Skip to main content

Selective Expression of Human Fascin (p55) by Dendritic Leukocytes

  • Chapter
Dendritic Cells in Fundamental and Clinical Immunology

Abstract

Dendritic cells are a heterogeneous group of antigen presenting leukocytes with distinctive cell morphology and function. The highly developed capacity of dendritic cells to present antigens and the way in which cells of variable maturity differ in their ability to take up, process, and present antigens have been well characterized (1–6). Dendritic cells are derived from cells in bone marrow in vivo and are released to peripheral blood and tissues (7,8), but dendritic cells can be generated in vitro from CD34 positive precursor cells (9–13). The position of dendritic cells in the hierarchy of hematopoietic cells remains to be established but the study of human blood dendritic and progenitor dendritic cells has been restricted by the lack of selective markers for this specialized subset of antigen presenting cells. Recently, an evolutionary conserved human actin-binding protein, fascin (p55), was demonstrated to be highly expressed by circulating blood dendritic cells (14). In the course of studying the development, migration and tissues distribution of dendritic cells we took advantage of a novel monoclonal antibody against p55 to examine the differential expression of p55 in immature, circulating, and tissue dendritic cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Romani N, Lenz A, Glassel H, et al. Cultured human Langerhans cells resemble lymphoid dendritic cells in phenotype and function. Journal Investigative Dermatology 1989; 93 (5): 600–609.

    Article  CAS  Google Scholar 

  2. Schuler G, Steinman R. Murine epidermal Langerhans cells mature into potent immunostimulatory dendritic cells in vitro. Journal Experimental Medicine 1985; 161: 526–546.

    Article  CAS  Google Scholar 

  3. Reis e Sousa C, Stahl PD, Austyn JM. Phagocytosis of antigens by Langerhans cells in vitro. Journal Experimental Medicine 1993; 178: 509–519.

    Article  CAS  Google Scholar 

  4. Sallusto F, Lanzavecchia A. Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colony-stimulating factor plus interleukin-4 and downregulated by tumor necrosis factor alfa. Journal Experimental Medicine 1994; 179: 1109–1118.

    Article  CAS  Google Scholar 

  5. Sallusto F, Cella M, Danieli C, Lanzavecchia A. Dendritic cells use macropinocytosis and the mannose receptor to concentrate macromolecules in the major histocompatibility complex class II compartment: Downregulation by cytokines and bacterial products. Journal Experimental Medicine 1995; 182: 389–400.

    Article  CAS  Google Scholar 

  6. Levine TP, Chain BM. Endocytosis by antigen presenting cells: Dendritic cells are as endocytically active as other antigen presenting cells. Proceedings National Academy Sciences 1992; 89: 8342–8346.

    Article  CAS  Google Scholar 

  7. Pelletier M, Perreault C, Landry D, David M, Monplasaisir S. Ontogeny of human epidermal Langerhans cells. Transplantation 1984; 38: 544–546.

    Article  PubMed  CAS  Google Scholar 

  8. Katz SI, Tamaki K, Sachs DH. Epidermal Langerhans cells are derived from cells originating in bone marrow. Nature 1979; 282: 324–326.

    Article  PubMed  CAS  Google Scholar 

  9. Caux C, Dezutter-Dambuyant C, Schmitt D, Banchereau J. GM-CSF and TNF-alpha cooperate in the generation of dendritic Langerhans cells. Nature 1992; 360: 258–261.

    Article  PubMed  CAS  Google Scholar 

  10. Szabolcs P, Moore MAS, Young JW. Expansion of immunostimulatory dendritic cells among the myloid progeny of human CD34+ bone marrow precursors cultured with c-kit ligand, granulocyte-macrophage colony-stimulating factor, and TNF-alpha. Journal Immunology 1995; 154: 5851–5861.

    CAS  Google Scholar 

  11. Romani N, Gruner S, Brang D, et al. Proliferating dendritic cell progenitors in human blood. Journal Experimental Medicine 1994; 180: 83–93.

    Article  CAS  Google Scholar 

  12. Santiago-Schwarz F, Belilos E, Diamond B, Carsons SE. TNF in combination with GM-CSF enchances the differentiation of neonatal cord blood stem cells into dendritic cells and macrophages. Journal Leukocyte Biology 1992; 52: 274–281.

    CAS  Google Scholar 

  13. Inaba K, Steinman RM, Pack MW, et al. Identification of proliferating dendritic cell precursors in mouse blood. Journal Experimental Medicine 1992; 175: 1157–1167.

    Article  CAS  Google Scholar 

  14. Mosialos G, Birkenbach M, Ayehunie S, Matsumura F, Pinkus GS,Kieff E, Langhoff E. Circulating human dendritic cells differentially express high levels of a p55-kD actin-bundling protein. American Journal Pathology 1996; 148: 593–600.

    CAS  Google Scholar 

  15. Langhoff E, Kalland K-H, Haseltine WA. Early molecular replication of Human Immunodeficiency Virus Type 1 in cultured blood-derived T helper dendritic cells. Journal Clinical Investigation 1993; 91: 2721–2726.

    Article  CAS  Google Scholar 

  16. Langhoff E, Steinman RM. Clonal expansion of human T lymphocytes initiated by dendritic cells. Journal Experimental Medicine 1989; 169: 315–320.

    Article  CAS  Google Scholar 

  17. Kalland K-H, Szilvay AM, Langhoff E, Haukenes G. Subcellular distributiion of human immunodeficiency virus Type 1 Rev and colocalization of Rev with RNA splicing factors in speckled pattern in the nucleo-plasm. Journal Virology 1994; 68 (3): 1475–1485.

    CAS  Google Scholar 

  18. Rosenzwajg M, Canque B, Gluckmaan JC. Human dendritic cell differentiation pathway for CD34+ hematopoietic precursor cells. Blood 1 996;87(2):535–544.

    Google Scholar 

  19. Yamashiro-Matsumura S, Matsumura F. Purification and characterization of an F-actin-bundling 55-kilodalton protein form HeLa cells. Journal Biological Chemistry 1985; 260: 5087–5097.

    CAS  Google Scholar 

  20. Schreiver F, Nadler LM. The central role of follicular dendritic cells in lymphoid tissues. Advances Immunology 1992; 51: 243–283.

    Article  Google Scholar 

  21. Larsen C, Steinman R, Witmer-Pack M, Hankins D, Morris P, Austyn J. Skin migration and maturation of Langerhans cells in skin transplants and explants. Journal Experimental Medicine 1990; 172: 1483–1493.

    Article  CAS  Google Scholar 

  22. Macatonia SE, Knight SC, Edwards AJ, Griffiths S, Fryer P. Localization of antigen on lymph node dendritic cells after exposure to the contact sensitizer fluorescein isothiocyanate. Functional and morphological studies. Journal Experimental Medicine 1987; 166: 1654–1667.

    Article  CAS  Google Scholar 

  23. Schuler G, Steinman RM. Murine epidermal Langerhans cells mature into potent immunostimulatory dendritic cells in vitro. Journal Experimental Medicine 1985; 161: 526–546.

    Article  CAS  Google Scholar 

  24. Zhou L-J, Scharting R, Smith HM, Tedder TF. A novel cell-surface molecule expressed by human interdigitating reticulum cells, Langherhans cells and activated lymphocytes is a new member of the immunoglobullin superfamily. Journal Immunology 1992; 149: 735–742.

    CAS  Google Scholar 

  25. Vanstapel M-J, Gatter KC, de Wolfe-Peeters C, Manson DY, Desmet VD. New sites of human S-100 immunreactivity detected with monoclonal antibodies. American Journal Clinical Pathology 1986; 85: 160–168.

    CAS  Google Scholar 

  26. Pinkus GS, Pinkus JL, Langhoff E, et al. Fascin: A sensitive new marker for Reed-Sternberg cells of Hodgkin’s disease - Evidence for a dendritic or B cell derivation? American Journal Pathology (in press).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sonderbye, L., Magerstadt, R., Blatman, R.N., Preffer, F.I., Langhoff, E. (1997). Selective Expression of Human Fascin (p55) by Dendritic Leukocytes. In: Ricciardi-Castagnoli, P. (eds) Dendritic Cells in Fundamental and Clinical Immunology. Advances in Experimental Medicine and Biology, vol 417. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9966-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9966-8_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9968-2

  • Online ISBN: 978-1-4757-9966-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics