Skip to main content

Brain Structure and Cognitive Function

  • Chapter
Cognitive Assessment

Part of the book series: Perspectives on Individual Differences ((PIDF))

Abstract

Only the most hidebound or ideologically driven can still maintain that genetic variation has a negligible impact on general mental ability (e.g., Bouchard, Lykken, McGue, Segal, & Tellegen, 1990; Plomin, DeFries, & McClearn, 1990). Nevertheless, the specific mechanisms by which genes shape and are manifested in brain structure and function have remained elusive. Impediments to progress have included the absence of good animal models and the multifactorial nature of intelligence. Multifactorial inheritance implies multiple genetic and environmental influences so that no single gene, whether regulatory or structural, can dominate IQ variance in the normal range. Identifying individual genes with only modest effects on intellectual function is daunting, but as new techniques from molecular biology become applicable to human intellectual variation (McClearn, Plomin, Gora-Maslak, & Crabbe, 1991), rapid progress can be expected. Until now, most human behavior geneticists necessarily have relied on low-tech methods like twin and adoption designs for untangling genetic and environmental influences on intelligence. However, even these low-tech procedures have provided a remarkably convergent body of findings over the years.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andreasen, N. C., Flaum, M., Swayze, V., O’Leary, D. S., Alliger, R., Cohen, G., Ehrhardt, J., & Yuh, W. T. C. (1993). Intelligence and brain structure in normal individuals. American Journal of Psychiatry, 150, 130–134.

    PubMed  Google Scholar 

  • Ankney, C. D. (1992). Sex differences in relative brain size: The mismeasure of women, too? Intelligence, 16, 329–336.

    Article  Google Scholar 

  • Barrett, P. T., & Eysenck, H. J. (1992). Brain evoked potentials and intelligence: The Hendrickson paradigm. Intelligence, 16, 361–381.

    Article  Google Scholar 

  • Beals, K. L., Smith, C. L., & Dodd, S. M. (1984). Brain size, cranial morphology, climate, and time machines. Current Anthropology, 25, 301–330.

    Article  Google Scholar 

  • Bouchard, T. J. Jr., Lykken, D. T., McGue, M., Segal, H. L., & Tellegen, A. (1990). Sources of human psychological differences: The Minnesota study of twins reared apart. Science, 250, 223–228.

    Article  PubMed  Google Scholar 

  • Cameron, I. L., Ord, V. A., & Fullerton, G. D. (1984). Characterization of proton NMR relaxation times in normal and pathological tissues by correlation with other tissue parameters. Magnetic Resonance Imaging, 2, 97–106.

    Article  PubMed  Google Scholar 

  • Chipuer, H. M., Rovine, M. J., & Plomin, R. (1990). LISREL modeling: Genetic and environmental influences on IQ revisited. Intelligence, 14, 11–29.

    Article  Google Scholar 

  • Coleman, P. D., & Flood, D. G. (1987). Neuron numbers and dendritic extent in normal aging and Alzheimer’s disease. Neurobiology of Aging, 8, 521–545.

    Article  PubMed  Google Scholar 

  • Deacon, T. W. (1988). Human brain evolution. II: Embryology and brain allometry. In H. J. Jerison and I. Jerison (Eds.), Intelligence and evolutionary biology (pp. 363–381 ). New York: Springer-Verlag.

    Chapter  Google Scholar 

  • Dekaban, A. S., & Sadowsky, D. (1978). Changes in brain weights during the span of human life. Annals of Neurology, 4, 345–356.

    Article  PubMed  Google Scholar 

  • Dobbing, J., & Sands, J. (1973). Quantitative growth and development of human brain. Archives of Diseases in Childhood, 48, 757–767.

    Article  Google Scholar 

  • Fineberg, I. (1987). Adolescence and mental illness. Science, 236, 507.

    Google Scholar 

  • Gazzaniga, M. S. (1989). Organization of the human brain. Science, 245, 947–952.

    Article  PubMed  Google Scholar 

  • Geschwind, N. (1979). Specializations of the human brain. Scientific American, 241, 180199.

    Google Scholar 

  • Glassman, R. B. (1987). An hypothesis about redundancy and reliability in the brains of higher species: Analogies with genes, internal organs, and engineering systems. Neuroscience and Biobehavioral Reviews, 11, 275–285.

    Article  PubMed  Google Scholar 

  • Gould, S. J. (1981). The mismeasure of man. New York: Norton.

    Google Scholar 

  • Guilford, J. P., & Fruchter, B. (1973). Fundamental statistics in psychology and education. New York: McGraw-Hill.

    Google Scholar 

  • Gur, R. C., Mozley, P. D., Resnick, S. M., Gottlieb, G. L., Kohn, M., Zimmerman, R., Herman, G., Atlas, S., Grossman, R., Berretta, D., Erwin, R., & Gur, R. E. (1991). Gender differences in age effect on brain atrophy measured by magnetic resonance imaging. Proceedings National Academy of Sciences, USA, 88, 2845–2849.

    Article  Google Scholar 

  • Haug, H. (1987). Brain sizes, surfaces, and neuronal sizes of the cortex cerebri: A stereo-logical investigation of man and his variability and a comparison with some species of mammals (primates, whales, marsupials, insectivores, and one elephant). American Journal of Anatomy, 180, 126–142.

    Article  PubMed  Google Scholar 

  • Ho, K., Roessman, U., Straumfjord, J. V., & Monroe, G. (1980). Analysis of brain weight. II. Archives of Pathology and Laboratory Medicine, 104, 640–645.

    PubMed  Google Scholar 

  • Ho, K., Gwozdz, J. T., Hause, L. L., & Antuono, P. G. (1992). Correlation of neuronal cell body size in motor cortex and hippocampus with body height, body weight, and axonal length. International Journal of Neuroscience, 65, 147–153.

    Article  PubMed  Google Scholar 

  • Hofman, M. A. (1989). On the evolution and geometry of the brain in mammals. Progress in Neurobiology, 32, 137–158.

    Article  PubMed  Google Scholar 

  • Holland, B. A., Haas, D. K., Norman, D., Brant-Zawadzki, M., & Newton, T. H. (1986).

    Google Scholar 

  • MRI of normal brain maturation. American Journal of Neuroradiology, 7,201–208.

    Google Scholar 

  • Inglis, J., & Lawson, J. S. (1982). A meta-analysis of sex differences in the effects of unilateral brain damage on intelligence test results. Canadian Journal of Psychology, 36, 670–683.

    Article  PubMed  Google Scholar 

  • Jensen, A. R., & Sinha, S. N. (1993). Physical correlates of human intelligence. In P. A. Vernon (Ed.), Biological approaches to the study of human intelligence. Norwood, NJ: Ablex.

    Google Scholar 

  • Jerison, H. J. (1973). Evolution of the brain and intelligence. New York: Academic Press.

    Google Scholar 

  • Jerison, H. J. (1988). The evolutionary biology of intelligence: Afterthoughts. In H. J.Jerison and I. Jerison (Eds.), Intelligence and evolutionary biology (pp. 447–466 ). New York: Springer-Verlag.

    Chapter  Google Scholar 

  • Jernigan, T. L., Hesselink, J. R., Sowell, E., & Tallal, P. A. (1991). Cerebral structure on magnetic resonance imagining in language-and learning impaired children. Archives of Neurology, 48, 539–545.

    Article  PubMed  Google Scholar 

  • Jernigan, T. L., & Tallal, P. A. (1990). Late childhood changes in brain morphology observable with MRI. Developmental Medicine and Child Neurology, 32, 379–385.

    Article  PubMed  Google Scholar 

  • Kimura, D. (1987). Are men’s and women’s brains really different? Canadian Psychology, 28, 133–147.

    Article  Google Scholar 

  • Koenig, S. H. (1991). Cholesterol of myelin is the determinant of gray-white contrast in MRI of brain. Magnetic Resonance in Medicine, 20, 285–291.

    Article  PubMed  Google Scholar 

  • Konner, M. (1991). Universals of behavioral development in relation to brain myelination. In K. R. Gibson and A. C. Petersen (Eds.), Brain maturation and cognitive development (pp. 181–223 ). New York: Aldine de Gruyter.

    Google Scholar 

  • Kranzler, J. H., & Jensen, A. R. (1991). Unitary g: Unquestioned postulate or empirical fact? Intelligence, 15, 437–448.

    Article  Google Scholar 

  • Lee, A., & Pearson, K. (1901). Data for the problem of evolution in man. VI. A first study of the correlation of the human skull. Transactions of the Royal Society of London, 196A, 225–264.

    Article  Google Scholar 

  • Loehlin, J. C., Horn, J. M., & Willerman, L. (1989). Modeling IQ change: Evidence from the Texas Adoption Project. Child Development, 60, 993–1004.

    Article  PubMed  Google Scholar 

  • Lynn, R. (1990). New evidence on brain size and intelligence: A comment on Rushton and Cain and Vanderwolf. Personality and Individual Differences, 11, 795–797.

    Article  Google Scholar 

  • Marr, D., & Hildreth, E. (1980). Theory of edge detection. Proceedings Royal Society of London, 207, 187–217.

    Article  Google Scholar 

  • McClearn, G. E., Plomin, R., Gora-Maslak, G., & Crabbe, J. C. (1991). The gene chase in behavioral science. Psychological Science, 2, 222–229.

    Article  Google Scholar 

  • Peters, M. (1991). Sex differences in human brain size and the general meaning of differences in brain size. Canadian Journal of Psychology, 45, 507–522.

    Article  PubMed  Google Scholar 

  • Plomin, R., DeFries, J. C., & McClearn, G. E. (1990). Behavioral genetics: A primer ( 2nd ed ). New York: W. H. Freeman.

    Google Scholar 

  • Rakic, P. (1988). Specification of cerebral cortical areas. Science, 241, 170–176.

    Article  PubMed  Google Scholar 

  • Raven, J., & Court, J. H. (1989). Manual for Raven’s Progressive Matrices and vocabulary scales: Research Supplement No. 4. London: H. K. Lewis.

    Google Scholar 

  • Raz, N., Millman, D., & Sarpel, G. (1990). Cerebral correlates of cognitive aging: Gray-white matter differentiation in the medial temporal lobes, and fluid versus crystallized abilities. Psychobiology, 18, 475–481.

    Google Scholar 

  • Reed, T. E., & Jensen, A. R. (1991). Arm nerve conduction velocity (NCV), brain NCV, reaction time, and intelligence. Intelligence, 15, 33–47.

    Article  Google Scholar 

  • Reed, T. E., & Jensen, A. R. (1992). Conduction velocity in a brain nerve pathway of normal adults correlates with intelligence level. Intelligence, 16, 259–272.

    Article  Google Scholar 

  • Rogers, S. L. (1984). The human skull. Springfield, IL: Thomas.

    Google Scholar 

  • Rushton, J. P. (1990). Race, brain size and intelligence: A rejoinder to Cain and Vanderwolf. Personality and Individual Differences, 11, 785–794.

    Article  Google Scholar 

  • Salthouse, T. A. (1991). Mediation of adult age differences in cognition by reductions in working memory and speed of processing. Psychological Science, 2, 179–183.

    Article  Google Scholar 

  • Sattler, J. M. (1988). Assessment of children. San Diego, CA: Jerome M. Sattler.

    Google Scholar 

  • Schultz, R. T. (1991). The relationship between intelligence and gray–white matter image contrast: A MRI study of healthy college students. Unpublished Doctoral Dissertation, University of Texas at Austin.

    Google Scholar 

  • Schultz, R., Willerman, L., Rutledge, J. N., & Bigler, E. (1989). MRI contrast and intelligence. Archives of Clinical Neuropsychology, 5, 212 (Abstract).

    Article  Google Scholar 

  • Sherry, D. F., Jacobs, L. F., & Gaulin, S. J. C. (1992). Spatial memory and adaptive specialization of the hippocampus. Trends in Neuroscience, 15, 298–303.

    Article  Google Scholar 

  • Spearman, C. (1904). “General intelligence”, objectively determined and measured. American Journal of Psychology, 15, 201–293.

    Google Scholar 

  • Squire, L. R., & Zola-Morgan, S. (1991). The medial temporal lobe memory system. Science, 253, 1380–1386.

    Article  PubMed  Google Scholar 

  • Stough, C. K. K., Nettlebeck, T., & Cooper, C. J. (1990). Evoked brain potentials, string length and intelligence. Personality and Individual Differences, 11, 401–406.

    Article  Google Scholar 

  • Suzuki, K. (1972). Chemistry and metabolism of brain lipids. In R. W. Albers, G. J. Katzman, and B. W. Agranoff (Eds). Basic neurochemistry (pp. 207–225 ). Boston: Little, Brown.

    Google Scholar 

  • Swindale, N. V. (1990). Is the cortex modular? Trends in Neurosciences, 12, 487–492.

    Article  Google Scholar 

  • Tanner, J. M. (1990). Fetus into man. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Tobias, P. V. (1970). Brain size, grey matter, and race—fact or fiction? American Journal of Physical Anthropology, 32, 3–26.

    Article  PubMed  Google Scholar 

  • Turkheimer, E., & Farace, E. (1992). A reanalysis of gender differences in IQ scores following unilateral brain lesions. Psychological Assessment, 4, 498–501.

    Article  Google Scholar 

  • Vernon, P. A., & Mori, M. (1992). Intelligence, reaction times, and peripheral nerve conduction velocity. Intelligence, 16, 273–288.

    Article  Google Scholar 

  • Vernon, P. A., & Weese, S. E. (1993). Predicting intelligence with multiple speed of information-processing tests. Personality and Individual Differences, 14, 413–419.

    Article  Google Scholar 

  • Welker, W. (1990). Why does cerebral cortex fissure and fold? In E. G. Jones and A. Peters (Eds.), Cerebral cortex (Vol. 8B) Comparative structure and evolution of cerebral cortex, Part II (pp. 3–136 ). New York: Plenum Press.

    Google Scholar 

  • Willerman, L., Schultz, R., Rutledge, A. N., & Bigler, E. D. (1991). In vivo brain size and intelligence. Intelligence, 15, 223–228.

    Google Scholar 

  • Willerman, L., Schultz, R., Rutledge, A. N., & Bigler, E. D. (1992). Hemisphere size asymmetry predicts relative verbal and nonverbal intelligence differently in the sexes: An MRI study of structure-function relations. Intelligence, 16, 315–328.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Willerman, L., Schultz, R., Rutledge, J.N., Bigler, E.D. (1994). Brain Structure and Cognitive Function. In: Reynolds, C.R. (eds) Cognitive Assessment. Perspectives on Individual Differences. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9730-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9730-5_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9732-9

  • Online ISBN: 978-1-4757-9730-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics