Skip to main content

Theories of Visual Cortex Organization in Primates

  • Chapter
Extrastriate Cortex in Primates

Part of the book series: Cerebral Cortex ((CECO,volume 12))

Abstract

The present review outlines and evaluates theories of how visual cortex is divided into areas in primates. Maps of cortical areas have long been used as guides for further research and they clearly have implications for how information is processed in the visual system. Early maps such as those of Brodmann (1909) and Von Economo (1929) have had great impact on current theories of visual cortex organization, and parts of these early theories remain in use. Yet early investigators disagreed on how extrastriate cortex is subdivided, and the usefulness of the architectonic methods used to formulate early proposals has been repeatedly questioned (e.g., Lashely and Clark, 1946). Current proposals are more complex and include many visual areas. In principle, current proposals should be more accurate because they are based on additional sorts of information, especially patterns of cortical connections and retinotopic organization. Indeed there is widespread agreement on the locations and extent of some proposed fields such as V2 and MT (V5). However, our maps of cortex also differ in many ways, suggesting that the supporting evidence is ambiguous and limited enough to allow different interpretations. As a reflection of this uncertainty, Felleman and Van Essen (1991), after an extensive review and synthesis, conclude that of 32 proposed visual areas, only five rate a high confidence level of 1 on a scale of 1–3. Possibly one might take an even more conservative view, since only three areas (V1, V2, and MT) are components of most proposals. In any case, it seems useful to review the progression from early to recent theories of cortical organization in an effort to see how they evolved and influenced each other, as well as determine both reliable features and those that require further study and evaluation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Adrian, E. I., 1941, Afferent discharges to the cerebral cortex from peripheral sense organs, J. Physiol. (Loud) 100: 159–191.

    CAS  PubMed  Google Scholar 

  • Albright H. I., Desimone, R., and Gross, C. G., 1984, Columnar organization of directionally selective cells in visual area MT of the macaque, J. Neurophysiol. 51: 16–31.

    CAS  PubMed  Google Scholar 

  • Allman, J. M., and Kaas, J. 11., 1971a, A representation of the visual field in the caudal third of the middle temporal gyrus of the owl monkey (Aotus trivirgatu.$), Brain Res. 31: 85–105.

    CAS  PubMed  Google Scholar 

  • Allman, J. M., and Kaas, J. Ff., I97Ib, Representation of the visual field in striate and adjoining cortex of the owl monkey (Aunts trzvirgalus), Brain Res. 35: 89–106.

    Google Scholar 

  • Allman, J. M., and Kaas, J. H., I 974a, The organization of the second visual area (V-II) in the owl monkey: A second-order transformation of the visual hemifield, Brain Res. 76: 247–265.

    Google Scholar 

  • Allman, J. M., and Kaas, J. I1., 1974b, A crescent-shaped cortical visual area surrounding the middle temporal area (MT) in the owl monkey (Aotus Irivirgatus), Brain Res. 81: 199–213.

    CAS  PubMed  Google Scholar 

  • Allman, J. M., and Kaas, J. H., 1975, The dorsomedial cortical visual area: A third tier area in the occipital lobe of the owl monkeys (Aotns lrivirgatus), Brain Res. 100: 473–487.

    CAS  PubMed  Google Scholar 

  • Allman, J. M., and Kaas, J. I I., 1976, Representation of the visual field in the medial wall of the occipital-parietal cortex in the owl monkey, Science 191: 572–576.

    CAS  PubMed  Google Scholar 

  • Allman, J., Jeo, R., and Sereno, M., 1994, The functional organization of visual cortex in owl monkeys, in: Aolus: The Owl Monkey ( J. F. Baer, R. E. Weller, and I. Kakoma, eds.), Academic Press, Orlando, FL. pp. 287–320.

    Google Scholar 

  • Allman, J. M., Kaas, J. H., and Lane, R. H., 1973, The middle temporal visual area (MT) in the bush baby (Galago.senegalensis), Brain Res. 57: 197–202.

    CAS  PubMed  Google Scholar 

  • Andersen, R. A., Asanuma, C., and Cowan, W. M., 1985, Callosal and prefrontal associational projecting cell populations in area 7a of the macaque monkey: A study using retrogradely transported fluorescent dyes, J. Comp. Neurol. 232: 493–455.

    Google Scholar 

  • Balzer, J. S., and Maguire, W. M., 1983, Double representation of lower visual quadrant in preluneate gyrus of rhesus monkey, Invest. Opthalmol. Vis. Sei. 24: 1436–1439.

    Google Scholar 

  • Balzer, J. S., Ungerleider, L. G., and Desimone, R., 1991, Organization of visual inputs to the inferior temporal and posterior parietal cortex in macaques, J. Neurosci. 11: 168–190.

    Google Scholar 

  • Baker, J. F., Petersen, S. E., Newsome, W. T., and Allman, J. M., 1981, Visual response properties of neurons in four extrastriate visual areas of the owl monkey (Aotus trivirgatus): A quantitative comparison of medial, dorsomedial, dorsolateral, and middle temporal areas, J. Neurophysiol. 45: 397–416.

    CAS  PubMed  Google Scholar 

  • Beck, P. D., and Kaas, J. H., 1995, Evidence for the presence of the dorsomedial visual area (DM) in five primate species, Soc. Newssci. Abstr. 21: I275.

    Google Scholar 

  • Blau, G. J., Andersen, R. A., and Stoner, G. R., 1990, Visual receptive field organization and corticocortical connections of the lateral intraparietal area (area LIP) in the macaque, J. Comp. Neural. 299: 421–445.

    Google Scholar 

  • Bonin, G. V., Garol, 1 I. W., and McCulloch, W. S., 1942, The functional organization of the occipital lobe, Biol. Syrup. 1: 165–192.

    Google Scholar 

  • Born, R. F., and IOotefl, R. B. H., 1992, Segregation of global and local motion processing in primate middle temporal area, Nature 357: 497–499.

    CAS  PubMed  Google Scholar 

  • Boussaoud, I., Ungerleider, L. G., and Desimone, R., 1990, Pathways for motion analysis: Cortical connections of the medial superior temporal and fundus of the superior temporal visual areas in the macaque, J. Comp. Neurol. 296: 462–495.

    CAS  PubMed  Google Scholar 

  • Boussaoud, I., Desimone, R., and Ungerleider, L. G., 1991, Visual topography of area TEO in the macaque, J. Comp. Neurol. 306: 554–575.

    CAS  Google Scholar 

  • Brodmann, K., 1909, Vergleichende Lokatisationslehre der Grosshirnrinde, Barth, Leipzig.

    Google Scholar 

  • Burkhalter, A., and Van Essen, D. C., 1986, Processing of color, form and disparity information in visual areas VP and V2 of ventral extrastriate cortex in the macaque monkey, J Neurosci. 6: 2327–2351.

    CAS  Google Scholar 

  • Burkhalter, A., Felleman, D. J., Newsome, W. T., and Van Essen, D. C., 1986, Anatomical and physiological asymmetries related to visual areas V3 and VP in macaque extrastriate cortex, Vision Res. 26: 63–80.

    CAS  PubMed  Google Scholar 

  • Campbell, A. W., 1905, Histological Studies on the Localization of Cerebral Function, Cambridge University Press; Cambridge.

    Google Scholar 

  • Casagrande, V. A., and Kaas, J. H., 1994, The afferent, intrinsic, and efferent connections of primary visual cortex in primates, in: Cerebral Cortex, Volume 10, Primary Visual Cortex in Primates ( A. Peters and K. Rockland, eds.), Plenum Press, New York, pp. 201–250.

    Google Scholar 

  • Clarke, S., and Miklossy, J., 1990, Occipital cortex in man: Organization of callosal connections, related myelo-and cytoarchitecture, and putative boundaries of functional visual areas, J Comp. Neural. 208: 188–214.

    Google Scholar 

  • Colby, C. L., and Duhamel, J.-R., 1991, Heterogeneity of extrastriate visual areas and multiple parietal areas in macaque monkey, Neuropsyclrologia 29: 517–537.

    CAS  Google Scholar 

  • Colby, C. L., Gattass, R., Olson, C. R., and Gross, C. G., 1988, Iòpographical organization of cortical afferents to extrastriate area PO in the macaque: A dual tracer study, J Comp. Neural. 269: 392–413.

    CAS  Google Scholar 

  • Colby, C. L., Duhamel, J.-R., and Goldberg, M. E., 1993, The ventral intraparietal area (VIP) of the macaque: Anatomical location and visual response properties, J. Neuropkysiol. 69: 902–914.

    CAS  Google Scholar 

  • Condo, G. J., and Casagrande, V. A., 1990, Organization of cytochrome oxidase staining in the visual cortex of nocturnal primates (Galago crassicaudatus and Galago senegalensis), J. Comp. Neural. 293: 632–645.

    CAS  Google Scholar 

  • Covey, E., Gattass, R., and Gross, C. G., 1982, A new visual area in the parietooccipital sulcus of the macaque, Soc. Neurosci. Abstr. 8: 861.

    Google Scholar 

  • Cowey, A., 1964, Projection of the retina on to striate and prestriate cortex in the squirrel monkey, Swoon sciureus, J. Neuruplaysiol. 27: 366–393.

    CAS  Google Scholar 

  • Cowey, A., and Heywood, C. A., 1995, Theres more to colour than meets the eye, Behay. Brain Res. 71: 89–100.

    CAS  Google Scholar 

  • Cragg, B. G., 1969, The topography of the afferent projections in the circumstriate visual cortex of the monkey studied by the Nauta method, Vision Res. 9: 733–747.

    CAS  PubMed  Google Scholar 

  • Curcio, C. A., and Harting, J. K., 1978, Organization of pulvinar afferents to area 18 in the squirrel monkey: Evidence for stripes, Brain Res. 143: 155–161.

    CAS  PubMed  Google Scholar 

  • Cusick, C. G., and Kaas, J. H., 1986, Interhemispheric connections of cortical, sensory and motor maps in primates, in: Two Hemispheres: One Brain ( F. Lepore, M. Pitto, and H. H. Jasper, eds.), Liss, New York, pp. 83–102.

    Google Scholar 

  • Cusick, C. G., and Kaas, J. H., 1988, Cortical connection of area 18 and dorsolateral visual cortex in squirrel monkeys, Visual Neurosci. 1: 211–237.

    CAS  Google Scholar 

  • Cusick, C. G., Gould III, H. J., and Kaas, J. H., 1984, Interhemispheric connections of visual cortex of owl monkeys (Aotu• trivirgatus), marmosets (Callithrix jacchus) and galagos (Galago crassicaudatas), J. Comp. Neurol. 230: 311–336.

    CAS  PubMed  Google Scholar 

  • Desimone, R., and Ungerleider, L. G., 1986, Multiple visual areas in the caudal superior temporal sulcus of the macaque, J. Comp. Neurol. 248: 164–189.

    CAS  Google Scholar 

  • DeYoe, E. A., and Van Essen, D. C., 1985, Segregation of efferent connections and receptive field properties in visual area V2 of the macaque, Nature 317: 58–61.

    CAS  PubMed  Google Scholar 

  • DeYoe, E. A., Hockfield, S., Garren, H., and Van Essen, D. C., 1990, Antibody labeling of functional subdivisions in visual cortex. Cat-301 immunoreactivity in striate and extrastriate cortex of the macaque monkey, Visual Neurosci. 5: 67–81.

    CAS  Google Scholar 

  • DeYoe, E. A., Carman, G., Bandettini, P., Glickman, S.J., Wieser, J., Cox, R., Miller, I., and Neitz, J., 1995, Mapping striate and extrastriate visual areas in human cerebral cortex, Proc. Natl. Acad. Sci. USA 93: 2382–2386.

    Google Scholar 

  • Distler, C., Boussaoud, D., Desimone, R., and Ungerleider, L. G., 1993, Cortical connections of inferior temporal area TEO in macaque monkeys, J. Comp. Neurol. 334: 125–150.

    CAS  PubMed  Google Scholar 

  • Dykes, R. W., and Ruest, A., 1986, What makes a map in somatosensory cortex? in: Cerebral Cortex, Vol. 5, Sensory-Motor Areas and Aspects of Cortical Connectivity ( E. G. Jones and A. Peters, eds.), Plenum Press, New York,pp. 1–29.

    Google Scholar 

  • Ebbesson, S. O. E., 1984, Evolution and ontogeny of neural circuits, Behay. Braira Sci. 7: 321–366.

    Google Scholar 

  • Felleman, I. J., and Kaas, J. H., 1984, Receptive field properties of neurons in the middle temporal visual are rea (MI) of owl monkeys, J. Neurophysiol. 52: 488–513.

    CAS  PubMed  Google Scholar 

  • Felleman, D. J., and Van Essen, I. C., 1991, Distributed hierarchical processing in the primate cerebral cortex, Cerebral Cortex 1: 1–47.

    CAS  PubMed  Google Scholar 

  • Felleman, D. J., Burkhalter, A., and Van Essen, I. C., 1997, Cortical connections of areas V3 and VP of macaque monkey extrastriate visual cortex, J. Comp. Neurol. 379: 21–47.

    CAS  Google Scholar 

  • Finger, S., 1994, Origins of Neuroscience, Oxford University Press, Oxford.

    Google Scholar 

  • Gattass, R., and Gross, C. G., 1981, Visual topography of the striate projection zone in the posterior superior temporal sulcus (MT) of the macaque, J. Neurophysiol. 46: 521–538.

    Google Scholar 

  • Gattass, R., Gross, C. G., and Sandell, J. H., 1981, Visual topography of V2 in the macaque, J Comp. Neurol. 201: 519–530.

    CAS  Google Scholar 

  • Gattass, R., Sousa A. P. B., and Gross, C. G., 1988, Visuotopic organization and extent of V3 and V4 of the macaque, J. Neurosci. 8: 1831–1845.

    CAS  PubMed  Google Scholar 

  • Goldman, P. S., and Nauta, W. J. H., 1977, Columnar distribution of cortico-cortical fibers in the frontal association, limbic, and motor cortex of the developing rhesus monkey, Brain Res. 122: 393–414.

    CAS  PubMed  Google Scholar 

  • Graham, J., Wall, J. I., and Kaas, J. H., 1978, Cortical projections of the medial visual area in the owl monkey (Autos lrivirgalus), Neurosci. Lett. 15: 109–114.

    Google Scholar 

  • Herrick, C. J., 1891, The problems of comparative neurology, J. Comp. Neurol. 1: 93–105.

    Google Scholar 

  • Hubel, D. FI., and Wiesel, T. N., 1965, Receptive fields and functional architecture in two nonstriate visual areas (18 and 19) of the cat, J. Neurophysiol. 30: 1561–1573.

    Google Scholar 

  • Jones, E. G., and Powell, T. P. S., 1970, An anatomical study of converging sensory pathways within the cerebral cortex of the monkey, Brain 93: 793–820.

    CAS  PubMed  Google Scholar 

  • Jouandet, M. 1.,framo, M. J., Herron, D. M., Hermann, A., Loftus, W. C., Barzell, J., and Gazzaniga, M. S., 1989, Brain prints: Computer-generated two-dimensional maps of the human cerebral cortex in vivo, J. Cognitive Neurosci. 1: 88–117.

    Google Scholar 

  • Kaas, J. H., 1982, The segregation of function in the nervous system: Why do the sensory systems have so many subdivisions? Contrib. Sens. Phy.siol. 7: 201–240.

    Google Scholar 

  • Kaas, J. H., 1988, Changing concepts of visual cortex organization in primates, in: Neuropsychology of Visual Perception ( J. W. Brown, ed.), Erlbaum, Hillsdale, NJ, pp. 1–32.

    Google Scholar 

  • Kaas, J. H., 1989a, lhe evolution of complex sensory systems in mammals, J Exp. Biol. 146: 165–176

    Google Scholar 

  • Kaas, J. H., 19896, Why does the brain have so many visual areas?“ Cognitive Neurosci. 1: 121–135.

    Google Scholar 

  • Kaas, J. H., 1990, Processing areas and modules in sensory-perceptual cortex, in: Signal and Sense: Local and Global Order in Perceptual Maps ( G. M., Edelman, W. E. Gall, and W. M. Cowan, eds.), Wiley, New York, pp. 67–82.

    Google Scholar 

  • Kaas, J. H., 1993, The organization of visual cortex in primates: Problems, conclusions, and the use of comparative studies in understanding the human brain, in: The Functional Organization of the Human Visual Cortex ( B. Gulyas, D. Ottoson, and P. E. Roland, eds.), Pergamon Press, Oxford, pp. 1–11.

    Google Scholar 

  • Kaas, J. H., 1994, The organization of sensory and motor cortex in owl monkeys, in: Aotus: The Owl Monkey, Academic Press, Orlando, FL, pp. 331–351.

    Google Scholar 

  • Kaas, J. H., I 995a, The evolution of isocortex, Brain Behay. Evol. 46: 187–196.

    Google Scholar 

  • Kaas, J. H., 199%, Montan visual cortex; Progress and puzzles, Curr. Biol. 5: 1126–1128.

    Google Scholar 

  • Kaas, J. H., I995c, fhe organization of callosal connections in primates, in: Epilepsy and the Corpus Callosum H (A. G. Reeves and D. W. Roberts, eds.), Plenum Press, New York, pp. 15–27.

    Google Scholar 

  • Kaas, J. H., and Lin, C. S., 1977, Cortical projections of area I8 in owl monkeys, Vision Res. 17: 739–741.

    CAS  PubMed  Google Scholar 

  • Kaas, J. H., and Morel, A., 1993, Connections of visual areas of the upper temporal lobe of owl monkeys: fhe Ml crescent and dorsal and ventral subdivisions of FST, J. Neurosci. 13: 534–546.

    CAS  PubMed  Google Scholar 

  • Kaas, J. H., and Preuss, T. M., 1993, Archontan affinities as reflected in the visual system, in: Mammal Phylogenv ( F. Szalay, M. Novacek, and M. McKenna, eds.), Springer-Verlag, New York, pp. 115–128.

    Google Scholar 

  • Kaas, J. H., l.in, C.-S., and Wagor, E., 1977, Cortical projections of posterior parietal cortex in owl Monkeys, J. Comp. Neurol. 177: 387–408.

    Google Scholar 

  • Kaas, J. H., Krubitzer, L. A., and Johanson, K. I., 1989, Cortical connections of areas 17 (V-I) and 18 (V-II) of squirrels, J. Comp. Neural. 281: 426–446.

    CAS  Google Scholar 

  • Konorski, M. D., 1967, Integrative Activity of the Brain, University of Chicago Press, Chicago.

    Google Scholar 

  • Krubitzer, L. A., 1995, The organization of neocortex in mammals: Are species differences really so different? TINS 18: 408–417.

    CAS  PubMed  Google Scholar 

  • Krubitzer, L. A., and Kaas, J. H., 1989, Cortical integration of parallel pathways in the visual system of primates, Brain Res. 478: 161–165.

    CAS  PubMed  Google Scholar 

  • Krubitzer, L. A., and Kaas, J. H., 1990, Cortical connections of MT in four species of primates: Areal, modular, and retinotopic patterns, Visual Neurosci. 5: 165–204.

    CAS  Google Scholar 

  • Krubitzer, L. A., and Kaas, J. H., 1993, The dorsomdeial visual area of owl monkeys: Connections, myeloarchitecture, and homologies in other primates, J Comp. Neurol. 334: 497–528.

    CAS  Google Scholar 

  • Kuypers, H. G. J. M., Szwarcbart, M. K., Mishkin, M., and Rosvold, H. E., 1965, Occipitotemporal corticocortical connections in the rhesus monkey, Exp. Neurol. 11: 245–262.

    CAS  PubMed  Google Scholar 

  • Lashley, K. S., and Clark, G., 1946, The cytoarchitecture of the cerebral cortex of Aides: A critical examination of architectonic studies, J Comp. Neurol. 85: 223–305.

    CAS  Google Scholar 

  • LeGros Clark, W. E., 1952, A note on cortical cyto-architectonics, Brain 75: 96–104.

    Google Scholar 

  • Levitt, J. B., Yoshioka, T., and Lund, J. S., 1995, Connections between the pulvinar complex and cytochrome oxidase-defined compartments in visual area V2 of macaque monkey, Exp. Brain Res. 104: 419–430.

    CAS  PubMed  Google Scholar 

  • Lin, C.-S., Weller, R. E., and Kaas, J. H., 1982, Cortical connections of striate cortex in the owl monkey, J. Comp. Neurol. 211: 165–176.

    CAS  PubMed  Google Scholar 

  • Livingstone, M. S., and Hubel, D. H., 1982, Thalamic inputs to cytochrome oxidase-rich regions in monkey visual cortex, Proc. Natl. Acad. Sci. USA 79: 6098–6101.

    CAS  PubMed  Google Scholar 

  • Malonek, D., Tootell, R. B. H., and Grinvald, A., 1994, Optical imaging reveals the functional architecture of neurons processing shape and motion in owl monkey area MT, Proc. R. Soc. Conan. B 258: 109–119.

    CAS  Google Scholar 

  • Maguire, W. M., and Baiter, J. S., 1984, Visuotopic organization of the prelunate gyros in rhesus monkey, J. Neurosci. 4: 1690–1704.

    CAS  PubMed  Google Scholar 

  • Martinez-Millân, L., and Holländer, H., 1975, Cortico-cortical projections front striate cortex of the squirrel monkey (Saimiri sciureus): A radioautographic study, Brain Res. 83: 405–417.

    PubMed  Google Scholar 

  • Maunsell, J. H. R., and Van Essen, D. C., 1983, The connections of the middle temporal visual area (MT) and their relationship to a cortical hierarchy in the macaque monkey, J Neurosci. 3: 2563–2586.

    CAS  Google Scholar 

  • Maunsell, J. H. R., and Van Essen, D. C., 1987, Topographic organization of the middle temporal visual area in the macaque monkey: Representational biases and the relationship to callosal connections and myeloarchitectonic boundaries, J Comp. Neurol. 266: 535–555.

    CAS  Google Scholar 

  • Maunsell, J. H. R., Nealey, T. A., and DePriest, D. D., 1990, Magnocellular and parvocellular contributions to responses in the middle temporal visual area (MT) of the macaque monkey, J Neuro-sci. 10: 3323–3334.

    CAS  Google Scholar 

  • McCulloch, W. S., 1944, Functional organization of cerebral cortex, Physiol. Rev. 24:390–407. Merigan, W. H., 1993, Hunan V4 ? Curr. Biol. 3: 226–229.

    Google Scholar 

  • Morel, A., and Bullier, J., 1990, Anatomical segregation of two cortical visual pathways in the macaque monkey, Visual Neurosci. 4: 555–578.

    CAS  Google Scholar 

  • Munk, H., 1890, Of the visual area of the cerebral cortex, and its relation to eye movements, Brain 13: 45–70.

    Google Scholar 

  • Myers, R. E., 1962, Commissural connections between occipital lobes of the monkey, J. Comp. Neurol. 118: 1–16.

    CAS  PubMed  Google Scholar 

  • Myers, R. E., 1965, Organization of visual pathways, in: Functions of the Corpus Callosum ( E. G. Ettlinger, ed.), Churchill, London, p. 133.

    Google Scholar 

  • Neuenschwander, S., Gattas, S. R., Sousa, A. P. B., and Pinon, M. C. G. I., 1994, Identification and visuotopic organization of area PO and Pod in Cellos monkey, J Comp. Neurol. 340: 65–86.

    CAS  Google Scholar 

  • Newsome, W. T., and Allman, J. M., 1980, Interhemispheric connections of visual cortex in the owl monkey, Aotus trivirgatus, and the bushbaby, Galago seuegalensis, J. comp. Neurol. 194: 209–233.

    CAS  PubMed  Google Scholar 

  • Newsome, W. T., Maunsell, J. H. R., and Van Essen, D. C., 1986, Ventral posterior visual area of the macaque: Visual topography and areal boundaries,. J Comp. Neurol. 252: 139–153.

    CAS  PubMed  Google Scholar 

  • Northcutt, R. G., and Kaas, J. H., 1995, The emergence and evolution of mammalian neocortex. TINS 18: 373–379.

    CAS  PubMed  Google Scholar 

  • Otsuka, R., and Hassler, R., 1962, On the construction and organization of the cortical visual region in the cat, Arch Psyclaiatr. Neurol. 203: 213–234.

    Google Scholar 

  • Pandya, D. N., and Seltzer, B., 1982, Intrinsic connections and architectonics of posterior parietal cortex in the rhesus monkey, J. Comp. Neurol. 204: 196–210.

    CAS  PubMed  Google Scholar 

  • Pessoa, V. F., Abrahao, J. C. H., Pacheco, R. A., Pereira, L. C. M., Magalhaes-Castro, B., and Saraiva, P. E. S., 1992, Relative sizes of cortical visual areas in marmosets: Functional and phylogenetic implications, Exp. Brain Res. 88: 459–462.

    CAS  PubMed  Google Scholar 

  • Petersen, S. E., Miezen, F. M., and Allman, J. M., 1988, Transient and sustained responses in four extrastriate visual areas of the owl monkey, Exp. Brain Res. 70: 55–60.

    CAS  PubMed  Google Scholar 

  • Preuss, T. M., Kaas, J. H., 1996, Cytochrome oxidase `blobs“ and other characteristics of primary visual cortex in a lemuriform primate, Cheriogaleus merlins, Brain Behay. Evol. 47: 103–112.

    CAS  Google Scholar 

  • Preuss, T. M., Beck, P. D., and Kaas, J. H., 1993, Areal, modular, and connectional organization of visual cortex in a prosimian primate, the slow loris (Nycticebus coucong), Brain Behay. Evol. 2: 237–251

    Google Scholar 

  • Previc, F. H., 1980, Functional specialization in the upper and lower visual fields in man: Origins and implications, Behay. Brain Sci. 13: 519–575.

    Google Scholar 

  • Purves, D., Riddle, I. R., and LaMantia, A. S., 1992, Iterated patterns of brain circuitry (or how the cortex gets its spots), TINS 15: 362–368.

    CAS  PubMed  Google Scholar 

  • Ramón y Cajal, S., 1899, Comparative Study of the Sensory Areas of the Human Cortex, Clark Union Press, Worcester, MA, pp. 311–359.

    Google Scholar 

  • Reiner, A., 1993, Neurotransmitter organization and connections of turtle cortex: Implications for the evolution of mammalian isocortex, Comp. Biochem. Physiol. 104A: 735–748.

    CAS  Google Scholar 

  • Rockland, K. S., and Pandya, D. N., 1979, Laminar origins and terminations of cortical connections of the occipital lobe in the rhesus monkey, Brain Res. 179: 3–20.

    CAS  PubMed  Google Scholar 

  • Roc, A. W., and Tso, D. Y., 1995, Visual topography in primate V2: Multiple representations across functional stripes, J. Nenrosci. 15: 3684–3715.

    Google Scholar 

  • Rosa, M. G. P., and Schmid, I. M., 1995, Visual areas in the dorsal and medial extrastriate cortices of the tnarmoset, J. Comp. Neurol. 359: 272–299.

    CAS  PubMed  Google Scholar 

  • Rosa, M. G. P., Sousa, A. P. B., and Gattass, R., 1988, Representation of the visual field in the second visual area in the Cebus monkey, J. Comp. Neurol. 275: 326–345.

    CAS  PubMed  Google Scholar 

  • Rosa, M. G. P., Soares, J. G. M., Florani, Jr., M., and Gattass, R., 1993, Cortical afferents of visual area MT in the Cebus monkey: Possible homologies between New and Old World monkeys, Visual Neurosci. 10: 827–855.

    CAS  Google Scholar 

  • Rosa, M. G. P., Casagrande, V. A., Preuss, T., and Kaas, J. H., 1997, Visual field representation in striate and prestriate cortices of a prosimian primate (Galago garnetti), J. Neurophysiol. 77: 3193–3217.

    CAS  PubMed  Google Scholar 

  • Rubin, N., Nakayama, K., and Shapley, R., 1996, Enhanced perception of illusory contours in the lower versus upper visual hemifields, Science 271: 651–653.

    CAS  PubMed  Google Scholar 

  • Sanides, F., and Hoffman, J., 1969, Cyto-and myloarchitecture of the visual cortex of the cat and of the surrounding integration cortices, J. Hirn Jirrsch. 11: 79–104.

    CAS  Google Scholar 

  • Sereno, M. 1., and Allman, J. M., 1990, Cortical visual areas in mammals, in: The Neural Basis of Visual Function, Vol. 4 (A. G. Leventhal, ed.), Macmillan, London, pp. 16(1–172.

    Google Scholar 

  • Sereno, M. I., Pale, A. M., Reppas, J. B., Kwong, K. K., Belliveau, J. W., Brady, T. J., Rosen, B. R., and finch, R. B. H., 1995, Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging, Science 268: 889–893.

    CAS  PubMed  Google Scholar 

  • Shipp, S., and Zeki, S., 1985, Segregation of pathways leading from area V2 to areas V4 and V5 of macaque monkey visual cortex, Nature 315: 322–325.

    CAS  PubMed  Google Scholar 

  • Shipp, S., Watson, J. D. G., Frackowiak, R. S. J., and Zeki, S., 1995, Retinotopic maps in human prestriate visual cortex: The demarcation of areas V2 and V3, Neuroimage 2: 125–132.

    CAS  PubMed  Google Scholar 

  • Sholl, P. A., 1956, The Organization of the Cerebral Cortex, Methuen, London.

    Google Scholar 

  • Smith, G. E., 1906, A new topographic survey of human cerebral cortex, being an account of the distribution of the anatomically distinct cortical areas and their relationship to the cerebral sulci, J. Anat. Physiol. 42: 237–254.

    Google Scholar 

  • Sousa, A. P. B., Pinot, M. C. G. P., Gattass, R., and Rosa, M. G. P., 1991, Topographic organization of cortical input to striate cortex in the cebus monkey: A fluorescent tracer study, J. Comp. Neurol. 308: 665–682.

    CAS  PubMed  Google Scholar 

  • Spatz, W. B., 1977, topographically organized reciprocal connections between areas 17 and MT (visual area of superior temporal sulcus) in the marmoset Callithrix jacchus, Exp. Brain Res. 27: 559–572.

    Google Scholar 

  • Spatz, W. B., and Tigges, J., 1972, Experimental-anatomical studies on the “middle temporal visual area (MT)” in primates. I. Efferent cortico-cortical connections in the marmoset, Callithrix jacchus, J. Comp. Neurol. 146: 451–464.

    CAS  PubMed  Google Scholar 

  • Steele, G. E., Weller, R. E., and Cusick, C. G., 1991, Cortical connections of the caudal subdivision of the dorsolateral area (V4) in monkeys, J Comp. Neurol. 306: 495–520.

    CAS  Google Scholar 

  • Stepniewska, I., and Kaas, J. H., 1996, Topographic patterns of V2 cortical connections in macaque monkeys, J. Comp. Neurol. 371: 129–152.

    CAS  PubMed  Google Scholar 

  • Sur, M., Wall, J. T., and Kaas, J. H., 1981, Modular segregation of functional cell classes within the postcentral somatosensory cortex of monkeys, Science 212: 1059–1061.

    CAS  PubMed  Google Scholar 

  • Symonds, L. L., and Kaas, J. H., 1978, Connections of striate cortex in the prosimian, Gahago senegalenrsis, J. Comp. Neurol. 181: 477–512.

    CAS  PubMed  Google Scholar 

  • Talbot, S. A., and Marshall, W. H., 1941, Physiological studies on neural mechanisms of visual localization and discrimination, Am. J. Ophthalmol. 24: 1255–1264.

    Google Scholar 

  • Tanaka, J., Lindsey, E., Lausmann, S., and Creutzfeldt, O. D., 1990, Afferent connections of the prelunate visual association cortex (areas V4 and DP), Anat. Embryol. 181: 19–30.

    CAS  PubMed  Google Scholar 

  • Tigges, J., Spatz, W. B., and Tigges, M., 1974, Efferent cortico-cortical fiber connections of area 18 in the squirrel monkey (Saimiri), J. Comp. Neurol. 158: 219–236.

    CAS  PubMed  Google Scholar 

  • Tigges, J., Tigges, M., Anschel, S., Cross, N. A., Letbetter, W. D., and McBride, R. L, 1981, Areal and laminar distribution of neurons interconnecting the central visual cortical areas 17, I8, 19 and MT in squirrel monkey (Saimiri), J. Camp. Neurol. 202: 539–560.

    CAS  Google Scholar 

  • Tootell, R. B. H., and Taylor, J. B., 1995, Anatomical evidence for Ml and additional cortical visual areas in humans, Cerebral Cortex 1: 39–55.

    Google Scholar 

  • Motel, R. B. H., Silverman, M. S., DeValois, R. L., and Jacobs, G. H., 1983, Functional organization of the second cortical area of primates, Science 220: 737–739.

    Google Scholar 

  • Tootell, R. B. H., Hamilton, S. L., and Silverman, M. S., 1985, Topography of cytochrome oxidase activity in owl monkey cortex, J Neurosci. 5: 2786–2800.

    CAS  Google Scholar 

  • Tootell, R. B. H., Reppas, J. B., Kwong, K. K., Malach, R., Born, R. T., Brady, L. J., Rosen, B. R., andBelliveau, J. W., 1995, Functional analysis of human MT and related visual cortical areas using magnetic resonance imaging, J. Neurosci. 15: 3215–3230.

    CAS  Google Scholar 

  • Ungerleider, L. G., and Desimone, R., 1986a, Projections to the superior temporal sulcus from the central and peripheral field representations of V I and V2, J. Comp. Neurol. 248: 147–163.

    CAS  PubMed  Google Scholar 

  • Ungerleider, L. G., and Desimone, R., 19866, Cortical projections of visual area MT in the macaque, J. Comp. Neural. 248: 190–222.

    Google Scholar 

  • Ungerleider, L. G., and Haxby, J. V., 1994, “What” and “where” in the human brain, Cuir. Opin. Ne urobiol. 4:157–165.

    Google Scholar 

  • Ungerleider, L. G., and Mishkin, M., 1979, The striate projection zone in the superior temporal of Macaca mulatta. Location and topographic organization, J. Comp. Neural. 188: 347–366.

    CAS  Google Scholar 

  • Underleider, L. G., and Mishkin, M., 1982, Two cortical visual systems, in: Analysis of Visual Behavior ( I. J. Ingle, M. A. Goodale, and R. L. W. Mansfield, eds.), MIT Press, Cambridge, MA, pp. 544–586.

    Google Scholar 

  • Van Essen, D. C., 1985, Functional organization of primate visual cortex, in: Cerebral Cortex, Vol. 3, Visual Cortex ( A. Peters and E. G. Jones, eds.) Plenum Press, New York, pp. 259–329.

    Google Scholar 

  • Van Essen, D. C., and Maunsell, J. H. R., 1983, Hierarchical organization and the functional streams in the visual cortex, TINS 6: 370–375.

    Google Scholar 

  • Van Essen, I. C., and Zeki, S. M., 1978, The topographical organization of rhesus monkey prestriate cortex, J. Physiol. 277: 193–226.

    CAS  PubMed  Google Scholar 

  • Van Essen, D. C., Maunsell, J. H. R., and Bixby, J. L., 1981, The middle temporal visual area in the macaque: Myeloarchitecture, connections, functional properties and topographic organization, J. Comp. Neurol. 199: 293–326.

    PubMed  Google Scholar 

  • Van Essen, I. C., Newsome, W. F., Maunsell, J. H. R., and Bixby, J. L., 1986, The projections from striate cortex (V1) to areas V2 and V3 in the macaque monkey: Asymmetries, areal boundaries and patchy connections, J. Comp. Neural. 244: 451–480.

    Google Scholar 

  • Von Economo, C., 1929, The Cytoarchitectonics of the Human Cortex, Oxford University Press, Oxford.

    Google Scholar 

  • Wagor, E., I.in, C.-S., and Kaas, J. H., 1975, Some cortical projections of the dorsomedial visual area (DM) of association cortex in the owl monkey (Aotus trivirgatus), J. Comp. Neural. 163: 227–250.

    CAS  Google Scholar 

  • Walker, A. E., 1938, The Primate Thalamus, University of Chicago Press, Chicago.

    Google Scholar 

  • Weller, R. E., 1988, “Iwo cortical visual systems in Old and New World primates, Prog. Bruin Res. 75: 293–306.

    Google Scholar 

  • Weller, R. E., and Kaas, J. IL, 1983, Retinotopic patterns of connections of area 17 with visual areas V-11 and MT in macaque monkeys, J. Comp. Neurol. 220: 253–279.

    CAS  Google Scholar 

  • Weller, R. E., and Kaas, J. IL, 1985, Cortical projections of the dorsolateral visual area in owl monkeys: The prestriate relay to inferior temporal cortex, J Comp. Neurol. 234: 35–59.

    CAS  Google Scholar 

  • Weller, R. E., and Kaas, J. H., 1987, Subdivisions and connections of inferior temporal cortex in owl monkeys, J. Comp. Neurol. 256: 137–172.

    CAS  PubMed  Google Scholar 

  • Weller, R. E., and Steele, G. E., 1992, Cortical connections of subdivisions of inferior temporal cortex in squirrel monkeys, J Comp. Neurol. 324: 37–66.

    CAS  Google Scholar 

  • Weller, R. E., Wall, J. l., and Kaas, J. H., 1984, Cortical connections of the middle temporal visual area (MT) and the superior temporal cortex in owl monkeys, J. Comp. Neural. 228: 81–104.

    CAS  Google Scholar 

  • Weller, R. E., Steele, G. E., and Cusick, C. G., 1991, Cortical connections of dorsal cortex rostra! To VII in squirrel monkeys, J. Comp. Neurol. 306: 521–537.

    CAS  PubMed  Google Scholar 

  • Wong-Riley, M. I., 1979, Columnar cortico-cortical interconnections within the visual system of the squirrel and macaque monkeys, Brain Res. 162: 201–207.

    CAS  PubMed  Google Scholar 

  • Wong-Riley, M. I. T., Hevuer, R. F., Cuttan, R., Earnest, M., Egan, R., Frost, J., and Ngugen, 1993, Cytochrome oxidase in the human visual cortex: Distribution in the developing and adult brain, Visual Neurosci. 10: 41–58.

    CAS  Google Scholar 

  • Woolsey, C. N., and Fairman, D., 1946, Contralateral, ipsilateral, and bilateral representations of cutaneous receptors in somatic areas I and 11 of the cerebral cortex of pig, sheep, and other mammals, Surgery 19: 684–702.

    CAS  PubMed  Google Scholar 

  • Young, M. P., Scannell, J. W., and Burns, G., 1995, The Analysis of Cortical Connectivity, Landes, Austin, TX.

    Google Scholar 

  • Zeki, S. M., 1969, Representation of central visual fields in prestriate cortex of monkey, Bran Res. 14: 271–291.

    CAS  Google Scholar 

  • Zeki, S. M., 197la, Convergent input from the striate cortex (area 17) to the cortex of the superior temporal sulcus in the rhesus monkey, Brain Res. 29: 338–340.

    Google Scholar 

  • Zeki, S. M., 197 lb, Cortical projections from two prestriate areas in the monkey, Brain Res. 34: 19–35.

    Google Scholar 

  • Zeki, S. M., 1971e, Response properties and receptive fields of cells in an anatomically defined region of the superior temporal sulcus of the monkey, Brain Res. 35: 528–532.

    PubMed  Google Scholar 

  • Zeki, S. M., 1973, Colour coding in rhesus monkey prestriate cortex, Brain Res. 53: 422–427.

    CAS  PubMed  Google Scholar 

  • Zeki, S. M., 1977, Simultaneous anatomical demonstration of the representations of the vertical and horizontal meridians in areas V2 and V3 of rhesus monkey visual cortex, Proc. R. Soc. Land. B 195: 517–523.

    CAS  Google Scholar 

  • Zeki, S. M., 1978, The third visual complex of rhesus monkey prestriate cortex, J Physiol. 277: 245–272.

    CAS  PubMed  Google Scholar 

  • Zeki, S., 1980, The response properties of cells in the middle temporal area (area MT) of owl monkey visual cortex, Proc. R. Soc. Land. B 207: 239–248.

    CAS  Google Scholar 

  • Zeki, S., Watson, J. P. G., I.ueck, C. I., Friston, K., Kennard, C., and Frackowjak, R. S. J., 1991, A direct demonstration of functional specialization in human visual cortex, J Neurosci. 11: 641–649.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kaas, J.H. (1997). Theories of Visual Cortex Organization in Primates. In: Rockland, K.S., Kaas, J.H., Peters, A. (eds) Extrastriate Cortex in Primates. Cerebral Cortex, vol 12. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9625-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9625-4_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9627-8

  • Online ISBN: 978-1-4757-9625-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics