Skip to main content

Part of the book series: Environmental Science Research ((ESRH,volume 43))

Abstract

The export of newly produced organic carbon from the surface ocean and its regeneration at depth account for an estimated three-quarters of the vertical ΣCO2 gradient shown in Fig. 1 (Volk and Hoffert, 1985). If these processes, often referred to as the “biological pump,” had ceased operating during the pre-industrial era, the increase in surface ΣCO2 resulting from upward mixing of high ΣCO2 deep waters would have raised atmospheric pCO2 from 280 ppm to the order of 450 ppm (Sarmiento and Toggweiler, 1984) over a period of centuries. Vertical exchange, which gives an estimated upward flux of 100 GtC/yr (Fig. 2), works continuously to bring about just such a scenario. The biological pump prevents it by stripping out about 10 GtC/yr, so that the water arriving at the surface has a concentration equal to that which is already there.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bacastow, R., and Maier-Reimer, E., 1991, Dissolved organic carbon in modeling oceanic new production, Global Biogeochem. Cycles, 5:71.

    Article  CAS  Google Scholar 

  • Barnola, J. M., Raynaud, D., Kortkevich, Y.S., and Lorius, C., 1987, Vostok ice core provides 160,000-year record of atmospheric CO2, Nature, 329:408.

    Article  CAS  Google Scholar 

  • Boyle, E. A., 1988, The role of vertical fractionation in controlling Late Quaternary atmospheric carbon dioxide, J. Geophys. Res., 93:15701.

    Article  Google Scholar 

  • Brewer, P. G., Broecker, W. S., Jenkins, W. J., Rhines, P.B., Rooth, C.G., Swift, J.H., Takahashi, T., and Williams, R.T., 1983, A climatic freshening of the deep Atlantic north of 50°N over the past 20 years, Science, 222:1237.

    Article  PubMed  CAS  Google Scholar 

  • Broecker, W. S., and Denton, G.H., 1989, The role of ocean-atmosphere reorganizations in glacial cycles, Geochim. Cosmochim. Acta, 53:2465.

    Article  CAS  Google Scholar 

  • Broecker, W. S., and Peng, T.-H., 1982, Tracers in the Sea, Eldigio Press, Palisades, New York.

    Google Scholar 

  • Broecker, W. S., and Peng, T.-H., 1989, The cause of the glacial to interglacial atmospheric CO2 change: A polar alkalinity hypothesis, Global Biogeochem. Cycles, 3:215.

    Article  Google Scholar 

  • Broecker, W. S., and Takahashi, T., 1977, Neutralization of fossil fuel CO2 by marine calcium carbonate, In, “The Fate of Fossil Fuel CO2 in the Oceans,” N.R. Andersen and A. Malahoff, eds., Plenum Publishing Corp., New York.

    Google Scholar 

  • Enting, I. G., and Mansbridge, J. V., 1991, Latitudinal distribution of sources and sinks of CO2: Results of an inversion study, Tellus, 43B:156.

    CAS  Google Scholar 

  • Eppley, R. W., 1989, New Production: History, Methods, Problems, In:, “Productivity of the Ocean: Present and Past”, W. H. Berger, W.S. Smetacek, G. Wefer, and J. Wiley and Sons, eds., New York.

    Google Scholar 

  • Eppley, R. W., and Peterson, B. J., 1979, Particulate organic matter flux and planktonic new production in the deep ocean, Nature, 282:677.

    Article  Google Scholar 

  • Falkowski, P. G., Flagg, C. N., Rowe, G. T., Smith, S. L., Whitledge, T.E., and Wirick, C.D., 1988, The fate of a spring phytoplankton bloom: Export or oxidation?, Cont. Shelf Res., 8:457.

    Article  Google Scholar 

  • Friedli, H., Lötscher, H., Oeschger, H., Siegenthaler, U., and Stauffer, B., 1986, Ice core record of the 13C/12C ratio of atmospheric carbon dioxide in the past two centuries, Nature, 324:237.

    Article  CAS  Google Scholar 

  • Gordon, A. L.,1988, Spatial and temporal variability within the Southern Ocean, In: “Antarctic Ocean and Resources Variability,” D. Sahrhage, ed., Springer-Verlag Berlin Heidelberg.

    Google Scholar 

  • Hardy, J., and Gucinski, H., 1989, Stratospheric ozone depletion: Implications for marine ecosystems, Oceanography, 2:18.

    Article  Google Scholar 

  • Houghton, J. T., Jenkins, G. J., and Ephraums, J. J., 1990, Climate Change, The IPCC Scientific Assessment, Cambridge U. Press.

    Google Scholar 

  • Joos, F., Sarmiento, J. L., and Siegenthaler, U., 1991, Estimates of the effect of Southern Ocean iron fertilization on atmospheric CO2 concentrations, Nature, 349:772.

    Article  CAS  Google Scholar 

  • Keeling, C.D., 1968, Carbon dioxide in surface ocean waters, 4, Global distribution, J. Geophys. Res., 73:4543.

    Article  CAS  Google Scholar 

  • Keeling, C. D., Bacastow, R. B., Carter, A. F., Piper, S. C., Whorf, T. P., Heimann, M., Mook, W. G., and Roeloffzen, H., 1989a, A three dimensional model of atmospheric CO2 transport based on observed winds: 1. Analysis of observational data, In: “Aspects of Climate Variability in the Pacific and the Western Americas,” D.H. Peterson, ed., Geophysical Monograph 55, American Geophysical Union Washington (USA).

    Google Scholar 

  • Keeling, C. D., Piper, S.C., and Heimann, M., 1989b, A three dimensional model of atmospheric CO2 transport based on observed winds: 4. Mean annual gradients and interannual variations, In: “Aspects of Climate Variability in the Pacific and the Western Americas,” D. H. Peterson, ed., Geophysical Monograph 55, American Geophysical Union Washington (USA), pp. 305-363.

    Google Scholar 

  • Knox, F., and McElroy, M., 1984, Changes in atmospheric CO2: Influence of the marine biota at high latitudes, J. Geophys. Res., 89:4629.

    Article  CAS  Google Scholar 

  • Liss, P., and Merlivat, L., 1986, Air-sea exchange rates, introduction and synthesis, In, “The Role of Air-Sea Exchange in Geochemical Cycling,” P. Buat-Menard, ed., D. Reidel Publ. Co., Dordrecht.

    Google Scholar 

  • Maier-Reimer, E., and Hasselmann, K., 1987, Transport and storage of CO2 in the ocean — an inorganic ocean-circulation cycle model, Climate Dyn., 2:63.

    Article  Google Scholar 

  • Najjar, R. G., 1990, Simulations of the phosphorus and oxygen cycles in the world ocean using a general circulation model, Ph.D. Thesis, Princeton University, Princeton, New Jersey.

    Google Scholar 

  • Neftel, A., E. Moor, H. Oeschger, and B. Stauffer, 1985. Evidence from polar ice cores for the increase in atmospheric CO2 in the past two centuries, Nature, 315:4.

    Article  Google Scholar 

  • Peng, T.-H., and Broecker, W. S., 1991, Dynamic limitations on the Antarctic iron fertilization strategy, Nature, 349:227.

    Article  CAS  Google Scholar 

  • Raven, J. A., 1991, Implications of inorganic C utilization: Ecology, evolution and geochemistry, Can. J. Bot., 69:203.

    Article  Google Scholar 

  • Sabine, C. L., and Mackenzie, F. T., 1991, Oceanic sinks for anthropogenic CO2, International journal of Energy Environment Economics, 1:119.

    Google Scholar 

  • Sarmiento, J. L., and Orr, J.C., 1991, Three dimensional ocean model simulations of the impact of Southern Ocean nutrient depletion on atmospheric CO2 and ocean chemistry, Limnol. Oceanogr., in press.

    Google Scholar 

  • Sarmiento, J. L., and Sundquist, E., 1991, River and ocean sediment carbon fluxes play a major role in the oceanic anthropogenic CO2 budget, In preparation.

    Google Scholar 

  • Sarmiento, J. L., Orr, J. C., and Siegenthaler, U., 1991, A perturbation simulation of CO2 uptake in an ocean general circulation model, J. Geophys. Res., in press.

    Google Scholar 

  • Sarmiento, J. L., and Toggweiler, J. R., 1984, A new model for the role of the oceans in determining atmospheric pCO2, Nature, 308:621.

    Article  CAS  Google Scholar 

  • Schluessel, P., Emery, W. J., Grassl, H., and Mammen, T., 1990, On the bulk-skin temperature difference and its impact on satellite remote sensing of sea surface temperature, J. Geophys. Res., 95:13341.

    Article  Google Scholar 

  • Siegenthaler, U., and Wenk, T., 1984, Rapid atmospheric CO2 variations and ocean circulation, Nature, 308:624.

    Article  CAS  Google Scholar 

  • Siegenthaler, U., and Oeschger, H., 1978, Predicting future atmospheric carbon dioxide levels, Science, 199:388.

    Article  PubMed  CAS  Google Scholar 

  • Siegenthaler, U., and Oeschger, H., 1987, Biospheric CO2 emissions during the past 200 years reconstructed by deconvolution of ice core data, Tellus, 39B:140.

    Article  CAS  Google Scholar 

  • Siegenthaler, U., Friedli, H., LÜtscher, H., Moor, E., Neftel, A., Oeschger, H., and Stauffer, B., 1988, Stable-isotope ratios and concentration of CO2 in air from polar ice cores, Annals of Glaciology, 10:1.

    Google Scholar 

  • Smith, R. C., and Baker, K.S., 1979, Penetration of UV-B and biologically effective dose-rates in natural waters, Photochem. Photobiol., 32:367.

    Google Scholar 

  • Stauffer, B., Hofer, H. Oeschger, H., Schwander, J., and Siegenthaler, U., 1984, Atmospheric CO2 concentration during the last glaciation, Annals of Glaciaology, 5:160.

    CAS  Google Scholar 

  • Sugimura, Y., and Suzuki, Y., 1988, A high-temperature catalytic oxidation method for the determination of non-volatile dissolved organic carbon in seawater by direct injection of a liquid sample, Marine Chemistry, 24:105.

    Article  CAS  Google Scholar 

  • Suzuki, Y., Sugimura, Y., and Itoh, T., 1985, A catalytic oxidation method for the determination of total nitrogen dissolved in seawater, Marine Chemistry, 16:83.

    Article  CAS  Google Scholar 

  • Tans, P. P., Fung, I. Y., and Takahashi, T., 1990, Observational constraints on the global atmospheric CO2 budget, Science, 247:1431.

    Article  PubMed  CAS  Google Scholar 

  • Toggweiler, J. R., 1989, Is the downward dissolved organic matter (DOM) flux important in carbon transport?, In: “Productivity of the ocean: Past and Present,” W. H. Berger, V. Smetacek, and D. Wefer, eds., Dahlem Workshop Report, John Wiley and Sons, Chichester.

    Google Scholar 

  • UNESCO, 1991, Report of the Second Session of the Joint JGOFS-CCCO Panel on Carbon Dioxide, April 1991, Paris.

    Google Scholar 

  • Venrick, E. L., McGowan, J. A., Cayan, D. R., and Hayward, T. L., 1987, Climate and chlorophyll a: Long-term trends in the Central North Pacific Ocean, Science, 238:70.

    Article  PubMed  CAS  Google Scholar 

  • Volk, T., and Hoffert, M. I., 1985, Ocean carbon pumps: Analysis of relative strengths and efficiencies in ocean-driven atmospheric CO2 changes, In: “The Carbon Cycle and Atmospheric CO2: Natural Variations Archean to Present,” E. Sundquist and W. S. Broecker, eds., Geophysical Monograph 32, American Geophysical Union.

    Google Scholar 

  • Volk, T., and Liu, Z., 1988, Controls of CO2 sources and sinks in the earth scale surface ocean: Temperature and nutrients, Global Biogeochem. Cycles, 2:73.

    Article  CAS  Google Scholar 

  • Walsh, J. J., 1989, How much shelf production reaches the deep sea?, In: “Productivity of the Ocean: Present and Past,” W. H. Berger, V. S. Smetacek, and G. Wefer, eds., John Wiley & Sons, Chichester.

    Google Scholar 

  • Watson, A. J., Robinson, C., Robinson, J. E., Williams, P. J. leB., and Fasham, M. J. R., 1991, Spatial variability in the sink for atmospheric carbon dioxide in the North Atlantic, Nature, 350:50.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sarmiento, J.L., Siegenthaler, U. (1992). New Production and the Global Carbon Cycle. In: Falkowski, P.G., Woodhead, A.D., Vivirito, K. (eds) Primary Productivity and Biogeochemical Cycles in the Sea. Environmental Science Research, vol 43. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0762-2_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0762-2_18

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0764-6

  • Online ISBN: 978-1-4899-0762-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics