Skip to main content

Primary and Secondary Structure of IF Protein Chains and Modes of Molecular Aggregation

  • Chapter
Cellular and Molecular Biology of Intermediate Filaments

Abstract

Five classes of intermediate filaments (IF) have been defined on the basis of the cell type from which the filaments were initially isolated and characterized. The first of these classes comprises the keratins, a heterogeneous family of protein chains with molecular weights in the range 40 to 70k; they are expressed in most epithelia. Vimentin chains have a molecular weight of 53k, and are expressed in cells of mesenchymal origin and in cell lines established in vitro. The third class comprises desmin chains of molecular weight 53k; they are expressed in smooth, cardiac, and skeletal myogenic cells. Glial fibrillary acidic protein chains, found in glial cells and astrocytes, have molecular weights of 50k and form the fourth class. The fifth class of IF protein contains neurofilament chains with molecular weights of about 62, 98, and 112k; these are expressed in varying amounts in different neuronal tissues. The limitations of this type of classification have become apparent with the observation that some cells are capable of expressing vimentin in addition to their “normal” IF protein species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aebi, I.L., Cohn, J., Buhle, L., and Gerace, L., 1986, The nuclear lamina is a meshwork of intermediate-type filaments, Nature 323: 560–564.

    PubMed  CAS  Google Scholar 

  • Ahmadi, B., and Speakman, P. T., 1978, Suberimidate crosslinking shows that a rod-shaped, low cystine, high-helix protein prepared by limited proteolysis of reduced wool has four protein chains, FEBS Lett. 94: 365–367.

    PubMed  CAS  Google Scholar 

  • Ahmadi, B., Boston, N. M., Dobb, M. G., and Speakman, P. T., 1980, Possible four-chain repeating unit in the microfibril of wool, in: Fibrous Proteins: Scientific, Industrial and Medical Aspects, Volume 2 (D. A. D. Parry and L. K. Creamer, eds.), Academic Press, New York, pp. 161–166.

    Google Scholar 

  • Bader, B. L., Magin, T. M., Hatzfeld, M., and Franke, W. W., 1986, Amino acid sequence and gene organisation of cytokeratin No. 19. an exceptional tail-less intermediate filament protein, EMBO J. 5: 1865–1875.

    PubMed  CAS  Google Scholar 

  • Burley, S. K., and Petsko, G. R., 1985, Aromatic-aromatic interaction: A mechanism of protein stabilization, Science 229: 23–28.

    PubMed  CAS  Google Scholar 

  • Chou, P. Y., and Fasman, G. D., 1978, Prediction of the secondary structure of proteins from their amino acid sequence, Adv. Enzymol. 47: 45–148.

    PubMed  CAS  Google Scholar 

  • Cohen, C., and Parry, D. A. D., 1986, α-helical coiled-coils—A widespread motif in proteins, Trends Biochem. Sci. 11: 245–248.

    CAS  Google Scholar 

  • Conway, J. F., and Parry, D. A. D., 1988, Intermediate filament structure: 3. Analysis of sequence homologies, Int. J. Biol. Macromol. 10: 79–98.

    CAS  Google Scholar 

  • Conway, J. F., and Parry, D. A. D., 1989, Structure and spatial organisation of intermediate filament and nuclear lamin molecules, in: Cytoskeletal and Extracellular Proteins: Structure, Interactions and Assembly, Springer Series in Biophysics (U. Aebi and J. Engel, eds.), Volume 3, Springer-Verlag, Berlin, pp. 140–149.

    Google Scholar 

  • Conway, J. F., Fraser, R. D. B., MacRae, T. P., and Parry, D. A. D., 1988, Protein chains in wool and epidermal keratin IF: Structural features and spatial arrangement, in: Biology of Wool and Hair (G. E. Rogers, P. J. Reis, K. A. Ward, and R. C. Marshall, eds.), Chapman & Hall, London, pp. 127–144.

    Google Scholar 

  • Crewther, W. G., and Dowling, L. M., 1971, The preparation and properties of large peptides from the helical regions of the low-sulphur proteins of wool, Appl. Polym. Symp. No. 18, 1-20.

    Google Scholar 

  • Crewther, W. G., and Harrap, B. S., 1967, The preparation and properties of a helix-rich fraction obtained by partial proteolysis of low-sulphur S-carboxymethylkerateine from wool, J. Biol. Chem. 242: 4310–4319.

    PubMed  CAS  Google Scholar 

  • Crewther, W. G., Inglis, A. S., and McKern, N. M., 1978, Amino acid sequences of a-helical segments from S-carboxymethylkerateine A. Complete sequence of a type II segment, Biochem. J. 173: 365–371.

    PubMed  CAS  Google Scholar 

  • Crewther, W. G., Dowling, L. M., Steinert, P. M., and Parry, D. A. D., 1983, The structure of intermediate filaments, Int. J. Biol. Macromol. 5: 267–274.

    CAS  Google Scholar 

  • Crick, F. H. C., 1953, The packing of a-helices: Simple coiled-coils, Acta Crystallogr. 6: 689–697.

    CAS  Google Scholar 

  • Debus, E., Fligge, G., Weber, K., and Osborn, M., 1982, A monoclonal antibody specific for the 200 kilodalton polypeptide of the neurofilament triplet, EMBO J. 1: 41–46.

    PubMed  CAS  Google Scholar 

  • Dowling, L. M., Parry, D. A. D., and Sparrow, L. G., 1983, Structural homology between hard α-keratin and the intermediate filament proteins, desmin and vimentin, Biosci. Rep. 3: 73–78.

    PubMed  CAS  Google Scholar 

  • Dowling, L. M., Crewther, W. G., and Inglis, A. S., 1986, The primary structure of component 8c-1, a subunit protein of intermediate filaments in wool keratin, Biochem. J. 236: 695–703.

    PubMed  CAS  Google Scholar 

  • Eckert, R. L., 1988, Sequence of the human 40-kDa keratin reveals an unusual structure with very high sequence identity to the corresponding bovine keratin, Proc. Natl. Acad. Sci. USA 85: 1114–1118.

    PubMed  CAS  Google Scholar 

  • Eichner, R., Bonitz, P., and Sun, T. T., 1984, Classification of epidermal keratins according to their immunoreactivity, isoelectric point and mode of expression, J. Cell Biol. 98: 1388–1396.

    PubMed  CAS  Google Scholar 

  • Fisher, D. Z., Chaudhary, N., and Blobel, G., 1986, cDNA sequencing of nuclear lamins A and C reveals primary and secondary structural homology to intermediate filament proteins, Proc. Natl. Acad. Sci. USA 83: 6450–6454.

    PubMed  CAS  Google Scholar 

  • Fraser, R. D. B., and MacRae, T. P., 1976, The molecular structure of feather keratin, Proc. 16th Ornithological Congress, Canberra, Aust. Acad. Sci., pp. 443-451.

    Google Scholar 

  • Fraser, R. D. B., and MacRae, T. P., 1983, The structure of the a-keratin microfibril, Biosci. Rep. 3: 517–525.

    PubMed  CAS  Google Scholar 

  • Fraser, R. D. B., MacRae, T. P., Parry, D. A. D., and Suzuki, E., 1969, The structure of β-keratin, Polymer 10: 810–826.

    CAS  Google Scholar 

  • Fraser, R. D. B., MacRae, T. P., and Suzuki, E., 1976, Structure of the α-keratin microfibril, J. Mol. Biol. 108: 435–452.

    PubMed  CAS  Google Scholar 

  • Fraser, R. D. B., MacRae, T. P., Suzuki, E., and Parry, D. A. D., 1985, Intermediate filament structure: 2. Molecular interactions in the filament, Int. J. Biol. Macromol. 7: 258–274.

    CAS  Google Scholar 

  • Fraser, R. D. B., MacRae, T. P., Sparrow, L. G., and Parry, D. A. D., 1988, Disulphide bonding in α-keratin, Int. J. Biol. Macromol. 10: 106–112.

    CAS  Google Scholar 

  • Gamier, J., Osguthorpe, D. J., and Robson, B., 1978, Analysis of the accuracy and implications of simple methods for predicting the secondary structure of globular proteins, J. Mol. Biol. 120: 97–120.

    Google Scholar 

  • Geisler, N., and Weber, K., 1981, Comparison of the proteins of two immunologically distinct intermediate sized filaments by amino acid sequence analysis: Desmin and vimentin, Proc. Natl. Acad. Sci. USA 78: 4120–4123.

    PubMed  CAS  Google Scholar 

  • Geisler, N., and Weber, K., 1982, The amino acid sequence of chicken muscle desmin provides a common structural model for intermediate filament proteins, EMBO J. 1: 1649–1656.

    PubMed  CAS  Google Scholar 

  • Geisler, N., and Weber, K., 1983, Amino acid sequence data on glial fibrillary acidic protein (GFA): Implications for the subdivision of intermediate filaments into epithelial and non-epithelial members, EMBO J. 2: 2059–2063.

    PubMed  CAS  Google Scholar 

  • Geisler, N., Kaufmann, E., and Weber, K., 1982a, Proteinchemical characterization of three structurally distinct domains along the protofilament unit of desmin 10 nm filaments, Cell 30: 277–286.

    PubMed  CAS  Google Scholar 

  • Geisler, N., Plessmann, U., and Weber, K., 1982b, Related amino acid sequences in neurofilaments and non-neuronal intermediate filaments, Nature 296: 448–450.

    PubMed  CAS  Google Scholar 

  • Geisler, N., Kaufmann, E., Fischer, S., Plessmann, U., and Weber, K., 1983, Neurofilament architecture combines structural principles of intermediate filaments with carboxy-terminal extensions increasing in size between triplet proteins, EMBO J. 2: 1295–1302.

    PubMed  CAS  Google Scholar 

  • Geisler, N., Fischer, S., Vanderkerckhove, J., Plessmann, U., and Weber, K., 1984, Hybrid character of a large neurofilament protein (NF-M): Intermediate filament type sequence followed by a long and acidic carboxy-terminal extension, EMBO J. 3: 2701–2706.

    PubMed  CAS  Google Scholar 

  • Geisler, N., Fischer, S., Vanderkerckhove, J., van Damme, J., Plessmann, U., and Weber, K., 1985a, Protein-chemical characterization of NF-H, the largest mammalian neurofilament component: Intermediate filament-type sequences followed by a unique carboxy-terminal extension, EMBO J. 4: 57–63.

    PubMed  CAS  Google Scholar 

  • Geisler, N., Kaufmann, E., and Weber, K., 1985b, Antiparallel orientation of the two double-stranded coiled-coils in the tetrameric protofilament unit of intermediate filaments, J. Mol. Biol. 182: 173–177.

    PubMed  CAS  Google Scholar 

  • Geisler, N., Plessmann, U., and Weber, K., 1985c, The complete amino acid sequence of the major neurofilament protein (NF-L), FEBS Lett. 182: 475–478.

    PubMed  CAS  Google Scholar 

  • Glass, C., Kim, K. H., and Fuchs, E., 1985, Sequence and expression of a human type II mesothelial keratin, J. Cell Biol. 101: 2366–2373.

    PubMed  CAS  Google Scholar 

  • Gough, K. H., Inglis, A. S., and Crewther, W. G., 1978, Amino acid sequences of α-helical segments from S-carboxymethyl-kerateine-A. Complete sequence of a type I segment, Biochem. J. 173: 373–385.

    PubMed  CAS  Google Scholar 

  • Gruen, L. C., and Woods, E. F., 1983, Structural studies on the microfibrillar proteins of wool, Biochem. J. 209: 587–595.

    PubMed  CAS  Google Scholar 

  • Hanukoglu, I., and Fuchs, E., 1982, The cDNA sequence of a human epidermal keratin: Divergence of sequence but conservation of structure among intermediate filament proteins, Cell 31: 243–252.

    PubMed  CAS  Google Scholar 

  • Hanukoglu, I., and Fuchs, E., 1983, The cDNA sequence of a type II cytoskeletal keratin reveals constant and variable domains among keratins, Cell 33: 915–924.

    PubMed  CAS  Google Scholar 

  • Hirokawa, N., Glicksman, M. A., and Willard, M. B., 1984, Organization of mammalian neurofilament polypeptides within the neuronal cytoskeleton, J. Cell Biol. 98: 1523–1536.

    PubMed  CAS  Google Scholar 

  • Hoffmann, W., and Franz, J. K., 1984, Amino acid sequence of the carboxy-terminal part of an acidic type I cytokeratin of molecular weight 51 000 from Xenopus laevis epidermis as predicted from the cDNA sequence, EMBO J. 3: 1301–1306.

    PubMed  CAS  Google Scholar 

  • Hoffmann, W., Franz, J. K., and Franke, W. W., 1985, Amino acid sequence microheterogeneities of basic (type II) cytokeratins of Xenopus laevis epidermis and evolutionary conservativity of helical and non-helical domains, J. Mol. Biol. 184: 713–724.

    PubMed  CAS  Google Scholar 

  • Hong, B., and Davison, P. F., 1981, Isolation and characterization of a soluble, immunoactive peptide of glial fibrillary acidic protein, Biochim. Biophys. Acta 670: 139–145.

    PubMed  CAS  Google Scholar 

  • Huber, R., 1979, Conformational flexibility and its functional significance in some protein molecules, Trends Biochem. Sci. 4: 271–276.

    CAS  Google Scholar 

  • Ip, W., Hartzer, M. K., Pang, S. Y. Y., and Robson, R. M., 1985, Assembly of vimentin in vitro and its implications concerning the structure of intermediate filaments, J. Mol. Biol. 183: 365–375.

    PubMed  CAS  Google Scholar 

  • Jonas, E., Sargent, T. D., and Dawid, I. B., 1985, Epidermal keratin gene expressed in embryos of Xenopus laevis, Proc. Natl. Acad. Sci. USA 82: 5413–5417.

    PubMed  CAS  Google Scholar 

  • Jorcano, J. L., Rieger, M., Franz, J. K., Schiller, D. L., Moll, R., and Franke, W. W., 1984, Identification of two types of keratin polypeptides within the acidic cytokeratin subfamily I, J. Mol. Biol. 179: 257–281.

    PubMed  CAS  Google Scholar 

  • Julien, J. P., Ramachandran, K., and Grosveld, F., 1985, Cloning of a cDNA encoding the smallest neurofilament protein from the rat, Biochim. Biophys. Acta. 825: 398–404.

    PubMed  CAS  Google Scholar 

  • Julien, J. P., Grosveld, F., Yazdanbaksh, K., Flavell, D., Meijer, D., and Mushynski, W., 1987, The structure of a human neurofilament gene (NF-L): A unique exon-intron organization in the intermediate filament gene family, Biochim. Biophys. Acta 909: 10–20.

    PubMed  CAS  Google Scholar 

  • Klinge, E. M., Sylvestre, Y. R., Freedberg, I. M., and Blumenberg, M., 1987, Evolution of keratin genes: Different protein domains evolve by different pathways, J. Mol. Evol. 24: 319–329.

    PubMed  CAS  Google Scholar 

  • Knapp, B., Rentrop, M., Schweizer, J., and Winter, H., 1987, Three cDNA sequences of mouse type I keratins, J. Biol. Chem. 262: 938–945.

    PubMed  CAS  Google Scholar 

  • Krieg, T. M., Schafer, M. P., Cheng, C. K., Filpula, D., Flaherty, P., Steinert, P. M., and Roop, D. R., 1985, Organisation of a type I keratin gene. Evidence for evolution of intermediate filaments from a common ancestral gene, J. Biol. Chem. 260: 5867–5870.

    PubMed  CAS  Google Scholar 

  • Krohne, G., Wolin, S. L., McKeon, F. D., Franke, W. W., and Kirschner, M. W., 1987, Nuclear lamin LI of Xenopus laevis: cDNA cloning, amino acid sequence and binding specificity of a member of the lamin B subfamily, EMBO J. 6: 3801–3808.

    PubMed  CAS  Google Scholar 

  • Lees, J. F., Shneidman, P. S., Skuntz, S. F., Carden, M. J., and Lazzarini, R. A., 1988, The structure and organisation of the human heavy neurofilament subunit (NF-H) and the gene encoding it, EMBO J. 7: 1947–1955.

    PubMed  CAS  Google Scholar 

  • Lersch, R., and Fuchs, E., 1988, Sequence and expression of a type II keratin, K5, in human epidermal cells, Mol. Cell. Biol. 8: 486–493.

    PubMed  CAS  Google Scholar 

  • Levy, E., Liem, R. K. H., D’Eustachio, P., and Cowan, N. J., 1987, Structure and evolutionary origin of the gene encoding mouse NF-M, the middle-molecular-mass neurofilament protein, Eur. J. Biochem. 166: 71–77.

    PubMed  CAS  Google Scholar 

  • Lewis, S. A., and Cowan, N. J., 1986, Anomalous placement of introns in a member of the intermediate filament multigene family: An evolutionary conundrum, Mol. Cell. Biol. 6: 1529–1534.

    PubMed  CAS  Google Scholar 

  • Lewis, S. A., Balcarek, J. M., Krek, V., Shelanski, M., and Cowan, N. J., 1984, Sequence of a cDNA clone encoding mouse glial fibrillary acidic protein: Structural conservation of intermediate filaments, Proc. Natl. Acad. Sci. USA 81: 2743–2746.

    PubMed  CAS  Google Scholar 

  • Mack, J. W., Torchia, D. A., and Steinert, P. M., 1988, Solid-state NMR studies of the dynamics and structure of mouse keratin intermediate filaments, Biochemistry 27: 5418–5426.

    PubMed  CAS  Google Scholar 

  • McKeon, F. D., Kirschner, M. W., and Caput, D., 1986, Homologies in both primary and secondary structure between nuclear envelope and cytoplasmic intermediate filament proteins, Nature 319: 463–468.

    PubMed  CAS  Google Scholar 

  • McLachlan, A. D., and Karn, J., 1983, Periodic features in the amino acid sequence of nematode myosin rod, J. Mol. Biol. 164: 605–626.

    PubMed  CAS  Google Scholar 

  • McLachlan, A. D., and Stewart, M., 1976, The 14-fold periodicity in α-tropomyosin and the interaction with actin, J. Mol. Biol. 103: 271–298.

    PubMed  CAS  Google Scholar 

  • McLachlan, A. D., and Stewart, M., 1982, Periodic charge distribution in the intermediate filament proteins desmin and vimentin, J. Mol. Biol. 162: 693–698.

    PubMed  CAS  Google Scholar 

  • Marchuk, D., McCrohon, S., and Fuchs, E., 1984, Remarkable conservation of structure among intermediate filament genes, Cell 39: 491–498.

    PubMed  CAS  Google Scholar 

  • Marchuk, D., McCrohon, S., and Fuchs, E., 1985, Complete sequence of a gene encoding a human type I keratin: Sequences homologous to enhancer elements in the regulatory region of the gene, Proc. Natl. Acad. Sci. USA 82: 1609–1613.

    PubMed  CAS  Google Scholar 

  • Moll, R., Franke, W. W., Schiller, D., Geiger, B., and Krepier, R., 1982, The catalog of human cytokeratins: Patterns of expression in normal epithelia, tumors and cultured cells, Cell 31: 11–24.

    PubMed  CAS  Google Scholar 

  • Myers, M. W., Lazzarini, R. A., Lee, V. M. Y., Schlaepfer, W. W., and Nelson, D. L., 1987, The human midsize neurofilament subunit: A repeated protein sequence and the relationship of its gene to the intermediate filament gene family, EMBO J. 6: 1617–1625.

    PubMed  CAS  Google Scholar 

  • Napolitano, E. W., Chin, S. S. M., Colman, D. R., and Liem, R. K. H., 1987, Complete amino acid sequence and in vitro expression of rat NF-M, the middle molecular weight neurofilament protein, J. Neurosci. 7: 2590–2599.

    PubMed  CAS  Google Scholar 

  • Pang, Y. Y. S., Robson, R. M., Hartzer, M. K., and Stromer, M. H., 1983, Subunit structure of the desmin and vimentin protofilament units, J. Cell Biol. 97: 266a.

    Google Scholar 

  • Parry, D. A. D., 1975, Analysis of the primary sequence of α-tropomyosin from rabbit skeletal muscle, J. Mol. Biol. 98: 519–535.

    PubMed  CAS  Google Scholar 

  • Parry, D. A. D., 1979, Determination of structural information from the amino acid sequences of fibrous proteins, in: Fibrous Proteins: Scientific, Industrial and Medical Aspects, Volume 1 (D. A. D. Parry and L. K. Creamer, eds.), Academic Press, New York, pp. 393–427.

    Google Scholar 

  • Parry, D. A. D., and Fraser, R. D. B., 1985, Intermediate filament structure: 1. Analysis of IF protein sequence data, Int. J. Biol. Macromol. 7: 203–213.

    CAS  Google Scholar 

  • Parry, D. A. D., Crewther, W. G., Fraser, R. D. B., and MacRae, T. P., 1977, Structure of α-keratin: Structural implication of the amino acid sequences of the type I and type II chain segments, J. Mol. Biol. 113: 449–454.

    PubMed  CAS  Google Scholar 

  • Parry, D. A. D., Steven, A. C., and Steinert, P. M., 1985, The coiled-coil molecules of intermediate filaments consist of two parallel chains in exact axial register, Biochem. Biophys. Res. Commun. 127: 1012–1018.

    PubMed  CAS  Google Scholar 

  • Parry, D. A. D., Conway, J. F., and Steinert, P. M., 1986, Structural studies on lamin: Similarities and differences between lamin and intermediate filament proteins, Biochem. J. 238: 305–308.

    PubMed  CAS  Google Scholar 

  • Parry, D. A. D., Conway, J. F., Goldman, A. E., Goldman, R. D., and Steinert, P. M., 1987, Nuclear lamin proteins: Common structures for paracrystalline, filamentous and lattice forms, Int. J. Biol. Macromol. 9: 137–145.

    CAS  Google Scholar 

  • Potschka, M., Winkler, H., and Wicke, G., 1984, Charge effects in sedimentation of intermediate filament subassemblies, 8th Int. Biophys. Congr. Bristol, p. 212.

    Google Scholar 

  • Quax, W., Egberts, W. V., Hendriks, W., Quax-Jeuken, Y., and Bloemendal, H., 1983, The structure of the vimentin gene, Cell 35: 215–223.

    PubMed  CAS  Google Scholar 

  • Quax, W., van der Heuvel, R., Egberts, W. V., Quax-Jeuken, Y., and Bloemendal, H., 1984, Intermediate filament cDNAs from BHK-21 cells: Demonstration of distinct genes for desmin and vimentin in all vertebrate classes, Proc. Natl. Acad. Sci. USA 81: 5970–5974.

    PubMed  CAS  Google Scholar 

  • Quax-Jeuken, Y. E. F. M., Quax, W. J., and Bloemendal, H., 1983, Primary and secondary structure of hamster vimentin from the nucleotide sequence, Proc. Natl. Acad. Sci. USA 80: 3548–3552.

    PubMed  CAS  Google Scholar 

  • Quinlan, R. A., and Franke, W. W., 1982, Heteropolymer filaments of vimentin and desmin in vascular smooth muscle tissue and cultured hamster kidney cells demonstrated by chemical crosslinking, Proc. Natl. Acad. Sci. USA 79: 3452–3456.

    PubMed  CAS  Google Scholar 

  • Quinlan, R. A., and Franke, W. W., 1983, Molecular interactions in intermediate-sized filaments revealed by chemical cross-linking. Heteropolymers of vimentin and glial filament protein in cultured human glioma cells, Eur. J. Biochem. 132: 477–484.

    PubMed  CAS  Google Scholar 

  • Quinlan, R. A., Cohlberg, J. A., Schiller, D. L., Hatzfeld, M., and Franke, W. W., 1984, Heterotypic tetramer (A2D2) complexes of non-epidermal keratins isolated from cytoskeletons of rat hepatocytes and hepatoma cells, J. Mol. Biol. 178: 365–388.

    PubMed  CAS  Google Scholar 

  • Quinlan, R. A., Schiller, D. L., Hatzfeld, M., Achtstatter, T., Moll, R., Jorcano, J. L., Magin, T. M., and Franke, W. W., 1985, Patterns of expression and organization of cytokeratin intermediate filaments, Ann. N.Y. Acad. Sci. 455: 282–306.

    PubMed  CAS  Google Scholar 

  • Raychaudury, A., Marchuk, D., Lindhurst, M., and Fuchs, E., 1986, Three tightly linked genes encoding human type I keratins: Conservation of sequence in the 5′-untranslated leader and 5′-upstream regions of coexpressed keratin genes, Mol. Cell Biol. 6: 539–548.

    Google Scholar 

  • Renner, W., Franke, W. W., Schmid, E., Geisler, E., Weber, K., and Mandelkow, E., 1981, Reconstitution of intermediate-sized filaments from denatured monomeric vimentin, J. Mol. Biol. 149: 285–306.

    PubMed  CAS  Google Scholar 

  • Rieger, M., Jorcano, J. L., and Franke, W. W., 1985, Complete sequence of a bovine type I cytokeratin gene: Conserved and variable intron positions in genes of polypeptides of the same cytokeratin subfamily, EMBO J. 4: 2261–2267.

    PubMed  CAS  Google Scholar 

  • Romano, V., Hatzfeld, M., Magin, T. M., Zimbelmann, R., Franke, W. W., Maier, G., and Ponstingl, H., 1986, Cytokeratin expression in simple epithelia I. Identification of mRNA coding for human cytokeratin No 18 by a cDNA clone, Differentiation 30: 244–253.

    PubMed  CAS  Google Scholar 

  • Sharp, G., Shaw, G., and Weber, K., 1982, Immunoelectron microscopic localization of the 3 neurofilament triplet proteins along neurofilaments of cultured dorsal root ganglion neurons, Exp. Cell Res. 137: 403–414.

    PubMed  CAS  Google Scholar 

  • Shaw, G., and Weber, K., 1981, Distribution of neurofilament triplet proteins within individual neurons, Exp. Cell Res. 136: 119–126.

    PubMed  CAS  Google Scholar 

  • Shaw, G., and Weber, K., 1982, Differential expression of neurofilament triplet proteins in brain development, Nature 298: 277–279.

    PubMed  CAS  Google Scholar 

  • Shneidman, P. S., Carden, M. J., Lees, J. F., and Lazzarini, R. A., 1988, The structure of the largest murine neurofilament protein (NF-H) as revealed by cDNA and genomic sequences, Mol. Brain Res. 4: 217–231.

    CAS  Google Scholar 

  • Singer, P. A., Trevor, K., and Oshima, R. G., 1986, Molecular cloning and characterization of the endo B cytokeratin expressed in preimplantation mouse embryos, J. Biol. Chem. 261: 538–547.

    PubMed  CAS  Google Scholar 

  • Skerrow, D., Matoltsy, A. G., and Matoltsy, M. N., 1973, Isolation and characterization of the helical regions of epidermal prekeratin, J. Biol. Chem. 248: 4820–4826.

    PubMed  CAS  Google Scholar 

  • Sparrow, L. G., and Inglis, A. S., 1980, Characterization of the cyanogen bromide proteins of component 7c, a major microfibrillar protein from wool, Proc. 6th Int. Wool Text. Res. Conf. Pretoria, Vol. II, pp. 237-246.

    Google Scholar 

  • Sparrow, L. G., Dowling, L. M., Loke, V. Y., and Strike, P. M., 1989, Amino acid sequences of wool keratin IF proteins, in: Biology of Wool and Hair (G. E. Rogers, P. J. Reis, K. A. Ward, and R. C. Marshall, eds.), Chapman & Hall, London, pp. 145–155.

    Google Scholar 

  • Steinert, P. M., 1978a, Structure of the three-chain unit of the bovine epidermal keratin filament, J. Mol. Biol. 123: 49–70.

    PubMed  CAS  Google Scholar 

  • Steinert, P. M., 1978b, Structural features of the α-type filaments of the inner root sheath cells of the guinea pig hair follicle, Biochemistry 17: 5045–5052.

    PubMed  CAS  Google Scholar 

  • Steinert, P. M., 1981, Intermediate filaments (IF), in: Electron Microscopy of Proteins, Volume 1 (J. R. Harris, ed.), Academic Press, New York, pp. 125–166.

    Google Scholar 

  • Steinert, P. M., and Parry, D. A. D., 1985, Intermediate filaments: Conformity and diversity of expression and structure, Annu. Rev. Cell Biol. 1: 41–65.

    PubMed  CAS  Google Scholar 

  • Steinert, P. M., and Roop, D. R., 1988, Molecular and cellular biology of intermediate filaments, Annu. Rev. Biochem. 57: 593–625.

    PubMed  CAS  Google Scholar 

  • Steinert, P. M., Zimmerman, S. B., Starger, J. M., and Goldman, R. D., 1978, Ten-nanometer filaments of hamster BHK-21 cells and epidermal keratin filaments have similar structures, Proc. Natl. Acad. Sci. USA 75: 6098–6101.

    PubMed  CAS  Google Scholar 

  • Steinert, P. M., Idler, W. W., and Goldman, R. D., 1980, Intermediate filaments of BHK-21 cells and bovine epidermal keratinocytes have similar ultrastructures, Proc. Natl. Acad. Sci. USA 77: 4534–4538.

    PubMed  CAS  Google Scholar 

  • Steinert, P. M., Idler, W. W., Cabrai, F., Gottesman, M. M., and Goldman, R. D., 1981, In vitro assembly of homopolymer and copolymer filaments from intermediate filament subunits of muscle and fibroblastic cells, Proc. Natl. Acad. Sci. USA 78: 3692–3696.

    PubMed  CAS  Google Scholar 

  • Steinert, P. M., Idler, W. W., Aynardi-Whitman, M. A., Zackroff, R. V., and Goldman, R. D., 1982, Heterogeneity of intermediate filaments assembled in vitro, Cold Spring Harbor Symp. Quant. Biol. 46: 465–474.

    PubMed  Google Scholar 

  • Steinert, P. M., Rice, R. H., Roop, D. R., Trus, B. L., and Steven, A. C., 1983, Complete amino acid sequence of a mouse epidermal keratin subunit and implications for the structure of intermediate filaments, Nature 302: 794–800.

    PubMed  CAS  Google Scholar 

  • Steinert, P. M., Parry, D. A. D., Racoosin, E. L., Idler, W. W., Steven, A. C., Trus, B. L., and Roop, D. R., 1984, The complete cDNA and deduced amino acid sequence of a type II mouse epidermal keratin of 60000 Da: Analysis of sequence differences between type I and type II keratins, Proc. Natl. Acad. Sci. USA 81: 5709–5713.

    PubMed  CAS  Google Scholar 

  • Steinert, P. M., Parry, D. A. D., Idler, W. W., Johnson, L. D., Steven, A. C., and Roop, D. R., 1985a, Amino acid sequences of mouse and human epidermal keratins of Mr 67 000 provide a systematic basis for the structural and functional diversity of the end domains of keratin intermediate filament subunits, J. Biol. Chem. 260: 7142–7149.

    PubMed  CAS  Google Scholar 

  • Steinert, P. M., Steven, A. C., and Roop, D. R., 1985b, The molecular biology of intermediate filaments, Cell 42: 411–419.

    PubMed  CAS  Google Scholar 

  • Steinert, P. M., Torchia, D. A., and Mack, J. W., 1989, Structural features of keratin intermediate filaments, in: Biology of Wool and Hair (G. E. Rogers, P. J. Reis, K. A. Ward, and R. C. Marshall, eds.), Chapman & Hall, London, pp. 157–167.

    Google Scholar 

  • Sun, T. T., Eichner, R., Schermer, A., Cooper, D., Nelson, W. G., and Weiss, R. A., 1984, Classification, expression, and possible mechanisms of evolution of mammalian epithelial keratins: A unifying model in: Cancer Cells 1, The Transformed Phenotype, Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y., pp. 169–176.

    Google Scholar 

  • Suzuki, E., Crewther, W. G., Fraser, R. D. B., MacRae, T. P., and McKern, N. M., 1973, X-ray diffraction and infrared studies of an α-helical fragment from a-keratin, J. Mol. Biol. 73: 275–278.

    PubMed  CAS  Google Scholar 

  • Tyner, A. L., Eichman, M. J., and Fuchs, E., 1985, The sequence of a type II keratin gene expressed in human skin: Conservation of structure among all intermediate filament genes, Proc. Natl. Acad. Sci. USA 82: 4683–4687.

    PubMed  CAS  Google Scholar 

  • Willard, M., and Simon, C., 1981, Antibody decoration of neurofilaments, J. Cell Biol. 89: 198–205.

    PubMed  CAS  Google Scholar 

  • Winkles, J. A., Sargent, T. D., Parry, D. A. D., Jonas, E., and Dawid, I. B., 1985, Developmentally regulated cytokeratin gene in Xenopus laevis, Mol. Cell. Biol. 5: 2575–2581.

    PubMed  CAS  Google Scholar 

  • Woodcock-Mitchell, J., Eichner, R., Nelson, W. G., and Sun, T. T., 1982, Immunolocalization of keratin polypeptides in human epidermis using monoclonal antibodies, J. Cell Biol. 95: 580–588.

    PubMed  CAS  Google Scholar 

  • Woods, E. F., 1983, The number of polypeptide chains in the rod domain of bovine epidermal keratin, Biochem. Int. 7: 769–774.

    PubMed  CAS  Google Scholar 

  • Woods, E. F., and Gruen, L. C., 1981, Structural studies on the microfibrillar proteins of wool: Characterization of the α-helix-rich particle produced by chymotryptic digestion, Aust. J. Biol. Sci., 34: 515–526.

    PubMed  CAS  Google Scholar 

  • Woods, E. F., and Inglis, A. S., 1984, Organization of the coiled-coils in the wool microfibril, Int. J. Biol. Macromol. 6: 277–283.

    CAS  Google Scholar 

  • Wu, Y. J., Parker, L. M., Binder, N. E., Beckett, M. A., Sinard, J. H., Griffiths, C. T., and Rheinwald, J. G., 1982, The mesothelial keratins: A new family of cytoskeletal proteins identified in cultured mesothelial cell and nonkeratinizing epithelia, Cell 31: 693–703.

    PubMed  CAS  Google Scholar 

  • Zackroff, R. V., and Goldman, R. D., 1980, In vitro reassembly of squid brain intermediate filaments (neurofilaments): Purification by assembly-diassembly, Science 208: 1152–1155.

    PubMed  CAS  Google Scholar 

  • Zehner, Z. E., and Paterson, B. M., 1985, The chicken vimentin gene: Aspects of organization and transcription during myogenesis, Ann. N.Y. Acad. Sci. 455: 79–94.

    PubMed  CAS  Google Scholar 

  • Zhou, X.-M., Idler, W. W., Steven, A. C., Roop, D. R., and Steinert, P. M., 1988, The complete sequence of the human intermediate filament chain keratin 10, J. Biol. Chem., 263: 15584–15589.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer Science+Business Media New York

About this chapter

Cite this chapter

Parry, D.A.D. (1990). Primary and Secondary Structure of IF Protein Chains and Modes of Molecular Aggregation. In: Goldman, R.D., Steinert, P.M. (eds) Cellular and Molecular Biology of Intermediate Filaments. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9604-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9604-9_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9606-3

  • Online ISBN: 978-1-4757-9604-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics