Skip to main content

Abstract

The strong and durable nature of the hairs, nails, hooves, horns, and claws of mammals derives from the synthesis and subsequent cross-linked network of keratin proteins. These proteins are traditionally known as hard keratins in distinction to those characteristic of softer, more flexible, keratinized epithelia such as stratum corneum. Hard keratin tissues typically express complex patterns of keratin proteins, yet despite obvious phenotypic variation they all appear to express common sets of keratin genes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baden, H. P., and Kubilus, J., 1983, Fibrous proteins of bovine hoof, J. Invest. Dermatol. 81: 220–224.

    PubMed  CAS  Google Scholar 

  • Blake, C. C. F., 1985, Exons and the evolution of proteins, Int. Rev. Cytol. 93: 149–185.

    PubMed  CAS  Google Scholar 

  • Bonés, R. M., and Sikorski, H., 1967, The histological structure of wool fibres and their plasticity, J. Text. Inst. 58: 521–532.

    Google Scholar 

  • Bradbury, J. H., 1973, The structure and chemistry of keratin fibres, Adv. Protein Chem. 27: 111–211.

    PubMed  CAS  Google Scholar 

  • Breathnach, R., and Chambon, P., 1981, Organization and expression of eukaryotic split genes coding for proteins, Annu. Rev. Biochem. 50: 349–383.

    PubMed  CAS  Google Scholar 

  • Brown, T. D., and Onions, W. J., 1960, Anomalies in the microscopic structure of some wools, Nature 186: 93–94.

    PubMed  CAS  Google Scholar 

  • Chapman, R. E., 1971, Cell migration in wool follicles of sheep, J. Cell Sci. 9: 791–803.

    PubMed  CAS  Google Scholar 

  • Chapman, R. E., 1976, Electron microscopic and histochemical features of the formation of the orthocortex and paracortex in wool, in: Proceedings of the 5th International Wool Textile Research Conference, Volume 2 (K. Ziegler, ed.), German Wool Research Institute, Aachen, pp. 152–161.

    Google Scholar 

  • Chapman, R. E., and Gemmell, R. T., 1971, Stages in the formation and keratinization of the cortex of the wool fibre, J. Ultrastruct. Res. 36: 342–354.

    PubMed  CAS  Google Scholar 

  • Cohen, J., 1961, The transplantation of individual rat and guinea pig whisker papillae, J. Embryol. Exp. Morphol. 9: 117–127.

    PubMed  CAS  Google Scholar 

  • Crewther, W. G., 1976, Primary structure and chemical properties of wool, in: Proceedings of the 5th International Wool Textile Research Conference, Volume 1 (K. Ziegler, ed.), German Wool Research Institute, Aachen, pp. 1–101.

    Google Scholar 

  • Crewther, W. G., Inglis, A. S., and McKern, N. M., 1978, Amino acid sequences of α-helical segments from S-carboxymethylkerateine-A: Complete sequence of a Type II segment, Biochem. J. 173: 365–371.

    PubMed  CAS  Google Scholar 

  • Crewther, W. G., Dowling, L. M., and Inglis, A. S., 1980a, Amino acid sequence data from a microfibrillar protein of α-keratin, in: Proceedings of the 6th International Wool Textile Research Conference, Volume 2, South African Wool Textile Research Institute, Pretoria, pp. 79–91.

    Google Scholar 

  • Crewther, W. G., Dowling, L. M., Gough, K. H., Marshall, R. C., and Sparrow, L. G., 1980b, The microfibrillar proteins of α-keratin, in: Fibrous Proteins: Scientific, Industrial and Medical Aspects, Volume 2 (D. A. D. Parry and L. K. Creamer, eds.), Academic Press, New York, pp. 151–159.

    Google Scholar 

  • Crewther, W. G., Dowling, L. M., Steinert, P. M., and Parry, D. A. D., 1983, Structure of intermediate filaments, Int. J. Biol. Macromol. 5: 267–274.

    CAS  Google Scholar 

  • Darskus, R. L., 1972, Electrophoretic and Chromatographic characterization of sulphur-rich proteins from wool, J. Chromatogr. 69: 341–348.

    PubMed  CAS  Google Scholar 

  • Dayhoff, M. O., 1978, Atlas of Protein Sequence and Structure, Volume 5, Suppl. 3, Biomedical Research Foundation, Washington, D.C.

    Google Scholar 

  • DeDeurwaerder, R. A., Dobb, M. G., and Sweetman, B. H., 1964, Selective extraction of a protein fraction from wool keratin, Nature 203: 48–49.

    CAS  Google Scholar 

  • Dopheide, T. A. A., 1973, The primary structure of a protein component 0.62, rich in glycine and aromatic residues obtained from wool keratin, Eur. J. Biochem. 34: 120–124.

    PubMed  CAS  Google Scholar 

  • Dowling, L. M.L., Gough, K. H., Inglis, A. S., and Sparrow, L. G., 1979, Comparison of some microfibrillar proteins from wool, Aust. J. Biol. Sci. 32: 437–442.

    CAS  Google Scholar 

  • Dowling, L. M., Parry, D. A. D., and Sparrow, L. G., 1983, Structural homology between hard α-keratin and the intermediate filament proteins desmin and vimentin, Biosci. Rep. 3: 73–78.

    PubMed  CAS  Google Scholar 

  • Dowling, L. M., Crewther, W. G., and Inglis, A. S., 1986, The primary structure of component 8c-1, a subunit protein of intermediate filaments in wool keratin, Biochem. J. 236: 695–703.

    PubMed  CAS  Google Scholar 

  • Downes, A. M., Sharry, L. F., and Rogers, G. E., 1963, Separate synthesis of fibrillar and matrix proteins in the formation of keratin, Nature 199: 1059–1061.

    PubMed  CAS  Google Scholar 

  • Eichner, R., Bonitz, P., and Sun, T.-T., 1984, Classification of epidermal keratins according to their immunoreactivity, isoelectric point and mode of expression, J. Cell Biol. 98: 1388–1396.

    PubMed  CAS  Google Scholar 

  • Elleman, T. C., Lindley, H., and Rowlands, R. J., 1973, Periodicity in high sulphur proteins from wool, Nature 246: 530–531.

    PubMed  CAS  Google Scholar 

  • Epstein, W., and Maibach, H. I., 1969, Cell proliferation and movement in human hair bulbs, in: Advances in Biology of Skin, Volume 9 (W. Montagna and R. L. Dobson, eds.), Pergamon Press, New York, pp. 83–97.

    Google Scholar 

  • Fraser, R. D. B., and MacRae, T. P., 1980, Molecular structure and mechanical properties of keratins, in: The Mechanical Properties of Biological Materials (J. V. F. Vincent and J. D. Currey, eds.), Cambridge University Press, London, pp. 211–246.

    Google Scholar 

  • Fraser, R. D. B., MacRae, T. P., and Rogers, G. E., 1972, Keratins, Their Composition, Structure and Biosynthesis, Thomas, Springfield, Ill.

    Google Scholar 

  • Fraser, R. D. B., Gillespie, J. M., and MacRae, T. P., 1973, Tyrosine-rich proteins in keratins, Comp. Biochem. Physiol. 44B: 943–947.

    Google Scholar 

  • Frenkel, M. J., 1985, Studies on hair keratin genes, Ph.D. thesis, University of Adelaide, Adelaide, South Australia.

    Google Scholar 

  • Frenkel, M. J., Gillespie, J. M., and Reis, P. J., 1974, Factors influencing the biosynthesis of the tyrosine-rich proteins of wool, Aust. J. Biol. Sci. 27: 31–38.

    PubMed  CAS  Google Scholar 

  • Frenkel, M. J., Gillespie, J. M., and Reis, P. J., 1975, Studies on the inhibition of synthesis of the tyrosine-rich proteins of wool, Aust. J. Biol. Sci. 28: 331–338.

    PubMed  CAS  Google Scholar 

  • Fuchs, E. V., and Marchuk, D., 1983, Type I and Type II keratins have evolved from lower eukaryotes to form the intermediate filaments in mammalian skin, Proc. Natl. Acad. Sei. USA 80: 5857–5861.

    CAS  Google Scholar 

  • Fuchs, E. V., Coppock, S. M., Green, H., and Cleveland, D. W., 1981, Two distinct classes of keratin genes and their evolutionary significance, Cell 27: 75–84.

    PubMed  CAS  Google Scholar 

  • Fukuyama, K., and Epstein, W. L., 1985, Keratohyalin, in: Biology of the Integument, Volume 2 (J. Bereiter-Hahn, A. G. Matoltsy, and K. S. Richards, eds.), Springer-Verlag, Berlin, pp. 739–751.

    Google Scholar 

  • Geisler, N., and Weber, K., 1982, The amino acid sequence of chicken muscle desmin provides a common structural model for intermediate filament proteins, EMBO J. 1: 1649–1656.

    PubMed  CAS  Google Scholar 

  • Gillespie, J. M., 1962, The isolation and properties of some soluble proteins from wool. IV. The isolation of the high sulphur proteins SCMKB1, Aust. J. Biol. Sei. 15: 572–588.

    CAS  Google Scholar 

  • Gillespie, J. M., 1972, Proteins rich in glycine and tyrosine from keratins, Comp. Biochem. Physiol. 41B: 723–734.

    Google Scholar 

  • Gillespie, J. M., 1983, The structural proteins of hair: Isolation, characterization and regulation of biosynthesis, in: Biochemistry and Physiology of the Skin, Volume 1 (L. A. Goldsmith, ed.), Oxford University Press, London, pp. 475–510.

    Google Scholar 

  • Gillespie, J. M., and Darskus, R. L., 1971, Relation between the tyrosine content of various wools and their content of a class of protein rich in tyrosine and glycine, Aust. J. Biol. Sci. 24: 1189–1197.

    PubMed  CAS  Google Scholar 

  • Gillespie, J. M., and Frenkel, M. J., 1976, The tyrosine-rich proteins of keratins, Proceedings of the 5th International Wool Textile Research Conference, Volume 2 (K. Ziegler, ed.), German Wool Research Institute, Aachen, pp. 265–276.

    Google Scholar 

  • Gillespie, J. M., and Marshall, R. C., 1977, Proteins of the hard keratins of echidna, hedgehog, rabbit, ox and man, Aust. J. Biol. Sci. 30: 401–409.

    PubMed  CAS  Google Scholar 

  • Gillespie, J. M., and Marshall, R. C., 1980, Variability in the proteins of wool and hair, in: Proceedings of the 6th International Wool Textile Research Conference, Volume 2, South African Wool Textile Research Institute, Pretoria, pp. 61–11.

    Google Scholar 

  • Gillespie, J. M., and Marshall, R. C., 1981, The proteins of normal and aberrant hair keratins, in: Hair Research (C. E. Orfanos, W. Montagna, and G. Stuttgen, eds.), Springer-Verlag, Berlin, pp. 76–83.

    Google Scholar 

  • Gillespie, J. M., and Marshall, R. C., 1983, A comparison of the proteins of normal and trichothiodystrophic human hair, J. Invest. Dermatol. 80: 195–202.

    PubMed  CAS  Google Scholar 

  • Gillespie, J. M., and Reis, P. J., 1966, The dietary-regulated biosynthesis of high sulphur wool proteins, Biochem. J. 98: 669–677.

    PubMed  CAS  Google Scholar 

  • Gillespie, J. M., Haylett, T., and Lindley, H., 1968, Evidence of homology in a high sulphur protein fraction (SCMK-B2) of wool and hair α-keratins, Biochem. J. 110: 193–200.

    PubMed  CAS  Google Scholar 

  • Gillespie, J. M., Frenkel, M. J., and Reis, P. J., 1980, Changes in the matrix proteins of wool and mouse hair following the administration of depilatory components, Aust. J. Biol. Sci. 33: 125–136.

    PubMed  CAS  Google Scholar 

  • Gillespie, J. M., Marshall, R. C., Moore, G. P. M., Panaretto, B. A., and Robertson, D. M., 1982, Changes in the proteins of wool following treatment of sheep with epidermal growth factors, J. Invest. Dermatol. 79: 197–200.

    PubMed  CAS  Google Scholar 

  • Goodman, M., Romero-Herrera, A. E., Dene, H., Czelusniak, J., and Tashian, R. E., 1982, Amino acid sequence evidence on the phylogeny of primates and other eutherians, in: Macromolecular Sequences in Systematic and Evolutionary Biology (M. Goodman, ed.), Plenum Press, New York, pp. 115–191.

    Google Scholar 

  • Gough, K. H., Inglis, A. S., and Crewther, W. G., 1978, Amino acid sequences from S-carboxymethylkerateine-A: Complete sequence of a Type I segment, Biochem. J. 173: 373–385.

    PubMed  CAS  Google Scholar 

  • Hanukoglu, I., and Fuchs, E., 1982, The cDNA sequence of a human epidermal keratin: Divergence of sequence but conservation of structure among intermediate filament proteins, Cell 31: 243–252.

    PubMed  CAS  Google Scholar 

  • Happey, F., and Johnson, A. G., 1962, Some electron microscopic observations on hardening in the human hair follicle, J. Ultrastruct. Res. 7: 373–385.

    Google Scholar 

  • Haylett, T., Swart, L. S., Parris, D., and Joubert, F. J., 1971, The primary structure of some high sulphur proteins of reduced wool, Appl. Polymer Symp. 18: 37–44.

    Google Scholar 

  • Jahoda, C. A. B., Home, K. A., and Oliver, R. F., 1984, Induction of hair growth by implantation of cultured dermal papilla cells, Nature 311: 560–562.

    PubMed  CAS  Google Scholar 

  • Johnson, L. D., Idler, W. W., Zhou, X.-M., Roop, D. R., and Steinert, P. M., 1985, Structure of a gene for the human epidermal 67 kD keratin, Proc. Natl. Acad. Sci. USA 82: 1896–1900.

    PubMed  CAS  Google Scholar 

  • Jonas, E., Sargent, T. D., and Dawid, I. B., 1985, Epidermal keratin genes expressed in embryos of Xenopus laevis, Proc. Natl. Acad. Sci. USA 82: 5413–5417.

    PubMed  CAS  Google Scholar 

  • Kaplin, I. J., and Whiteley, K. J., 1978, An electron microscopic study of fibril matrix arrangement in high and low-crimp wool fibres, Aust. J. Biol. Sci. 31: 231–240.

    PubMed  CAS  Google Scholar 

  • Kimura, M., 1983, The neutral theory of molecular evolution, in: Evolution of Genes and Proteins (M. Nei and R. K. Koehn, eds.), Sinauer Associates, Sunderland, Mass., pp. 208–233.

    Google Scholar 

  • Kretschmer, P. J., Coon, H. C., Davis, A., Harrison, M., and Nienhuis, A. W., 1981, Hemoglobin switching in sheep: Isolation of the fetal γ-globin gene and demonstration that the fetal γ-and adult β-globin genes lie within eight kilobase segments of homologous DNA, J. Biol. Chem. 256: 1975–1982.

    PubMed  CAS  Google Scholar 

  • Krieg, T. M., Schafer, M. P., Cheng, C. K., Filpula, D., Flaherty, P., Steinert, P. M., and Roop, D. R., 1985, Organization of a Type I keratin gene: Evidence for evolution of intermediate filaments from a common ancestral gene, J. Biol. Chem. 260: 5867–5870.

    PubMed  CAS  Google Scholar 

  • Kuczek, E. S., and Rogers, G. E., 1985, Sheep keratins: Characterization of cDNA clones for the glycine + tyrosine-rich wool proteins using a synthetic probe, Eur. J. Biochem. 146: 89–93.

    PubMed  CAS  Google Scholar 

  • Lazarides, E., 1980, Intermediate filaments as mechanical integrators of cellular space, Nature 283: 249–256.

    PubMed  CAS  Google Scholar 

  • Lazarides, E., 1982, Intermediate filaments: A chemically heterogeneous, developmentally regulated class of proteins, Annu. Rev. Biochem. 51: 219–250.

    PubMed  CAS  Google Scholar 

  • Ley, K. F., and Crewther, W. G., 1980, The proteins of wool cuticle, in: Proceedings of the 6th International Wool Textile Research Conference, Volume 2, South African Wool Textile Research Institute, Pretoria, pp. 13–28.

    Google Scholar 

  • Lindley, H., 1977, The chemical composition and structure of wool, in: Chemistry of Natural Protein Fibres (R. S. Asquith, ed.), Plenum Press, New York, pp. 147–191.

    Google Scholar 

  • Lindley, H., and Elleman, T. C., 1972, The preparation and properties of a group of proteins from the high sulphur fraction of wool, Biochem. J. 128: 859–867.

    PubMed  CAS  Google Scholar 

  • Lynch, M. H., Hardy, C. L., Mak, L., and Sun, T.-T., 1985, Biochemical and immunological characterization of human hair and nail α-keratins, J. Cell Biol. 101 (Part 2):21a.

    Google Scholar 

  • McGarry, T. J., and Lindquist, S., 1985, The preferential translation of Drosophila hsp70 mRNA requires sequences in the untranslated leader, Cell 42: 903–911.

    PubMed  CAS  Google Scholar 

  • McKeon, F. D., Kirschner, M. W., and Caput, D., 1986, Homologies in both primary and secondary structures between nuclear envelope and intermediate filament proteins, Nature 319: 463–468.

    PubMed  CAS  Google Scholar 

  • Marchuk, D., McCrohon, S., and Fuchs, E. V., 1985, Complete sequence of a gene encoding a human Type I keratin: Sequences homologous to enhancer elements in the regulatory region of the gene, Proc. Natl. Acad. Sci. USA 82: 1609–1613.

    PubMed  CAS  Google Scholar 

  • Marshall, R. C., 1980, Genetic variations in the proteins of human nail, J. Invest. Dermatol. 75: 264–269.

    PubMed  CAS  Google Scholar 

  • Marshall, R. C., 1983, Characterization of the proteins of human hair and nail by electrophoresis, J. Invest. Dermatol. 80: 519–524.

    PubMed  CAS  Google Scholar 

  • Marshall, R. C., 1985, Nail, claw, hoof and horn keratin, in: Biology of the Integument, Volume 2 (J. Bereiter-Hahn, A. G. Matoltsy, and K. S. Richards, eds.), Springer-Verlag, Berlin, pp. 722–738.

    Google Scholar 

  • Marshall, R. C., and Gillespie, J. M., 1977, The keratin proteins of wool, horn and hoof from sheep, Aust. J. Biol. Sci. 30: 389–400.

    CAS  Google Scholar 

  • Marshall, R. C., and Gillespie, J. M., 1981, Changes in wool protein components following chemical defleecing, in: Proceedings of the 2nd National Conference on Wool Harvesting Research and Development (P. R. W. Hudson, ed.), Sydney, pp. 117-121.

    Google Scholar 

  • Marshall, R. C., Frenkel, M. J., and Gillespie, J. M., 1977, High sulphur proteins in mammalian keratins: A possible aid in classification, Aust. J. Zool. 25: 121–132.

    CAS  Google Scholar 

  • Marshall, R. C., Gillespie, J. M., Inglis, A. S., and Frenkel, M. J., 1980, High tyrosine proteins of wool, heterogeneity and biosynthetic regulation, Proceedings of the 6th International Wool Textile Research Conference, Volume 2, South African Wool Textile Research Institute, Pretoria, pp. 147–158.

    Google Scholar 

  • Marshall, R. C., Gillespie, J. M., McGuirk, B. J., Marier, J. W., Reis, P. J., Rogan, I. M., and Whiteley, K. J., 1985, Investigation of the relationship of variation in fibre protein composition upon fleece properties and fabric performance, Proceedings of the 7th International Wool Textile Research Conference, Volume 2, Society of Fibre Science and Technology, Japan, pp. 36–44.

    Google Scholar 

  • Mercer, E. H., 1961, Keratin and Keratinization, Pergamon Press, New York.

    Google Scholar 

  • Moll, R., Franke, W. W., Volc-Platzer, B., and Krepier, R., 1982a, Different keratin polypeptides in epidermis and other epithelia of human skin: A specific cytokeratin of molecular weight 46,000 in epithelia of the pilosebaceous tract and basal cell epitheliomas, J. Cell Biol. 95: 285–295.

    PubMed  CAS  Google Scholar 

  • Moll, R., Franke, W. W., Schiller, D. L., Geiger, B., and Krepier, R., 1982b, The catalogue of human cytokeratins: Patterns of expression in normal epithelia, tumours and cultured cells, Cell 31: 11–24.

    PubMed  CAS  Google Scholar 

  • Montagna, W., and Parakkal, P. F., 1974, The Structure and Function of Skin, 3rd ed., Academic Press, New York.

    Google Scholar 

  • Novacek, M. J., 1982, Information for molecular studies from anatomical and fossil evidence on higher eutherian phylogeny, in: Macromolecular Sequences in Systematic and Evolutionary Biology (M. Goodman, ed.) Plenum Press, New York, pp. 3–41.

    Google Scholar 

  • Oliver, R. F., 1970, The induction of hair follicle formation in the adult hooded rat by vibrissa dermal papillae, J. Embryol. Exp. Morphol. 23: 219–236.

    PubMed  CAS  Google Scholar 

  • Orwin, D. F. G., 1971, Cell differentiation in the lower, outer sheath of the Romney follicle: A companion cell layer, Aust. J. Biol. Sci. 24: 989–999.

    PubMed  CAS  Google Scholar 

  • Orwin, D. F. G., 1979, The cytology and cytochemistry of the wool follicle, Int. Rev. Cytol. 60: 331–374.

    PubMed  CAS  Google Scholar 

  • Parry, D. A. D., and Fraser, R. D. B., 1985, Intermediate filament structure: 1. Analysis of IF protein sequence data, Int. J. Biol. Macromol. 7: 203–213.

    CAS  Google Scholar 

  • Pollitt, R. J., and Stonier, P. D., 1971, Proteins of normal hair and of cysteine-deficient hair from mentally retarded siblings, Biochem. J. 122: 433–444.

    PubMed  CAS  Google Scholar 

  • Powell, B. C., and Rogers, G. E., 1986, Hair keratin: Composition, structure and biogenesis, in: Biology of the Integument, Volume 2 (J. Bereiter-Hahn, A. G. Matoltsy, and K. S. Richards, eds.), Springer-Verlag, Berlin, pp. 695–721.

    Google Scholar 

  • Powell, B. C., Sleigh, M. J., Ward, K. A., and Rogers, G. E., 1983, Mammalian keratin gene families: Organization of genes coding for the B2 high sulphur proteins of sheep wool, Nucleic Acids Res. 11: 5327–5346.

    PubMed  CAS  Google Scholar 

  • Powell, B.C., Cam, G. R., Fietz, M. J., and Rogers, G. E., 1986, Clustered arrangement of keratin intermediate filament genes, Proc. Natl. Acad. Sci. USA 83: 5048–5052.

    PubMed  CAS  Google Scholar 

  • RayChaudhury, A., Marchuk, D., Lindhurst, M., and Fuchs, E., 1986, Three tightly linked genes encoding human Type I keratins: Conservation of sequence in the 5′-untranslated leader and 5′-upstream regions of coexpressed keratin genes, Mol. Cell Biol. 6: 539–548.

    PubMed  CAS  Google Scholar 

  • Reiger, M., Jorcano, J. L., and Franke, W. W., 1985, Complete sequence of a bovine Type I cytokeratin gene: Conserved and variable intron positions in genes of polypeptides of the same cytokeratin subfamily, EMBO J. 4: 2261–2267.

    Google Scholar 

  • Reis, P. J., 1979, Effects of amino acids on the growth and properties of wool, in: Physiological and Environmental Limitations to Wool Growth (J. L. Black and P. J. Reis, eds.), University of New England Publications Unit, New South Wales, pp. 223–242.

    Google Scholar 

  • Rogers, G. E., 1959a, Electron microscopic studies of hair and wool, Ann. N.Y. Acad. Sci. 83: 378–399.

    PubMed  CAS  Google Scholar 

  • Rogers, G. E., 1959b, Electron microscopy of wool, J. Ultrastruct. Res. 2: 309–330.

    PubMed  CAS  Google Scholar 

  • Rogers, G. E., 1964, Structural and biochemical features of the hair follicle, in: The Epidermis (W. Montagna and W. C. Lobitz, eds.), Academic Press, New York, pp. 179–236.

    Google Scholar 

  • Rogers, G. E., 1983, The occurrence of citrulline in structural proteins of the hair follicle, in: Biochemistry and Physiology of the Skin, Volume 1 (L. A. Goldsmith, ed.), Oxford University Press, London, pp. 511–521.

    Google Scholar 

  • Roth, S., and Helwig, E. B., 1964, The cytology of the dermal papilla, the bulb and the root sheath of mouse hair, J. Ultrastruct. Res. 11: 33–51.

    PubMed  CAS  Google Scholar 

  • Rothnagel, J. A., and Rogers, G. E., 1986, Trichohyalin and intermediate filament-associated protein of the hair follicle, Cell Biol. 102: 1419–1429.

    CAS  Google Scholar 

  • Ryder, M. L., and Stephenson, S. K., 1968, Wool Growth, Academic Press, New York.

    Google Scholar 

  • Skerrow, D., 1985, Epidermal α-keratin: Structure and chemical composition, in: Biology of the Integument, Volume 2 (J. Bereiter-Hahn, A. G., Matoltsy, and K. S. Richards, eds.), Springer-Verlag, Berlin, pp. 621–643.

    Google Scholar 

  • Sparrow, L. G., and Inglis, A. S., 1980, Characterization of the cyanogen bromide peptides of component 7c, a major microfibrillar protein from wool, in: Proceedings of the 6th International Wool Textile Research Conference, Volume 2, South African Wool Research Institute, Pretoria, pp. 237–246.

    Google Scholar 

  • Steinert, P. M., and Parry, D. A. D., 1985, Intermediate Filaments, Annu. Rev. Cell Biol. 1: 41–65.

    PubMed  CAS  Google Scholar 

  • Steinert, P. M., Parry, D. A. D., Racoosin, E. L., Idler, W. W., Steven, A. C., Trus, B. L., and Roop, D. R., 1984, The complete cDNA and deduced amino acid sequence of a Type II mouse epidermal keratin of 60,000 Da: Analysis of sequence differences between Type I and Type II keratins, Proc. Natl. Acad. Sci. USA 81: 5709–5713.

    PubMed  CAS  Google Scholar 

  • Steinert, P. M., Steven, A. C., and Roop, D. R., 1985a, The molecular biology of intermediate filaments, Cell 42: 411–419.

    PubMed  CAS  Google Scholar 

  • Steinert, P. M., Parry, D. A. D., Idler, W. W., Johnson, L. D., Steven, A. C., and Roop, D. R., 1985b, Amino acid sequences of mouse and human epidermal Type II keratins of Mr 67,000 provide a systematic basis for the structural and functional diversity of the end domains of keratin intermediate filament subunits, J. Biol. Chem. 260: 7142–7149.

    PubMed  CAS  Google Scholar 

  • Swart, L. S., 1973, Homology in the amino acid sequences of the high sulphur proteins from wool, Nature New Biol. 243: 27–29.

    PubMed  CAS  Google Scholar 

  • Swart, L. S., and Haylett, T., 1971, Studies on the high sulphur proteins of reduced merino wool: Amino acid sequence of protein SCMKB-IIIB4, Biochem. J. 123: 201–210.

    PubMed  CAS  Google Scholar 

  • Swart, L. S., Jourbert, F. J., and Parris, D., 1976, Homology in the amino acid sequences of the high sulphur proteins from keratings, in: Proceedings of the 5th International Wool Textile Research Conference, Volume 2 (K. Ziegler, ed.), German Wool Research Institute, Aachen, pp. 254–263.

    Google Scholar 

  • Swift, J. A., 1977, The histology of keratin fibres, in: Chemistry of Natural Protein Fibres (R. A. Asquith, ed.), Plenum Press, New York, pp. 81–146.

    Google Scholar 

  • Swift, J. A., 1981, The hair surface, in: Hair Research (C. E. Orfanos, W. Montagna, and G. Stüttgen, eds.), Springer-Verlag, Berlin, pp. 65–72.

    Google Scholar 

  • Tenenhouse, H. S., and Gold, R. J. M., 1976, Loss of a homologous group of proteins in a dominantly inherited ectodermal malformation, Biochem. J. 159: 149–160.

    PubMed  CAS  Google Scholar 

  • Tyner, A. L., Eichman, M. J., and Fuchs, E. V., 1985, The sequence of a Type II keratin gene expressed in human skin: Conservation of structure among all intermediate filament genes, Proc. Natl. Acad. Sci. USA 82: 4683–4687.

    PubMed  CAS  Google Scholar 

  • Ward, K. A., Sleigh, M. J., Powell, B. C., and Rogers, G. E., 1982, The isolation and analysis of the major wool keratin gene families, in: Proceedings of the 2nd World Congress of Genetics Applied to Livestock Production, Volume 6, pp. 146-156, Editorial Garsi, Londres 17, Madrid-28, Spain.

    Google Scholar 

  • Weber, K., and Geisler, N., 1982, The structural relation between intermediate filament proteins in living cells and the α-keratins of sheep wool, EMBO J. 1: 1155–1160.

    PubMed  CAS  Google Scholar 

  • Whiteley, K. J., and Kaplin, I. J., 1977, The comparative arrangement of microfibrils in ortho-, meso-and paracortical cells of merino wool fibres, J. Text. Inst. 68: 384–386.

    Google Scholar 

  • Woods, J. L., and Orwin, D. F. G., 1980, Studies on the surface layers of the wool cuticle, in: Fibrous Proteins: Scientific, Industrial and Medical Aspects, Volume 2 (D. A. D. Parry and L. K. Creamer, eds.), Academic Press, New York, pp. 141–149.

    Google Scholar 

  • Ycas, M., 1972, De novo origin of periodic proteins, J. Mol. Evol. 2: 17–27.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer Science+Business Media New York

About this chapter

Cite this chapter

Powell, B.C., Rogers, G.E. (1990). Hard Keratin IF and Associated Proteins. In: Goldman, R.D., Steinert, P.M. (eds) Cellular and Molecular Biology of Intermediate Filaments. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9604-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9604-9_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9606-3

  • Online ISBN: 978-1-4757-9604-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics