Skip to main content

Clinical Blood Flow Measurement with [15O] Water and Positron Emission Tomography (PET)

  • Chapter
Chemists’ Views of Imaging Centers

Abstract

[15O]-labeled water has been used to measure brain blood flow for many years (Herscovitch, et al. 1983). While now considered a common procedure, it remains difficult to consistently perform quantitative PET blood flow measurements at most institutions. Blood flow as measured with [15O] H2O remains the only technique, in the majority of clinical PET centers, that can be performed very quickly and repeatedly to assess the cognitive state of a patient or research subject. The most widely used PET radiopharmaceutical, 2-[18F]fluoro-2-deoxy-D-glucose ([18F] FDG) clearly shows metabolic function of brain, heart or tumor. However, its long half-life (110 min) precludes performing repeat studies on the same day. Only one temporal assessment of function with [18F] FDG can be obtained when the patient is at the PET Center. The short half-life of [15O] (122 sec) permits multiple assessments to occur especially if intervention is planned (drug or cognitive activation). [15O] water can easily be produced on demand within a short time without significant radiochemistry involvement. Blood flow to other organs and tissues (bone marrow, heart or tumor) is also possible and is routinely performed at this institution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bol, A.., Vanmelckenbeke, P., Michel, C., Cogneau, M., GoflĂŻnet, A.M., 1990, Measurement of cerebral blood flow with a bolus of oxygen-15-labelled water: Comparison of dynamic and integral methods, Eur J. Nuc Med. 17: 234–241.

    Article  CAS  Google Scholar 

  • Callahan, F.J., 1985, “Swagelok® Tube Fitting and Installation Manual”, Crawford Fitting Company, Niagara Falls, Ontario.

    Google Scholar 

  • Clark, J.C., Buckingham, P.D., 1975, “Short-lived Radioactive Gases for Clinical Use,” Butterworths, London.

    Google Scholar 

  • Cyclone 3, 18/9, 30, IBA (Ion Beam Applications), Chemin du Cyclotron 2, B-1348 Louvain-La-Neuve, Belgium.

    Google Scholar 

  • Ginsberg, M.D., Lockwood, A.H., Busto, R., Finn, R.D., Butler, C.M., Cendan, I.E., Goddard, J., 1982, A simplified in vivo autoradiographic strategy for the determination of regional cerebral blood flow by positron emission tomography: Theoretical considerations and validation studies in the rat. J. Cerebral Blood Flow Metab. 2: 89–98.

    Article  CAS  Google Scholar 

  • Helus, F., Colombetti, L.G., 1983, “Radionuclides Production: Volume I”, CRC Press, Inc., Boca Raton, Florida.

    Google Scholar 

  • Herscovitch, P., Markham, J., Raichle, M.E., 1983, Brain blood flow measured with intravenous H2–150. I. Theory and error analysis, J. Nuc Med. 24: 782–789.

    CAS  Google Scholar 

  • Herscovich, P., Raichle, M.E., Kilbourn, M.R., Welch, M.J., 1987, Positron emission tomographic measurement of cerebral blood flow and permeability-surface area product of water using [15O]water and [nC]butanol, J. Cerebral Blood Flow Metab. 7: 527–542.

    Article  Google Scholar 

  • Hichwa, R.D., Nickles, R.J., 1979, The tuned pipeline — A link between small accelerators and nuclear medical needs, IEEE Trans Nucl Sci. NS-26: 1701–1709.

    Article  Google Scholar 

  • Hichwa, R.D., Johnston, D.J., Ponto, L.L., Watkins, G.L., 1991, Handheld automated injector for 0–15 water studies, J. Nucl Med. 32: 1063

    Google Scholar 

  • Howard, B.E., Ginsberg, M.D., Hassel, W.R., Lockwood, A.H., Freed, P., 1983, On the uniqueness of cerebral blood flow measured by the in vivo autoradiographic strategy and positron emission tomography, J. Cerebral Blood Flow Metab. 3: 432–441.

    Article  CAS  Google Scholar 

  • Hurtig, R.R., Hichwa, R.D., O’Leary, D.S., Ponto, L.L.B., Narayana, S., Watkins, G.L., Andreasen, N.C., 1994, A quantitative assessment of the timing and duration of cognitive activation in [15O] water PET studies, J. Cerebral Blood Flow Metab. in press.

    Google Scholar 

  • Iida, H., Kanno, I., Miura, S., Murakami, M., Takahashi, K., Uemura, K., 1986, Error analysis of a quantitative cerebral blood flow measurement using H2 15O autoradiography and positron emission tomography, with respect to the dispersion of the input function, J. Cerebral Blood Flow Metab. 6: 536–545.

    Article  CAS  Google Scholar 

  • Iida, H., Higano, S., Tomura, N., Shishido, F., Kanno, I., Miura, S., Murakami, M., Takahashi, K., Sasaki, H., Uemura, K., 1988, Evaluation of regional differences of tracer appearance time in cerebral tissues using [15O]water and dynamic positron emission tomography, J. Cerebral Blood Flow Metab. 8: 285–288.

    Article  CAS  Google Scholar 

  • Iida, H., Kanno, I., Miura, S., Murakami, M., Takahashi, K., Uemura, K., 1989, A deterrnination of the regional brain/blood partition coefficient of water using dynamic positron emission tomography, J. Cerebral Blood Flow Metab. 9: 874–885.

    Article  CAS  Google Scholar 

  • Kanno, I., Iida, H., Miura, S., Murakami, M., Takahashi, K., Sasaki, H., Inugami, A., Shishido, F., Uemura, K., 1987, A system for cerebral blood flow measurement using an H2 15O autoradiographic method and positron emission tomography, J. Cerebral Blood Flow Metab. 7: 143–153.

    Article  CAS  Google Scholar 

  • Kanno, I., Iida, H., Miura, S., Murakami, M., 1991, Optimal scan time of oxygen-15-labeled water injection method for measurement of cerebral blood flow, J. Nuc Med. 32: 1931–1934.

    CAS  Google Scholar 

  • Kety, S., 1951, The theory and application of the exchange of inert gas at the lungs and tissue., Pharmacological Reviews 3: 1–41.

    PubMed  CAS  Google Scholar 

  • Koeppe, R.A., Holden, J.E., Polcyn, R.E., et al., 1985, Quantitation of local cerebral blood flow and partition coefficient without arterial sampling: Theory and validation, J. Cerebral Blood Flow Metab. 5: 214–224.

    Article  CAS  Google Scholar 

  • Koeppe, R.A., Hutchins, G.D., Rothley, J.M., Hichwa, R.D., 1987, Examination of assumptions for local cerebral blood flow studies in PET, J. Nucl Med. 28: 1695–1703.

    PubMed  CAS  Google Scholar 

  • Larson, K.B., Markham, J., Raichle, M.E., 1987, Tracer-kinetic models for measuring cerebral blood flow using externally detected radiotracers, J. Cerebral Blood Flow Metab. 7: 443–463.

    Article  CAS  Google Scholar 

  • Madsen, M.T., Ponto, J.A., 1992, “Medical Physics Handbook of Nuclear Medicine”, Medical Physics Publishing, Madison, Wisconsin.

    Google Scholar 

  • Meyer, E., 1989, Simultaneous correction for tracer arrival delay and dispersion in CBF measurements by the H2 15O autoradiographic method and dynamic PET, J. Nuc Med. 30: 1069–1078.

    CAS  Google Scholar 

  • NHVG, PracSys Corp., 400 West Cummings Park, Suite 6650, Woburn, MA 01801.

    Google Scholar 

  • PETtrace, GEMS (G E Medical Systems), P.O. Box 414, Milwaukee, WI 53201.

    Google Scholar 

  • Raichle, M.E., Martin, W.R.W., Herscovitch, P., Mintun, M.A., Markham, J., 1983, Brain blood flow measured with intravenous H2–150. II. Implementation and validation, J. Nuc Med. 24: 790–798.

    CAS  Google Scholar 

  • RDS, Siemens Medical Systems, 2501 Barrington Road, Hoffman Estates, IL 60195.

    Google Scholar 

  • TR 30/15, Ebco Tech, 7851 Alderbridge Way, Richmond, B.C. V6X 2A4 Canada.

    Google Scholar 

  • Volkow, N.D., Mullani, N., Gould, L.K., Adler, S.S., Gatley, S.J., 1991, Sensitivity of measurements of regional brain activation with oxygen-15-water and PET to time of stimulation and period of image reconstruction, J. Nuc Med. 32: 58–61.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hichwa, R.D., Ponto, L.L.B., Watkins, G.L. (1995). Clinical Blood Flow Measurement with [15O] Water and Positron Emission Tomography (PET). In: Emran, A.M. (eds) Chemists’ Views of Imaging Centers. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9670-4_44

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9670-4_44

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9672-8

  • Online ISBN: 978-1-4757-9670-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics