Skip to main content

Bacillus subtilis: A Model System for Heterologous Gene Expression

  • Chapter
Applications of Enzyme Biotechnology

Abstract

Bacillus subtilis has several features that make it a favorable system for studying the expression of foreign genes. B. subtilis is a non-pathogenic organism and makes no known endotoxins and therefore poses no health threat. Furthermore, it has been used historically for making food products in the Orient and has been used widely in industry to produce enzymes such as proteases, alpha-amylases and other degradative enzymes in large quantities. The cells grow readily to high densities in relatively simple media. The growth characteristics and physiology of the cell have been studied extensively. Among prokaryotes it is second only to Escherichia coli in the amount of genetic information that is available about a microorganism. Thus genetic manipulations can be accomplished easily and a large number of suitable mutants and plasmid vectors for genetic engineering are available. Finally, a most interesting feature about B. subtilis is that it produces a large number of proteins that are secreted directly into the growth medium. Harnessing the B. subtilis system would facilitate the construction of re-combinant genes that are expressed efficiently and whose products are secreted in high quantities. Moreover, if a foreign gene product is synthesized and secreted into the growth medium at high levels, its purification is simplified. Thus from the historical, physiological, genetic, and technical viewpoints, B. subtilis would appear to be a good model system for the expression of foreign genes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bruckner, R., Shoseyov, O. and Doi, R.H., 1990. Multiple active forms of a novel serine protease from Bacillus subtilis. Mol. Gen. Genet, 221, 486–490.

    Article  PubMed  CAS  Google Scholar 

  • Friedman, D.I., 1988, Regulation of phage gene expression by termination and antitermination of transcription, in: The Bacteriophages, Vol. 2, R. Calendar, ed., Plenum Press, New York.

    Google Scholar 

  • Hager, P.W. and Rabinowitz, J.C., 1985, Translational specificity in Bacillus subtilis, in; “The Molecular Biology of the Bacilli”, D.A. Dubnau, ed., Academic Press, Inc., Orlando, Florida.

    Google Scholar 

  • Horwitz, R.J., Li, J., and Greenblatt, J., 1987, An elongation control particle containing the N gene transcriptional antitermination protein of bacteriophage lambda, Cell, 51, 631–641.

    Article  PubMed  CAS  Google Scholar 

  • Iglesias, A. & Trautner, T., 1983, Plasmid transformation in Bacillus subtilis: svmmetry of gene conversion in transformation with a hybrid plasmid containing chromosomal DNA. Mol. Gen. Genet., 189. 73–76.

    Article  CAS  Google Scholar 

  • Iordanescu, S., Surdeanu, M., Della Latte, P., and Novick, R., 1978, Incompatibility and molecular relationships between small Staphylococcal plasmids carrying the same resistance marker, Plasmid, 1:468–479.

    Article  PubMed  CAS  Google Scholar 

  • Kawamura, F. & Doi, R.H., 1984, Construction of a Bacillus subtilis double mutant deficient in extracellular alkaline and neutral proteases. J. Bacteriol., 160, 442–444.

    PubMed  CAS  Google Scholar 

  • Koide, Y., Nakamura, A., Uozumi, T. & Beppu, T., 1986, Cloning and sequencing of the major intracellular serine protease gene of Bacillus subtilis, J. Bacteriol., 167, 110–116.

    PubMed  CAS  Google Scholar 

  • McCready, P. and Doi, R.H., 1990, Possible regulaton of senS by a nusA-related mechanism, in: “Genetics and Biotechnology of Bacilli”, Vol. 3, M.M. Zukowski, A.T. Ganesan, and J.A. Hoch, eds., Academic Press, Inc., San Diego, California.

    Google Scholar 

  • Miller, J.H., 1972, Experiments in Molecular Genetics, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.

    Google Scholar 

  • Moran, C. Jr., 1989, Sigma factors and the regulation of transcription, in: “Regulation of Procaryotic Development”, I. Smith, R.A. Slepecky, and P. Setlow, eds., American Society for Microbiology, Washington, DC.

    Google Scholar 

  • Morgan, E.A., 1986, Antitermination mechanisms in rRNA operons of Escherichia coli. J. Bacteriol., 168, 1–5.

    PubMed  CAS  Google Scholar 

  • Rufo Jr., G.A., Sullivan, B.J., Sloma, A. and Pero, J., 1990, Isolation and characterization of a novel extracellular metalloprotease from Bacillus subtilis, J. Bacteriol., 172, 1019–1023.

    PubMed  CAS  Google Scholar 

  • Schauer, A.T., Carver, D.L., Bigelow, B., Baron, L.S. and Friedman, D.I., 1987, Lambda N antitermination system: functional analysis of phage interaction with the host NusA protein, J. Mol. Biol., 194, 679–690.

    Article  PubMed  CAS  Google Scholar 

  • Sloma, A., Ally, A., Ally, D. and Pero, J., 1988, Gene encoding a minor extracellular protease in Bacillus subtilis, J. Bacteriol., 170, 5557–5563.

    PubMed  CAS  Google Scholar 

  • Sloma, A., Rudolph, C.F., Rufo Jr., G.A., Sullivan, B.J., Theriault, K.A., Ally, D. and Pero, J., 1990a, Gene encoding a novel extracellular metalloprotease in Bacillus subtilis, J. Bacteriol., 172, 1024–1029.

    PubMed  CAS  Google Scholar 

  • Sloma, A., Rufo Jr., G.A., Rudolph, C.F., Sullivan, B.J., Theriault, K.A. and Pero, J., 1990b, Bacillopeptidase F of Bacillus subtilis: purification of the protein and cloning of the gene, J. Bacteriol., 172, 1470–1477.

    PubMed  CAS  Google Scholar 

  • Sloma, A., Rufo, Jr., G.A., Rudolph, C.F., Sullivan, B.J., Theriault, K.A. and Pero, J., 1990c, Errata: Bacillopeptidase F of Bacillus subtilis: purification of the protein and cloning of the gene, J. Bacteriol., 172, 5520–5521.

    PubMed  CAS  Google Scholar 

  • Smith, I., 1989. Initiation of sporulation, in: “Regulation of Procaryotic Development”, I. Smith, R.A. Slepecky, and P. Setlow. eds., American Society for Microbiology, Washington, DC.

    Google Scholar 

  • Stahl, M.L. and Ferrari, E., 1984, Replacement of the B. subtilis subtilisin structural gene with an in vitro-derived deletion mutation, J. Bac-ceriol., 158, 411–418.

    CAS  Google Scholar 

  • Strauch, M.A., Spiegelman, G.B., Perego, M., Johnson, W.C., Burbulys, D., and Hoch, J.A., 1989, The transition state transcription regulator abrB of Bacillus subtilis is a DNA binding protein, EMBO J., 8, 1615–1621.

    PubMed  CAS  Google Scholar 

  • Valle, R. and Ferrari, E., 1989, Subtilisin: a redundantly temporally regulated gene?, in: “Regulation of Procaryotic Development”, I. Smith, R.A. Slepecky, and P. Setlow, eds., American Society for Microbiology, Washington, DC.

    Google Scholar 

  • Wang, L.-F., Bruckner, R. and Doi, R.H., 1989, Construction of a Bacillus subtilis mutant deficient in three extracellular proteases, J. Gen. Appl. Microbiol., 35, 487–492.

    Article  CAS  Google Scholar 

  • Wang, L.-F. and Doi, R.H., 1987, Promoter switching during development and the termination site of the sigma-43 operon of Bacillus subtilis, Mol. Gen. Genet., 207, 114–119.

    Article  PubMed  CAS  Google Scholar 

  • Wang, L.-F. and Doi, R.H., 1990, Complex character of senS. a novel gene regulating expression of extracellular protein genes of Bacillus subtilis, J. Bacteriol. 172, 1939–1947.

    PubMed  CAS  Google Scholar 

  • Wang, L.F., Hum, W.T., Kalyan, N.K., Lee, S.G., Hung, P.P. and Doi, R.H., 1989, Synthesis and refolding of human tissuetype plasminogen activator in Bacillus subtilis, Gene, 84, 127–133.

    Article  PubMed  CAS  Google Scholar 

  • Wang, L.-F., Wong, S.-L., Lee, S.-G., Kalyan, N.K., Hung, P.P., Hilliker, S., and Doi, R.H., 1988, Expression and secretion of human atrial natriuretic alpha-factor in Bacillus subtilis using the subtilisin signal peptide, Gene, 69, 39–47.

    Article  PubMed  CAS  Google Scholar 

  • Weichert, M.J. and Chambliss, G.H., 1990, Site-directed mutagenesis of a catabolite repression operator sequence in Bacillus subtilis. Proc. Natl. Acad. Sci. USA, 87, 6238–6242.

    Article  Google Scholar 

  • Whalen, W., Ghosh, B., and Das, A., 1988, NusA protein is necessary and sufficient in vitro for phage lambda N gene product to suppress a rho-independent terminator placed downstream of nutl, Proc. Natl. Acad. Sci. USA, 85, 2494–2498.

    Article  PubMed  CAS  Google Scholar 

  • Wong, S.-L. and Doi, R.H., 1986, Determination of the signal peptide cleavage site in the preprosubtilisin of Bacillus subtilis, J. Biol. Chem., 261, 10176–10181.

    PubMed  CAS  Google Scholar 

  • Wong, S.-L., Kawamura, F. and Doi, R.H., 1986, Use of the Bacillus subtilis subtilisin signal peptide for efficient secretion of TEM beta-lactam-ase during growth, J. Bacteriol., 168, 1005–1009.

    PubMed  CAS  Google Scholar 

  • Wong, S.-L., Wang, L.-F., and Doi, R.H., 1988, Cloning and nucleotide sequence of senN, a novel ‘Bacillus natto’ (B. subtilis) gene that regulates expression of extracellular protein genes, J. Gen. Microbiol., 134, 3269–3276.

    PubMed  CAS  Google Scholar 

  • Wu, X.-C., Nathoo, S., Pang, A.S.-H., Carne, T. and Wong, S.-L., 1990, Cloning, genetic organization and characterization of a structural gene encoding bacillopeptidase F from Bacillus subtilis, J. Biol. Chem., 265, 6845–6850.

    PubMed  CAS  Google Scholar 

  • Yang, M.Y., Ferrari, E. and Henner. D.J., 1984, Cloning of the neutral protease gene of Bacillus subtilis and the use of the cloned gene to create an in vitro-derived deletion mutant, J. Bacteriol., 160, 15–21.

    PubMed  CAS  Google Scholar 

  • Yanofskv, C., 1988, Transcription attenuation, J. Biol. Chem., 263, 609–612.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Doi, R.H., He, XS., McCready, P., Bakheit, N. (1991). Bacillus subtilis: A Model System for Heterologous Gene Expression. In: Kelly, J.W., Baldwin, T.O. (eds) Applications of Enzyme Biotechnology. Industry-University Cooperative Chemistry Program Symposia. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9235-5_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9235-5_20

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9237-9

  • Online ISBN: 978-1-4757-9235-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics