Skip to main content

Abstract

Apoptosis, a mode of cell death that culminates in early recognition (i.e. before membrane rupture) of dying cells by phagocytes, appears to have been highly conserved throughout evolution. Apoptosis can be triggered by a diverse array of both physiological and pathological stimuli all of which seem to engage the same cellular machinery that is responsible for the destruction of the cell from within. Thus, although the proximal signalling events that can result in apoptosis can vary from one stimulus to another, it is likely that these signals all converge at some point on a common set of effector molecules which we will call ‘the executioner’.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Russell, J. H., Masakowski, V., Rucinsky, T., and Philips, G., Mechanisms of immune lysis III. Characterization of the nature and kinetics of the cytotoxic T lymphocyte-induced nuclear lesion in the target, J. Immunol., 128: 2087 (1982).

    PubMed  CAS  Google Scholar 

  2. Duke, R. C., Chervenak, R., and Cohen, J. J., Endogenous endonuclease-induced DNA fragmentation; an early event in cell-mediated cytolysis, Proc. Natl. Acad. Sci. USA 80: 6361 (1983).

    Article  PubMed  CAS  Google Scholar 

  3. Henkart, P. A., Mechanism of lymphocyte-mediated cytotoxicity, Annu. Rev. Immunol. 3: 31 (1985).

    Article  PubMed  CAS  Google Scholar 

  4. Smyth, M. J., and Trapani, J. A., Granzymes: exogenous proteinases that induce target cell apoptosis, Immunol. Today 16: 202 (1995).

    Article  PubMed  CAS  Google Scholar 

  5. Liu, C.- C., Walsh, C. M., and Young, J. D. -E., Perforin: structure and function. Immunol. Today 16: 194 (1995).

    Article  PubMed  Google Scholar 

  6. Duke, R. C., Sellins, K. S., and Cohen, J. J., Cytotoxic lymphocyte-derived lytic granules do not induce DNA fragmentation in target cells, J. Immunol. 141: 2191 (1988).

    PubMed  CAS  Google Scholar 

  7. Kagi, D., Vignaux, F., Ledermann, B., Burki, K., Depraetere, V., Nagata, S., Hengartner, H., and Goldstein, P., Fas and perforin as major mechanisms of T-cell mediated cytotoxixity, Science 265: 528 (1994).

    Article  PubMed  CAS  Google Scholar 

  8. Shi, L., Kraut, R. P., Aebersold, R., and Greenberg, A. H., A natural killer cell granule protein that induces DNA fragmentation and apoptosis, J. Exp. Med. 175:553- (1992).

    Google Scholar 

  9. Shi, L., Kam, C. M., Powers, J. C., Aebersold, R., and Greenberg, A. H., Purification of three cytotoxic lymphocyte granule serine proteases that induce apoptosis through distinct substrate and target cell interactions, J. Exp. Med. 176: 1521 (1992).

    Article  PubMed  CAS  Google Scholar 

  10. Heusel, J. W., Wesselschmidt, R. L., Shresta, S., Russell, J. H., and Ley, T. J., Cytotoxic lymphocytes require granzyme B for the rapid induction of DNA fragmentation and apoptosis in allogenic target cells, Cell 76: 977 (1994).

    Article  PubMed  CAS  Google Scholar 

  11. Shresta, S., Maclvor, D. M., Heusel, J. W., Russell, J. H., and Ley, T. J., Natural killer and lymphokine-activated killer cells require granzyme B for the rapid induction of apoptosis in susceptible target cells, Proc. Natl. Acad. Sci. USA 92: 5679 (1995).

    Article  PubMed  CAS  Google Scholar 

  12. Ebnet, K., Hausmann, M., Lehmann-Grube, F., Mullbacher, A., Kopf, M., Lamers, M., and Simon, M. M., Granzyme A-deficient mice retain potent cell-mediated cytotoxicity, EMBO J. 14: 4230 (1995).

    PubMed  CAS  Google Scholar 

  13. Yuan, J., Shaham, S., Ledoux, S., Ellis, H. M., and Horvitz, H. R. (1993). The C. elegans cell death gene ced-3 encodes a protein similar to mammalian interleukin-1 ß-converting enzyme. Cell 75, 641–652.

    Article  PubMed  CAS  Google Scholar 

  14. Thornberry, N. A., Bull, H. G., Calaycay, J. R., Chapman, K. T., Howard, A. D., Kostura, M. J., Miller, D. K., Molineaux, S. M., Weidner, J. R., Aunins, J., Elliston, K. O., Ayala, J. M., Casano, F. J., Chin, J., Ding, G. J.-F., Egger, L. A., Gaffney, E. P., Limjuco, G., Palyha, O. C., Raju, S. M., Ralando, A. M., Salley, J. P., Yamin, T. T., Lee, T. D., Shivley, J. E., MacCross, M., Mumford, R. A., Schmidt, J. A., and Tocci, M. J., A novel heterodimeric cysteine protease is required for interleukin-113 processing in monocytes, Nature 356: 768 (1992).

    Article  PubMed  CAS  Google Scholar 

  15. Xue, D., and Horvitz, H. R., Inhibition of the Caenorhabditis elegans cell-death protease CED-3 by a CED-3 cleavage site in baculovirus p35 protein, Nature 377: 248 (1995).

    Article  PubMed  CAS  Google Scholar 

  16. Hugunin, M., Quintal, L. J., Mankovich, J. A., and Ghayur, T., Protease activity of in vitro transcribed and translated C. elegans cell death gene (ced-3) product, J. Biol. Chem. 271: 3517 (1996).

    Article  PubMed  CAS  Google Scholar 

  17. Kaufmann, S. H., Induction of endonucleolytic DNA cleavage in human acute myelogenous leukemia cells by etoposide, camptothecin, and other cytotoxic anticancer drugs; a cautionary note, Cancer Res. 49: 5870 (1989).

    PubMed  CAS  Google Scholar 

  18. Kaufmann, S. H., Desnoyers, S., Ottaviano, Y., Davidson, N. E., and Poirier, G. G., Specific proteolytic cleavage of poly(ADP-ribose) polymerase: an early marker of chemotherapy-induced apoptosis, Cancer Res. 53: 3976 (1993).

    PubMed  CAS  Google Scholar 

  19. Sarin, A., Adams, D. H., and Henkart, P. A., Protease inhibitors selectively block T cell receptor-triggered programmed cell death in a murine T cell hybridoma and activated peripheral T cells, J. Exp. Med. 178: 1693 (1993).

    Article  PubMed  CAS  Google Scholar 

  20. Sarin, A., Clerici, M., Blatt, S. P., Hendrix, C. W., Shearer, G. M., and Henkart, P. A., Inhibition of activation-induced programmed cell death and restoration of defective immune responses of HI V+ donors by cysteine proteases, J. Immunol. 153: 862 (1994).

    PubMed  CAS  Google Scholar 

  21. Fearnhead, H. O., Rivett, A. J., Dinsdale, D., and Cohen, G. M., A pre-existing protease is a common effector of thymocyte apoptosis mediated by diverse stimuli, FEBS Lett. 357: 242 (1995).

    Article  PubMed  CAS  Google Scholar 

  22. Ray, C. A., Black, R. A., Kronheim, S. R., Greenstreet, T. A., Sleath, P. R., Salvesen, G. S., and Pickup, D. J., Viral inhibition of inflammation: cowpox virus encodes an inhibitor of the interleukin-13 converting enzyme, Cell 69: 597 (1992).

    Article  PubMed  CAS  Google Scholar 

  23. Gagliardini, V., Fernandez, P-A., Lee, R. K. K., Drexler, H. C. A., Rotello, R. J., Fishman, M. C., and Yuan, J., Prevention of vertebrate neuronal death by the CrmA gene, Science 263: 826 (1994).

    Article  PubMed  CAS  Google Scholar 

  24. Wang, L., Miura, M., Bergeron, L., Zhu, H., and Yuan, J., Ich-1, an Ice/ced-3-related gene, encodes both positive and negative regulators of programmed cell death, Cell 78: 739 (1994).

    Article  PubMed  CAS  Google Scholar 

  25. Enari, M., Hug, H., and Nagata, S., Involvement of an ICE-like protease in Fas-mediated apoptosis., Nature 375: 78 (1995).

    Article  PubMed  CAS  Google Scholar 

  26. Los, M., Van de Craen, M., Penning, L. C., Schenk, H., Westendorp, M., Baeuerle, P. A., Droge, W., Krammer, P. H., Fiers, W., and Schulze-Osthoff, K., Requirement for an ICE/CED-3 protease for Fas/APO-1-mediated apoptosis, Nature 275: 81 (1995).

    Article  Google Scholar 

  27. Miura, M., Friedlander, R. M., and Yuan, J., Tumor necrosis factor-induced apoptosis is mediated by a CrmA-sensitive cell death pathway, Proc. Natl. Acad. Sci. USA 92: 8318 (1995).

    Article  PubMed  CAS  Google Scholar 

  28. Tewari, M., and Dixit, V. M., Fas-and tumor necrosis factor-induced apoptosis is inhibited by the poxvirus CrmA gene product, J. Biol. Chem. 270: 3255 (1995).

    Article  PubMed  CAS  Google Scholar 

  29. Tewari, M., Quan, L. T., O’Rourke, K., Desnoyers, S., Zeng, Z., Beidler, D. R., Poirier, G. G., Salvesen, G. S., and Dixit, V. M., YAMA/CPP32(3, a mammalian homolog of Ced-3, is a CrmA-inhibitable protease that cleaves the death substrate poly(ADP-ribose) polymerase, Cell 81: 801 (1995).

    Article  PubMed  CAS  Google Scholar 

  30. Tewari, M., Beidler, D. R., and Dixit, V. M., CrmA-inhibitable cleavage of the 70-kDa protein component of the U 1 small nuclear ribonucleoprotein during Fas-and Tumor necrosis factor-induced apoptosis, J. Biol. Chem. 270: 18738 (1995).

    Article  PubMed  CAS  Google Scholar 

  31. Tewari, M., Telford, W. G., Miller, R. A., and Dixit, V. M., CrmA, a poxvirus-encoded serpin, inhibits cytotoxic T-lymphocyte-mediated apoptosis, J. Biol. Chem. 270: 3255 (1995).

    Article  PubMed  CAS  Google Scholar 

  32. Bump, N. J., Hackett, M., Hugunin, M., Seshagiri, S., Brady, K., Chen, P., Ferenz, C., Franklin, S., Ghayur, T., Li, P., Licari, P., Mankovich, J., Shi, L., Greenberg, A. H., Miller, L. K., and Wong, W. W., Inhibition of ICE family proteases by baculovirus anti-apoptotic protein p35, Science 269: 1885 (1995).

    Article  PubMed  CAS  Google Scholar 

  33. Lazebnik, Y. A., Kaufmann, S. H., Desnoyers, S., Poirier, G. G., and Earnshaw, W. C., Cleavage of poly(ADP-ribose) polymerase by a proteinase with properties like ICE, Nature 371: 346 (1994).

    Article  PubMed  CAS  Google Scholar 

  34. Nicholson, D. W., Ali, A., Thornberry, N. A., Vaillancourt, J. P., Ding, C. K., Gallant, M., Gareau, Y., Griffin, P. R., Labelle, M., Lazebnik, Y. A., Munday, N. A., Raju, S. M., Smulson, M. E., Yamin, T.-T., Yu, V. L., and Miller, D. K., Identification and inhibition of the ICE/CED-3 protease necessary for mammalian apoptosis, Nature 376: 37 (1995).

    Article  PubMed  CAS  Google Scholar 

  35. Schlegel, J., Peters, I., Orrenius, S., Miller, D. K., Thornberry, N. A., Yamin, T.-T., and Nicholson, D. W., CPP32/apopain is a key interleukin-113 converting enzyme-like protease involved in fas-mediated apoptosis, J. Biol. Chem. 271: 1841 (1996).

    Article  PubMed  CAS  Google Scholar 

  36. Pronk, G. J., Ramer, K., Amiri, P., and Williams, L. T., Requirement of an ICE-like protease for induction of apoptosis and ceramide generation by reaper, Science 271: 808 (1996).

    Article  PubMed  CAS  Google Scholar 

  37. Martin, S. J., and Green, D. R., Protease activation during apoptosis: death by a thousand cuts?, Cell 82: 349 (1995).

    Article  PubMed  CAS  Google Scholar 

  38. Neamati, N., Fernandez, A., Wright, S., Kiefer, J., and McConkey, D. J., Degradation of lamin B1 precedes oligonucleosomal DNA fragmentation in apoptotic thymocytes and isolated thymocyte nuclei, J. Immunol. 154: 3788 (1995).

    PubMed  CAS  Google Scholar 

  39. Lazebnik, Y. A., Takahashi, A., Moir, R. D., Goldman, R. D., Poirier, G. G., Kaufmann, S. H., and Earnshaw, W. C., Studies of the lamin proteinase reveal multiple parallel biochemical pathways during apoptotic execution, Proc. Natl. Acad. Sci. USA 92: 9042 (1995).

    Article  PubMed  CAS  Google Scholar 

  40. Martin, S. J., O’Brien, G. A., Nishioka, W. K., McGahon, A. J., Saido, T., and Green, D. R., Proteolysis of Fodrin (nonerythroid spectrin) during apoptosis, J. Biol. Chem. 270: 6425 (1995).

    Article  PubMed  CAS  Google Scholar 

  41. Wright, S. C., Wei, Q. S., Zhong, J., Zheng, H., Kinder, D. H., and Larrick, J. W., Purification of a 24 kD protease from apoptotic tumor cells that activates DNA fragmentation, J. Exp. Med. 180: 2113 (1994).

    Article  PubMed  CAS  Google Scholar 

  42. Chow, S. C., Weis, M., Kass, G. E. N., Holmstrom, T. H., Eriksson, J. E., and Orrenius, S., Involvement of multiple proteases during Fas-mediated apoptosis in T lymphocytes, FEBS Lett. 364: 134 (1995).

    Article  PubMed  CAS  Google Scholar 

  43. Enari, M., Hase, A., and Nagata, S., Apoptosis by a cytosolic extract from Fas-activated cells, EMBO J. 14: 5201 (1995).

    PubMed  CAS  Google Scholar 

  44. Martin, S. J., Newmeyer, D. D., Mathias, S., Farschon, D., Wang, H.-G., Reed, J. C., Kolesnick, R. N., and Green, D. R., Cell-free reconstitution of Fas-, UV radiation-and ceramide-induced apoptosis, EMBO J. 14: 5191 (1995).

    PubMed  CAS  Google Scholar 

  45. Martin, S. J., Amarante-Mendes, G. P., Shi, L., Chuang, T.-H., Casiano, C. A., O’Brien, G. A., Fitzgerald, P., Tan, E. M., Bokoch, G. M., Greenberg, A. H., and Green, D. R., The cytotoxic cell protease granzyme B initiates apoptosis in a cell-free system by proteolytic processing and activation of the ICE/CED-3 family protease, CPP32, via a novel two-step mechanism, EMBO J. In Press.

    Google Scholar 

  46. Darmon, A. J., Ehrman, N., Caputo, A., Fujinaga, J., and Bleackley, R. C., The cytotoxic T cell proteinase granzyme B does not activate Interleukin-1 ß-converting enzyme, J. Biol. Chem. 269: 32043 (1994).

    PubMed  CAS  Google Scholar 

  47. Darmon, A. J., Nicholson, D. W., and Bleackley, R. C., Activation of the apoptotic protease CPP32 by cytotoxic T-cell-derived granzyme B, Nature 377: 446 (1995).

    Article  PubMed  CAS  Google Scholar 

  48. Faucheu, C., Diu, A., Chan, A. W. E., Blanchet, A.-M., Miossec, C., Herve, F., Collard-Dutilleul, V., Gu, Y., Aldape, R. A., Lippke, J. A., Rocher, C., Su, M. S.-S., Livingston, D. J., Hercend, T., and Lalanne, J.-L., A novel human protease similar to the interleukin-113 converting enzyme induces apoptosis in transfected cells, EMBO J. 14: 1914 (1995).

    PubMed  CAS  Google Scholar 

  49. Kamens, J., Paskind, M., Hugunin, M., Talanian, R. V., Allen, H., Banach, D., Bump, N., Hackett, M., Johnston, C. G., Li, P., Mankovich, J. A., Terranova, M., and Ghayur, T., Identification and characterization of Ich-2, a novel member of the interleukin-113-converting enzyme family of cysteine proteases, J. Biol. Chem. 270: 15250 (1995).

    Article  PubMed  CAS  Google Scholar 

  50. Munday, N. A., Vaillancourt, J. P., Ali, A., Casano, F. J., Miller, D. K., Molineaux, S. M., Yamin, T. T., Yu, V. L. and Nicholson, D. W., Molecular cloning and pro-apoptotic activity of ICErelII and ICErellll members of the ICE/CED-3 family of cysteine proteases, J. Biol. Chem. 270: 15870 (1995).

    Article  PubMed  CAS  Google Scholar 

  51. Fernandes-Alnemri, T., Litwack, G., and Alnemri, E. S., Mch2, a new member of the apoptotic Ced-3/Ice-like protease gene family. Cancer Res. 55: 2737 (1995).

    PubMed  CAS  Google Scholar 

  52. Fernandes-Alnemri, T., Litwack, G., and Alnemri, E. S., CPP32, a novel apoptotic protein with homology to Caenorhabditis elegans cell death protein Ced-3 and mammalian interleukin-tß-converting enzyme, J. Biol. Chem. 269: 30761 (1994).

    PubMed  CAS  Google Scholar 

  53. Kumar, S., Kinoshita, M., Noda, M., Copeland, N. G., and Jenkins, N. A., Induction of apoptosis by the mouse Nedd2 gene, which encodes a protein similar to the product of the Caenorhabditis elegans cell death gene ced-3 and the mammalian IL-lß converting enzyme, Genes and Develop. 8: 1613 (1994).

    Article  CAS  Google Scholar 

  54. Fernandes-Alnemri, T., Takahashi, A., Armstrong, R., Krebs, J., Fritz, L., Tomaselli, K. J., Wang, L., Yu, Z., Croce, C. M., Earnshaw, W. C., Litwack, G., and Alnemri, E. S., Mch, 3 a novel human apoptotic cysteine protease highly related to CPP32, Cancer Res. 55: 6045 (1995).

    PubMed  CAS  Google Scholar 

  55. Duan, H., Chinnaiyan, A. M., Hudson, P. L., Wing, J. P., He, W.-W., and Dixit, V. M., ICE-LAP3, a novel mammalian homologue of the Caenorhabditis elegans cell death protein Ced-3 is activated during Fas-and tumor necrosis factor-induced apoptosis, J. Biol. Chem. 271: 1621 (1996).

    Article  PubMed  CAS  Google Scholar 

  56. Lippke, J. A., Gu, Y., Sarnecki, C., Caron, P. R., and Su, M. S.-S., Identification and characterization of CPP32/Mch2 homolog 1, a novel cysteine protease similar to CPP32, J. Biol. Chem. 271: 1825 (1996).

    Article  PubMed  CAS  Google Scholar 

  57. Kayalar, C., Ord, T., Testa, M. P., Zhong, L.-T., and Bredesen, D. E., Cleavage of actin by ICE to reverse DNAse I inhibition, Proc. Natl. Acad. Sci. USA. 271: 1825 (1996).

    Google Scholar 

  58. Browne, S. J., Williams, A. C., Hague, A., Butt, A. J., and Paraskeva, C., Loss of APC protein expressed in human colonic epithelial cells and the appearance of a specific low-molecular weight form is associated with apoptosis in vitro, Int. J. Cancer 59: 56 (1994).

    Article  PubMed  CAS  Google Scholar 

  59. Voelkel-Johnson, C., Entingh, A. J., Wold, W. S. M., Gooding, L. R., and Laster, S. M., Activation of intracellular proteases is an early event in TNF-induced apoptosis, J. Immunol. 154: 1707 (1995).

    PubMed  CAS  Google Scholar 

  60. Casciola-Rosen, L. A., Anhalt, G. J., and Rosen, A., DNA-dependent protein kinase is one of a subset of autoantigens specifically cleaved early during apoptosis, J. Exp. Med. 182: 1625 (1995).

    Article  PubMed  CAS  Google Scholar 

  61. Brancolini, C., Bendetti, M., and Schneider, C., Microfilament reorganization during apoptosis: the role of Gast, a possible substrate for ICE-like proteases, EMBO J. 14: 5179 (1995).

    PubMed  CAS  Google Scholar 

  62. Weaver, V. M., Carson, C. E., Walker, P. R., Chaly, N., Lach, B., Raymond, Y., Brown, D. L., and Sikorska, M., Degradation of nuclear matrix and DNA cleavage in apoptotic thymocytes, J. Cell Sci. 109: 45 (1996).

    PubMed  CAS  Google Scholar 

  63. Hsu, H.-L., and Yeh, N.-H., Dynamic changes of NuMA during the cell cycle and possible appearance of a truncated form of NuMA during apoptosis, J. Cell Sci. 109: 277 (1996).

    PubMed  CAS  Google Scholar 

  64. Jensen, P. H., Cressey, L. I., Gjertsen, B. T., Madsen, P., Mellgren, G., Hokland, P., Gliemann, J., Doskeland, S. O., Lanotte, M., and Vintermyr, O. K., Cleaved intracellular plasminogen activator inhibitor 2 in human myeloleukemia cells is a marker of apoptosis, Br. J. Cancer 70: 834 (1994).

    Article  PubMed  CAS  Google Scholar 

  65. Emoto, Y., Manome, Y., Meinhardt, G., Kisaki, H., Kharbanda, S., Robertson, M., Ghayur, T., Wong, W. W., Kamen, R., Weichselbaum, R., and Kufe, D., Proteolytic activation of protein kinase C 6 by an ICE-like protease in apoptotic cells, EMBO J. 14: 6148 (1995).

    PubMed  CAS  Google Scholar 

  66. Wang, X., Pai, J., Weidenfeld, E. A., Medina, J. C., Slaughter, C. A., Goldstein, J. L., and Brown, M. S., Purification of an interleukin-113 converting enzyme-related cysteine proteases that cleaves sterol regulatory element-binding proteins between the leucine zipper and transmembrane domains, J. Biol. Chem. 270: 18044 (1995).

    Article  PubMed  CAS  Google Scholar 

  67. Casciola-Rosen, L. A., Miller, D. K., Anhalt, G. J., and Rosen, A., Specific cleavage of the 70-kDa protein component of the U I small nuclear ribonucleoprotein is a characteristic biochemical feature of apoptotic cell death, J. Biol. Chem. 269: 30–757 (1994).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media New York

About this chapter

Cite this chapter

Martin, S.J., Amarante-Mendes, G.P., Green, D.R. (1996). Cytotoxic Lymphocyte Killing Enters the Ice Age. In: Gupta, S., Cohen, J.J. (eds) Mechanisms of Lymphocyte Activation and Immune Regulation VI. Advances in Experimental Medicine and Biology, vol 406. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0274-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0274-0_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0276-4

  • Online ISBN: 978-1-4899-0274-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics