Skip to main content

Abstract

To gain a full understanding of stress-inducible processes in plants, especially at the cellular level, it is often of major benefit to develop simple model plants for study. This is especially true if one is interested in how plants tolerate extremely stressful conditions that impact directly on the protoplasm of individual cells, e.g., desiccation. In addition, many crop species have little capacity for abiotic stress tolerance and thus the genetic information necessary for expanding their tolerance may not be present or exploitable. Model plants that exhibit stress-tolerant traits are useful tools for elucidating the processes involved in tolerance and may provide unique genetic material that can impact breeding programs for improved crop stress management.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alpert, P., and Oechel, W. C., 1987, Comparative patterns of net photosynthesis in an assemblage of mosses with contrasting microdistributions, Am. J. Bot. 741: 1787–1796.

    Article  Google Scholar 

  • Bag, J., 1988, Messenger ribonucleoprotein complexes and translational control of gene expression, Mol. Genet. (Life Sci. Adv.) 7: 117–123.

    Google Scholar 

  • Bartels, D., and Nelson, D., 1994, Approaches to improve stress tolerance using molecular genetics, Plant Cell Environ. 17: 659–667.

    Article  CAS  Google Scholar 

  • Bartels, D., Schneider, K., Terstappen, G., Piatkowski, D., and Salamini, F., 1990, Molecular cloning of abscisic acid-modulated genes which are induced during desiccation of the resurrection plant Craterostigma plantagineum, Planta 181: 27–34.

    Article  CAS  Google Scholar 

  • Bartels, D., Hanke, C., Schneider, K., Michel, D., and Salamini, F., 1992, A desiccation-related Elip-like gene from the resurrection plant Craterostigma plantagineum is regulated by light and ABA, EMBO J. 11: 277–2778.

    Google Scholar 

  • Bartels, D., Alexander, R., Schneider, K., Elster, R., Velasco, R., Alamillo, J., Bianchi, G., Nelson, D., and Salamini, F., 1993, Desiccation-related gene products analyzed in a resurrection plant and in barley embryos, in: Plant Responses to Cellular Dehydration during Environmental Stress ( T. J. Close and E. A. Bray, eds.), American Society of Plant Physiologists, Rockville, MD, pp. 119–127.

    Google Scholar 

  • Bewley, J. D., 1972, The conservation of polyribosomes in the moss Tortula ruralis during total desiccation, J. Exp. Bot. 23: 692–698.

    Article  CAS  Google Scholar 

  • Bewley, J. D., 1973a, Polyribosomes conserved during desiccation of the moss Tortula ruralis are active, Plant Physiol. 51: 285–288.

    Article  PubMed  CAS  Google Scholar 

  • Bewley, J. D., 1973b, Desiccation and protein synthesis in the moss Tortula ruralis, Can. J. Bot. 51: 203–206.

    Article  CAS  Google Scholar 

  • Bewley, J. D., 1979, Physiological aspects of desiccation-tolerance, Annu. Rev. Plant Physiol. 30: 195–238.

    Google Scholar 

  • Bewley, J. D., and Krochko, J. E., 1982, Desiccation-tolerance, in: Encyclopedia of Plant Physiology (O. L. Lange, P. S. Nobel, C. B. Osmond, and H. Ziegler, eds.), Springer-Verlag, Berlin, Vol. 12B, pp. 325–378.

    Google Scholar 

  • Bewley, J. D., and Oliver, M. J., 1992, Desiccation-tolerance in vegetative plant tissues and seeds: Protein synthesis in relation to desiccation and a potential role for protection and repair mechanisms, in: Water and Life: A Comparative Analysis of Water Relationships at the Organismic, Cell, ’for and Molecular Levels ( C. B. Osmond and G. Somero, eds.), Springer-Verlag, Berlin, pp. 141–160.

    Google Scholar 

  • Bewley, J. D., and Pacey, J., 1978, Desiccation-induced ultrastructural changes in drought-sensitive and drought-tolerant plants, in: Dry Biological Systems (J. H. Crowe and J. S. Clegg, eds.), Academic Press, New York, pp. 53–73.

    Google Scholar 

  • Bewley, J. D., Halmer, P., Krochko, J. E., and Winner. W. E., 1978, Metabolism of a drought-tolerant and a drought-sensitive moss: Respiration, ATP synthesis and carbohydrate status, in: Dry Biological Systems ( J. H. Crowe and J. S. Clegg, eds.), Academic Press, New York, pp. 185–203.

    Google Scholar 

  • Bewley, J. D., Reynolds, T. L., and Oliver, M. J., 1993, Evolving Strategies in the adaptation to desiccation, in: Plant Responses to Cellular Dehydration during Environmental Stress ( T. J. Close and E. A. Bray, eds.), American Society of Plant Physiologists, Rockville, MD, pp. 193–201.

    Google Scholar 

  • Bliss, R. D., Platt-Aloia, K. A., and Thomson, W. W., 1984, Changes in plasmalemma organization in cowpea radicle during imbibition in water and NaC1 solutions, Plant Cell Environ. 7: 601–606.

    Google Scholar 

  • Bopp, M., and Werner, 0., 1993, Abscisic acid and desiccation-tolerance in mosses, Bot. Acta. 106: 103–106.

    CAS  Google Scholar 

  • Burke, M. J., 1986, The glassy state and survival of anhydrous biological systems, in: Membranes, Metabolism and Dry Organisms ( A. C. Leopold, ed.), Cornell University Press, Ithaca, NY, pp. 358–363.

    Google Scholar 

  • Close, T. J., Fenton, R. D., Yang, A., Asghar, R., DeMason, D. A., Crone, D. E., Meyer, N. C., and Moonan, F., 1993, Dehydrin: The protein, in: Plant Responses to Cellular Dehydration during Environmental Stress ( T. J. Close and E. A. Bray, eds.), American Society of Plant Physiologists, Rockville, MD, pp. 104–118.

    Google Scholar 

  • Crane, P. R., 1990, The phylogenetic context of microsporogenesis, in: Microspores: Evolution and Ontogeny ( S. Blackmore and R. B. Knox, eds.), Academic Press, San Diego, pp. 11–41.

    Google Scholar 

  • Crowe, J. H., Hoekstra, F. A., and Crowe, L. M., 1992, Anhydrobiosis, Annu. Rev. Physiol. 54: 579–599.

    Article  CAS  Google Scholar 

  • Davidson, E. H., 1986, Gene Activity in Early Development, Academic Press, New York.

    Google Scholar 

  • Dhindsa, R., 1987, Glutathione status and protein synthesis during drought and subsequent rehydration of Tortula ruralis, Plant Physiol. 83: 816–819.

    CAS  Google Scholar 

  • Donoghue, M. J., 1994, Progress and prospects in reconstructing plant phylogeny, Ann. Mo. Bot. Gard. 81: 405–418.

    Article  Google Scholar 

  • Dure, L., III, 1993, A repeating 11-mer amino acid motif and plant desiccation, Plant J. 3: 363–369.

    Article  PubMed  CAS  Google Scholar 

  • Gaff, D., 1980, Protoplasmic tolerance to extreme water stress, in: Adaptation of Plants to Water and High Temperature Stress ( N. C. Turner and P. J. Kramer, eds.), Wiley-Interscience, New York, pp. 207–230.

    Google Scholar 

  • Gaff, D., 1989, Responses of desiccation-tolerant “resurrection” plants to water stress, in: Structural and Functional Responses to Environmental Stresses ( K. H. Krebb, H. Richter, and T. M. Hinkley, eds.), SPB Academic, The Hague, pp. 255–268.

    Google Scholar 

  • Gaff, D., Bartels, D., Gaff, J. L., and Schneider, K., 1992, Gene expression at low RWC in two hardy tropical grasses, Trans. Mnin Js. Soc. Plant Physiol. 3: 238–240.

    Google Scholar 

  • Gwozdz, E. A., and Bewley, J. D., 1975, Plant desiccation and protein synthesis: An in vitro system from dry and hydrated mosses using endogenous and synthetic messenger RNA, Plant Physiol. 55: 340–345.

    Article  PubMed  CAS  Google Scholar 

  • Gwozdz, E. A., Bewley, J. D., and Tucker, E. B., 1974, Studies on protein synthesis in Tortula ruralis: Polyribosome reformation following desiccation, J. Exp. Bot. 25: 599–608.

    Article  CAS  Google Scholar 

  • Henckel, R. A., Statrova, N. A., and Shaposnikova, S. V., 1977, Protein synthesis in poikiloxerophyte and wheat embryos during the initial period of swelling, Soy. Plant Physiol. 14: 754–762.

    Google Scholar 

  • Knight, C. D., Sehgal, A., Atwal, K., Wallace, J. C., Cove, D. J., Coates, D., Quatrano, R. S., Bahadur, S., Stockley, P. G., and Cuming, A. C., 1995, Molecular responses to abscisic acid and stress are conserved between moss and cereals, Plant Cell 7: 499–506.

    PubMed  CAS  Google Scholar 

  • Krochko, J. E., Bewley, J. D., and Pacey, J., 1978, The effects of rapid and very slow speeds of drying on the ultrastructure and metabolism of the desiccation-sensitive moss Cratoneuron fiiicinum, J. Exp. Bot. 29: 905–917.

    Article  Google Scholar 

  • Krochko, J. E., Winner, W. E., and Bewley, J. D., 1979, Respiration in relation to adenosine triphosphate content during desiccation and rehydration of-a desiccation-tolerant and a desiccation-intolerant moss, Plant Physiol. 64: 13–17.

    Article  PubMed  CAS  Google Scholar 

  • Leopold, A. C., Bruni, F., and Williams, R. J., 1992, Water in dry organisms, in: Water and Life. Comparative Analysis of Water Relationships at the Organismic, Cellular and Molecular Levels ( G. N. Somero, C. B. Osmond, and C. L. Bolls, eds.), Springer-Verlag, Berlin, pp. 161–169.

    Google Scholar 

  • McKersie, B., 1991, The role of oxygen free radicals in mediating freezing and desiccation stress in plants, in: Active Oxygen and Oxidative Stress and Plant Metabolism ( E. Pell and K. Staffen, eds.), American Society of Plant Physiologists, Rockville, MD, pp. 107–118.

    Google Scholar 

  • Michel, D., Furini, A., Salamini, F., and Bartels, D., 1994, Structure and regulation of an ABA- and desiccation-responsive gene from the resurrection plant Craterostigma plantagineum, Plant Moi. Biol. 24: 549–560.

    Article  CAS  Google Scholar 

  • Minich, W. B., and Ovchinnikov, L. P., 1992, Role of cytoplasmic mRNP proteins in translation, Biochimie. 74: 477–483.

    Article  PubMed  CAS  Google Scholar 

  • Mishler, B. D., Lewis, L. A., Buchheim, M. A., Renzaglia, K. S., Garbary, D. J., Delwiche, C. F., Zechman, F. W., Kantz, T. S., and Chapman, R. L., 1994, Phylogenetic relationships of the “green algae” and “bryophytes,”Ann. Mo. Bot. Gard. 81: 451–483.

    Article  Google Scholar 

  • Moore, C. J., Luft, S. E., and Hallam, N. D., 1982, Fine structure and physiology of the desiccation-tolerant mosses, Barbula torquata and Triquetrella papillata (Mook. F. and Wils.) Broth., during desiccation and rehydration, Bot. Gaz. 143: 358–367.

    Article  Google Scholar 

  • Nelson, D., Salamini, F., and Bartels, D., 1994, Abscisic acid promotes novel DNA-binding activity to a desiccation-related promoter of Craterostigma plantagineum, Plant J. 5: 451–458.

    Article  PubMed  CAS  Google Scholar 

  • Noailles, M. C., 1978, Etude ultrastructurale de la recuperation hydrique apres une periode de secheresse chez une Hypnobryale: Pleurozium schreberi (Willd.) Mitt, Ann. Sci. Nat. Bot. 19: 249–265.

    Google Scholar 

  • Oliver, M. J., 1991, Influence of protoplasmic water loss on the control of protein synthesis in the desiccation-tolerant moss Tortula ruraiis: Ramifications for a repair-based mechanism of desiccation-tolerance, Plant Physiol. 97: 1501–1511.

    Article  PubMed  CAS  Google Scholar 

  • Oliver, M. J., 1996, Desiccation-tolerance in vegetative plant cells, Physiol. Plant. 97: 779–787.

    Article  CAS  Google Scholar 

  • Oliver, M. J., and Bewley, J. D., 1984a, Desiccation and ultrastructure in bryophytes, Adv. BryoL 2: 91–131.

    Google Scholar 

  • Oliver, M. J., and Bewley, J. D., 1984b, Plant desiccation and protein synthesis: IV. RNA synthesis, stability, and recruitment of RNA into protein synthesis upon rehydration of the desiccation-tolerant moss Tortola ruralis, Plant Physiol. 74: 21–25.

    Article  PubMed  CAS  Google Scholar 

  • Oliver, M. J., and Bewley, J. D., 1984c, Plant desiccation and protein synthesis: V. Stability of poly(A)- and poly(A)+ RNA during desiccation and their synthesis upon rehydration in the desiccation-tolerant moss Tortula ruralis and the intolerant moss Cratoneuron fiiicinum, Plant Physiol. 74: 917–922.

    Article  PubMed  CAS  Google Scholar 

  • Oliver, M. J., and Bewley, J. D., 1984d, Plant desiccation and protein synthesis: VI. Changes in protein synthesis elicited by desiccation of the moss Tortula ruralis are effected at the translational level, Plant Physiol. 74: 923–927.

    Article  PubMed  CAS  Google Scholar 

  • Oliver, M. J., and Bewley, J. D., 1997, Desiccation-tolerance of plant tissues: A mechanistic overview, Hortic. Rev. 18: 171–214.

    Google Scholar 

  • Oliver, M. J., Armstrong, J., and Bewley, J. D., 1993, Desiccation and the control of expression of ß-phaseolin in transgenic tobacco seeds, J. Exp. Bot. 44: 1239–1244.

    Article  CAS  Google Scholar 

  • Piatkowski, D., Schneider, K., Salamini, F., and Bartels, D., 1990, Characterization of five abscisic acid-responsive cDNA clones from the desiccation-tolerant plant Craterostigma plantagineum and their relationship to other water-stress genes, Plant Physiol. 94: 1682–1688.

    Article  PubMed  CAS  Google Scholar 

  • Platt, K. A., Oliver, M. J., and Thomson, W. W., 1994, Membranes and organelles of dehydrated Selaginella arid Tortula retain their normal configuration and structural integrity: Freeze fracture evidence, Protoplasma 178: 57–65.

    Article  Google Scholar 

  • Platt-Aloia, K. A., Lord, E. M., Demason, D. A., and Thomson, W. W., 1986, Freeze- fracture observations on membranes of dry and hydrated pollen from Collomia, Phoenix and Zea, Planta 168: 291–298.

    Article  Google Scholar 

  • Pramanik, S. K., Krochko, J. E., and Bewley, J. D., 1992, Distribution of cytosolic mRNAs between polysomal and ribonucleoprotein complex fractions in alfalfa embryos, Plant Physiol. 99: 1590–1596.

    CAS  Google Scholar 

  • Reynolds, T. L., and Bewley, J. D., 1993, Characterization of protein synthetic changes in a desiccation-tolerant fern, Polypodium uirginianum. Comparison of the effects of drying, rehydration and abscisic acid, J. Exp. Bot. 44: 921–928.

    Article  CAS  Google Scholar 

  • Sachs, M., and Ho, T. H. D., 1986, Alteration of gene expression during environmental stress, Annu. Rev. Plant Physiol. 37: 363–376.

    Article  CAS  Google Scholar 

  • Schonbeck, M. W., and Bewley, J. D., 1981, Responses of the moss Tortula ruralis to desiccation treatments. II. Variations in desiccation tolerance, Can. J. Bot. 59: 2707–2712.

    Article  Google Scholar 

  • Scott, H. B., II, and Oliver, M. J., 1994, Accumulation and polysomal recruitment of transcripts in response to desiccation and rehydration of the moss Tortula ruralis, J. Exp. Bot. 45: 577–583.

    Article  Google Scholar 

  • Seel, W. E., Hendry, G. A. F., and Lee, J. E., 1992a, Effects of desiccation on some activated oxygen processing enzymes and anti-oxidants in mosses, J. Exp. Bot. 43: 1031–1037.

    Article  CAS  Google Scholar 

  • Seel, W. E., Hendry, G. A. F., and Lee, J. E., 1992b, The combined effects of desiccation and irradiance on mosses from xeric and hydric habitats, J. Exp. Bot. 43: 1023–1030.

    Article  Google Scholar 

  • Sen Gupta, A., 1977, Non-auto-trophic CO2 fixation by mosses, M.Sc. thesis, University of Calgary.

    Google Scholar 

  • Siebert, G., Loris, J., Zollner, B., Frenzel, B., and Zahn, R. K., 1976, The conservation of poly (A) containing RNA during the dormant state of the moss Polytrichum commune, Nucleic Acids Res. 3: 1997–2003.

    Article  Google Scholar 

  • Silverstein, E., 1973, Subribosomal ribonucleoprotein particles of developing wheat embryo, Biochemistry 12: 951–958.

    Article  PubMed  CAS  Google Scholar 

  • Simon, E. W., 1978, Membranes in dry and imbibing seeds, in: Dry Biological Systems ( J. H. Crowe and J. S. Clegg, eds.), Academic Press, New York, pp. 205–224.

    Google Scholar 

  • Simon, E. W., and Mills, L. K., 1983, Imbibition, leakage, and membranes, in: Mobilization of Reserves in Germination ( C. Nozzolillo, P. J. Lee, and F. A. Loewus, eds.), Plenum Press, New York, pp. 9–27.

    Chapter  Google Scholar 

  • Smirnoff, N., 1993, The role of active oxygen in the response of plants to water deficit and desiccation, Tansley Review No 52, New Phytol. 125: 27–58.

    Article  CAS  Google Scholar 

  • Smith, I. K., Polle, A., and Rennenberg, H., 1990. Glutathione, in: Stress Responses in Plants: Adaptation and Acclimation Mechanisms (R. G. Alscher and J. R. Cummings, eds. ), Wiley-Liss New York, pp. 201–215.

    Google Scholar 

  • Spirin, A. S., Belitsina, N. V., and Ajtkhozhin, M. A., 1964, Messenger RNA in early embryogenesis, Zh. Obshch. Biol. 25: 321–338.

    PubMed  CAS  Google Scholar 

  • Stewart, G. R., and Lee, J. A., 1972, Desiccation-injury in mosses. II. The effect of moisture stress on enzyme levels, New Phytol. 71: 461–466.

    Article  CAS  Google Scholar 

  • Stewart, R. R. C., and Bewley, J. D., 1982, Stability and synthesis of phospholipids during desiccation and rehydration of a desiccation-tolerant and a desiccation-intolerant moss, Plant Physiol. 69: 724–727.

    Article  PubMed  CAS  Google Scholar 

  • Swanson, E. S., Anderson, N. H., Gellerman, J. L., and Schlenk, H., 1976, Ultrastructure and lipid composition of mosses, Bryologist, 79: 339–349.

    Article  CAS  Google Scholar 

  • Thomson, W. W., and Platt-Aloia, K. A., 1982, Ultrastructure and membrane permeability in cowpea seeds, Plant Cell Environ. 5: 367–373.

    Article  Google Scholar 

  • Tucker, E. B., and Bewley, J. D., 1976, Plant desiccation and protein synthesis. III.Stability of cytoplasmic RNA during dehydration and its synthesis on re-hydration of the moss Tortula ruralis, Plant Physiol. 57: 564–567.

    Article  PubMed  CAS  Google Scholar 

  • Tucker, E. B., Costerton, J. W., and Bewley, J. D., 1975, The ultrastructure of the moss Tortula ruralis on recovery from desiccation, Can. J. Bot. 53: 94–101.

    Article  Google Scholar 

  • Werner, O., Espin, R. M. R., Bopp, M., and Atzorn, R., 1991, Abscisic-acid-induced drought tolerance in Funaria hygrometrica Hedw., Planta 186: 99–103.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Oliver, M.J., Wood, A.J. (1997). Desiccation Tolerance in Mosses. In: Koval, T.M. (eds) Stress-Inducible Processes in Higher Eukaryotic Cells. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0069-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0069-2_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0071-5

  • Online ISBN: 978-1-4899-0069-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics