400.

    Article  CAS  Google Scholar 

  • Tsunogai, S., and Noriki, S., 1991, Paniculate fluxes of carbonate and organic carbon in the ocean, Is the marine biological activity working as a sink of the atmospheric carbon?, Tellus, 43B:256.

    CAS  Google Scholar 

  • Turner, S. M., Malin, G., Liss P. S., Holligan P. M., and Harbour, D. S., 1988, The seasonal variation of dimethylsulfide and dimethylsulfoniopropionate concentrations in nearshore waters, Limnol Oceanogr., 33:364.

    Article  CAS  Google Scholar 

  • Volk, T., 1989, Sensitivity of climate and atmospheric CO2 to deep-ocean and shallow ocean carbonate burial, Nature, 337:637.

    Article  CAS  Google Scholar 

  • Walsh, J. J., 1989, How much shelf production reaches the deep sea?, In: “Productivity of the Ocean: Present and Past,” W.H. Berger, V.S. Smetacek, and G. Wefer, eds., John Wiley & Sons, Chichester.

    Google Scholar 

  • Walsh, J. J., 1991, Importance of the continental margins in the marine biogeochemical cycling of carbon and nitrogen, Nature, 350:53.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Holligan, P.M. (1992). Do Marine Phytoplankton Influence Global Climate?. In: Falkowski, P.G., Woodhead, A.D., Vivirito, K. (eds) Primary Productivity and Biogeochemical Cycles in the Sea. Environmental Science Research, vol 43. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0762-2_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0762-2_25

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0764-6

  • Online ISBN: 978-1-4899-0762-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics