Skip to main content

Genetics of Meloidogyne Virulence Against Resistance Genes from Solanaceous Crops

  • Chapter
Advances in Molecular Plant Nematology

Part of the book series: NATO ASI Series ((NSSA,volume 268))

Abstract

The genetic basis of plant-pathogen interaction is built on the gene-for-gene concept (Flor, 1942), which states that for each gene conferring resistance in the host plant, there is a matching or complementary gene in the pathogen, called an avirulence gene. In this hypothesis, both plant resistance gene and pathogen avirulence gene are dominant (Gabriel and Rolfe, 1990), and only the confrontation between both dominant alleles results in the hypersensitive reaction in the plant, often associated with a cascade of other defence responses (Figure 1). The gene-for-gene complementarity occurs most frequently in plant-pathogen interactions involving obligate and biotrophic parasites which are highly specialized and have a narrow host range (Heath, 1981; Keen, 1982). Since Flor’s work in the 1940s, many avirulence genes have been identified by classical genetic studies in plant-pathogen interactions including viruses, bacteria, fungi, insects and nematodes (Sidhu, 1987), but only recently have they been cloned and characterized in the cases of viruses, bacteria, and more recently fungi. The first bacterial avirulence gene cloned was avrA from Pseudomonas syringae (Staskawicz et al., 1984), the first viral avirulence gene cloned was the coat protein gene of the tobacco mosaic virus (Culver and Dawson, 1991), and the first fungal avirulence gene cloned was avr9 from Cladosporium fulvum (Van Kan et al., 1991).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bailey, D.M., 1941, The seedling test method for root-knot nematode resistance, Proc. Am. Soc. Hortic. Sci. 38:573.

    Google Scholar 

  • Bakker, J., Folkertsma, R.T., Rouppe Van Der Voort, J.N.A.M., De Boer, J.M., and Gommers, F.J., 1993, Changing concepts and molecular approaches in the management of virulences genes in potato cyst nematodes, Annu. Rev. Phytopathol. 31:169.

    Article  PubMed  CAS  Google Scholar 

  • Bauw, G., DeLoose, M., Inze, D., Van Montagu, M., and Vandekerckhove, J., 1987, Alterations in the phenotype of plant cells studied by NH2-terminal amino acid-sequence analysis of proteins electroblotted from two-dimensional gel-separated total extracts, Proc. Natl. Acad. Sci. USA 84:4806.

    Article  PubMed  CAS  Google Scholar 

  • Bell, A.A., 1981, Biochemical mechanisms of disease resistance, Annu. Rev. Plant Physiol. 32:21.

    Article  CAS  Google Scholar 

  • Berthou, F., Ba-Diallo, A., De Maeyer, L., and De Guiran, G., 1989, Caractérisation chez les nématodes Meloidogyne Gocldi (Tylenchida) de types virulents vis-à-vis du gène Mi de la tomate dans deux zones maraîchères au Sénégal, Agronomie 9:877.

    Article  Google Scholar 

  • Bost, S.C., 1982, “Genetic studies of the Lycopersicon esculentum-Meloidogyne incognita interaction,” Ph. D. Dissertation, North Carolina State University.

    Google Scholar 

  • Castagnone-Sereno, P., Bongiovanni, M., and Dalmasso, A., 1992, Differential expression of root-knot nematode resistance genes in tomato and pepper: evidence with Meloidogyne incognita virulent and avirulent near-isogenic lineages, Ann. Appl. Biol. 120:487.

    Article  Google Scholar 

  • Castagnone-Sereno, P., Bongiovanni, M., and Dalmasso, A., 1993, Stable virulence against the tomato resistance Mi gene in the parthenogenctic root-knot nematode Meloidogyne incognitaPhytopathology 83:803.

    Article  Google Scholar 

  • Castagnone-Sereno, P., Piotte, C., Abad, P., Bongiovanni, M., and Dalmasso, A., 1991, Isolation of a repeated DNA probe showing polymorphism among Meloidogyne incognita populations, J. Nematol. 23:316.

    PubMed  CAS  Google Scholar 

  • Castagnone-Sereno, P., Piotte, C., Uijthof, J., Abad, P., Wajnberg, E., Vanlerberghe-Masutti, F., Bongiovanni, M., and Dalmasso, A., 1993, Phylogenetic relationships between amphimictic and parthenogenetic nematodes of the genus Meloidogyne as inferred from repetitive DNA analysis, Heredity 70:195.

    Article  CAS  Google Scholar 

  • Castagnone-Sereno, P., Wajnberg, E., Bongiovanni, M., Leroy, F., and Dalmasso, A., 1994, Genetic variation in Meloidogyne incognita virulence against the tomato Mi resistance gene: evidence from isofemale line selection studies, Theor. Appl. Genet, in press.

    Google Scholar 

  • Clayton, E.E., Graham, T.W., Tood, F.A., Gaines, J.G., and Clark, F.A., 1958, Resistance to the root-knot disease of tobacco, Tobacco Sci. 2:53.

    Google Scholar 

  • Cochran, B.H., Reffel, A.C., and Stiles, C.D., 1983, Molecular cloning of gene sequences regulated by platelet-derived growth factor, Cell 33:939.

    Article  PubMed  CAS  Google Scholar 

  • Culver, J.N., and Dawson, W.O., 1991, Tobacco mosaic virus coat protein genes produce a hypersensitive phenotype in transgenic Nicotiana sylvestris plants, Mol. Plant-Microbe Inter. 4:458.

    Article  CAS  Google Scholar 

  • Dalmasso, A., Castagnone-Sereno, P., and Abad, P., 1992, Tolerance and resistance of plants to nematodes. Knowledge needs and prospects, Nematologica 38:466.

    Article  Google Scholar 

  • Dalmasso, A., Castagnone-Sereno, P., Bongiovanni, M., and De Jong, A., 1991, Acquired virulence in the plant parasitic nematode Meloidogyneincognita. II. Two-dimensional analysis of isogenic isolates, Rev. Nématol. 14:305.

    Google Scholar 

  • Daunay, M.C., and Dalmasso, A., 1985, Multiplication de Meloidogyne javanica, M. incognita, et M. arenaria sur divers Solanum, Rev. Nematol. 8:31.

    Google Scholar 

  • Eckerskorn, C., Jungblut, P., Mewes, W., Klose, J., and Lottspeich, F., 1988, Identification of mouse brain proteins after two-dimensional electrophoresis and electroblotting by microsequence analysis and amino acid composition analysis, Electrophoresis 9:830.

    Article  PubMed  CAS  Google Scholar 

  • Fassuliotis, G., 1979, Plant breeding for root-ncmatode resistance, in: ”Root-knot Nematodes (Meloidogyne species). Systcmatics, Biology and Control,” F. Lamberti and Taylor, C.E., eds., Academic Press, London.

    Google Scholar 

  • Fassuliotis, G., 1987, Genetic basis of plant resistance to nematodes, in: “Vistas on Nematology,” J.A. Veech and Dickson, D.W., eds., Society of Nematologists, Hyattsville.

    Google Scholar 

  • Field, L.M., Devonshire, A.L., and Forbe, B.G., 1988, Molecular evidence that insecticide resistance in peach-potato aphids (Myzus persicae Sulz.) results from amplification of an esterase gene, Biochem. J. 251:309.

    PubMed  CAS  Google Scholar 

  • Flor, H.H., 1942, Inheritance of pathogenicity in Melampsora lini, Phytopathology 32:653.

    Google Scholar 

  • Gabriel, D.W., and Rolfe, B.G., 1990, Working models of specific recognition in plant-microbe interactions, Annu. Rev. Phytopathol. 28:365.

    Article  CAS  Google Scholar 

  • Gilbert, J.C., and Mac Guire, D.C., 1955, One major gene for resistance to severe galling from Meloidogyne incognita, Tomato Genet. Coop. Rep. 5:15.

    Google Scholar 

  • Gomez, P.L., Plaisted, R.L., and Brodie, B.B., 1983, Inheritance of the resistance to Meloidogyne incognita, M. javanica and M. arenaria in potatoes, Am. Potato J. 60:339.

    Article  Google Scholar 

  • Gommers, F.J., Roosien, J., Schouten, A., De Boer, J.M., Overmars, H.A., Bouwman, L., Folkertsma, R., Van Zandvoort, P., Van Gentpelzer, M., Schots, A., Janssen, R., and Bakker, J., 1992, Identification and management of virulence genes in potato cyst nematodes, Neth. J. Plant Pathol. Supp. 2:157.

    Article  Google Scholar 

  • Graham, T.W., 1969, A new pathogenic race of Meloidogyne incognita on flue-cured tobacco, Tobacco Sci. 13:43.

    Google Scholar 

  • Hara, E., Nakada, S., Takehana, K., Nakajima, T., Iino, T., and Oda, K., 1988, Molecular cloning and characterization of cellular genes whose expression is repressed by the adenovirus Ela gene products and growth factors in quiescent rat cells, Gene 70:97.

    Article  PubMed  CAS  Google Scholar 

  • Hare, W.W., 1956, Resistance in pepper to Meloidogyne incognita acrita, Phytopathology 46:98.

    Google Scholar 

  • Hare, W.W., 1957, Inheritance of resistance to root-knot nematodes in pepper, Phytopathology 47:669.

    Google Scholar 

  • Heath, M.C., 1981, A generalized concept of host-parasite specificity, Phytopathology 71:1121.

    Article  Google Scholar 

  • Hedrick, S.M., Cohen, D.I., Nielsen, E.A., and Davis, M.M., 1984, Isolation of cDNA clones encoding T cell-specific membrabe-associated proteins, Nature 308:149.

    Article  PubMed  CAS  Google Scholar 

  • Hendy, H., Pochard, E., and Dalmasso, A., 1983, Identification de deux nouvelles sources de résistance aux nématodes du genre Meloidogyne chez le piment, Capsicum annuum L., C.R. Acad. Agr. Fr. 817.

    Google Scholar 

  • Hendy, H., Pochard, E., and Dalmasso, A., 1985, Transmission héréditaire de la résistance aux nématodes Meloidogyne Chitwood (Tylenchida) portée par deux lignées de Capsicum annuum L. Etude de descendances homozygotes issues d’androgenèse, Agronomie 5:93.

    Article  Google Scholar 

  • Ho, J.Y., Weide, R., Ma, H.M., Van Mordragen, M.F., Lambert, K.N., Koornneef, M., Zabel, P., and Williamson, V.M., 1992, The root-knot resistance gene (Mi) in tomato: construction of a molecular linkage map and identification of dominant cDNA markers in resistant genotypes, Plant J. 2:971.

    PubMed  CAS  Google Scholar 

  • Janssen, R., Bakker, J., and Gommers, F.J., 1990, Selection of virulent and avirulent lines of Globodera rostochiensis for the H1 resistance gene in Solanum tuberosum ssp. andigena CPC 1673, Rev. Nématol. 13:265.

    Google Scholar 

  • Janssen, R., Bakker, J., and Gommers, F.J., 1991, Mendelian proof for a gene-for-gene relationship between virulence of Globodera rostochiensis and the H1 resistance gene in Solanum tuberosum ssp. andigena CPC 1673, Rev. Nématol. 14:207.

    Google Scholar 

  • Jarquin-Barberena, H., Dalmasso, A., De Guiran, G., and Cardin, M.C., 1991, Acquired virulence in the plant parasitic nematode Meloidogyne incognita. I. Biological anlysis of the phenomenon, Rev. Nématol. 14:299.

    Google Scholar 

  • Kearney, B., Ronald, P.C., Dahlbeck, D., and Staskawicz, B.J., 1988, Molecular basis for evasion of plant host defence in bacterial spot disease of pepper, Nature 332:541.

    Article  CAS  Google Scholar 

  • Keen, N.T., 1982, Specific recognition in gene-for-gene host-parasite systems, Adv. Plant Pathol. 1:35.

    Google Scholar 

  • Keen, N.T., 1992, The molecular biology of disease resistance, Plant Mol. Biol. 19:109.

    Article  PubMed  CAS  Google Scholar 

  • Klose, J., 1989, Systematic analysis of the total proteins of a mammalian organism: principles, problems and implications for sequencing the human genome, Electrophoresis 10:140.

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi, D.Y., Tamaki, S.J., Trollinger, D.J., Gold, S., and Keen, N.T., 1990, A gene from Pseudomonas syringae pv. glycinea with homology to avirulence gene D from P.s. pv. tomato but devoid of the avirulence phenotype, Mol. Plant-Microbe Inter. 3:103.

    Article  CAS  Google Scholar 

  • Lange, W., Müller, J., and De Bock, T.S.M., 1993, Virulence in the beet cyst nematode (Heterodera schachtii) versus some alien genes for resistance in beet, Fundam. Appl. Nematol. 16:447.

    Google Scholar 

  • Luedders, V.D., 1983, Genetics of the cyst nematode-soybean symbiosis, Phytopathology 73:944.

    Article  Google Scholar 

  • Luedders, V.D., 1987, A recessive gene for a zero cyst phenotype in soybean, Crop Sci. 27:604.

    Article  Google Scholar 

  • Luedders, V.D., 1989, Selection for zero cyst phenotypes with soybean, Ann. Appl. Biol. 114:509.

    Article  Google Scholar 

  • Luedders, V.D., 1990, A recessive soybean cyst nematode allele for incompatibility with soybean PI 88287, Ann. Appl. Biol. 116:321.

    Article  Google Scholar 

  • Medina-Fihlo, H.P., and Tanksley, S.D., 1983, Breeding for nematode resistance, in: “Handbook of Plant Cell Culture,” Vol.1, 1.D.A. Evans, Sharp, W.R., Ammirato, P.V., and Yamada, Y., eds., Macmillan, New York.

    Google Scholar 

  • Mendoza, H.A., and Jatala, P., 1985, Breeding potatoes for resistance to the root-knot nematode Meloidogyne species, in: “An Advanced Treatise on Meloidogyne. Vol. I. Biology and Control,” J.N. Sasser and Carter, C.C., eds., North Carolina State University Graphics, Raleigh.

    Google Scholar 

  • Messeguer, R., Ganal, M., De Vicente, M.C., Young, N.D., Bolkan, H., and Tanskley, S.D., 1991, High resolution RFLP map around the root knot nematode resistance gene (Mi) in tomato, Theor. Appl. Genet. 82:529.

    Article  CAS  Google Scholar 

  • Mouchès, C., Pasteur, N., Berge, J.B., Hyrien, O., Raymond, M., Robert de Saint Vincent, B., De Silvestri, M., and Georghiou, G.P., 1986, Amplification of an esterase gene is responsible for insecticide resistance in a California Culex mosquito, Science 233:778.

    Article  PubMed  Google Scholar 

  • Müller, J., 1992, Detection of pathotypes by assessing the virulence of Heterodera schachtii populations. Nematologica 38:50.

    Article  Google Scholar 

  • Netscher, C., 1976, Observations and preliminary studies on the occurrence of resistance breaking biotypes of Meloidogyne spp. on tomato, Cah. ORSTOM, Sér. Biol. 11:173.

    Google Scholar 

  • Netscher, C., 1983, Problems in the classification of Meloidogyne reproducing by mitotic parthenogenesis, in: “Concepts in Nematode Systematics,” A.R. Stone, Platt, H.M., and Khalil, L.F., eds., Academic Press, London.

    Google Scholar 

  • Netscher, C., and Taylor, D.P., 1979, Physiologic variation within the genus Meloidogyne ans its implication on integrated control, in: “Root-knot Nematodes (Meloidogyne species). Systematics, Biology and Control,” F. Lamberti and Taylor, C.E., eds., Academic Press, London.

    Google Scholar 

  • Nijboer, N., and Parlevliet, J.E., 1990, Pathotype-specificity in potato cyst nematodes, a reconsideration, Euphytica 49:39.

    Article  Google Scholar 

  • Noe, J.P., 1992, Variability among populations of Meloidogyne arenaria, J. Nematol. 24:404–414.

    PubMed  CAS  Google Scholar 

  • Parrott, D.M., 1981, Evidence for gene-for-gene relationships between resistance gene H1 from Solanum tuberosum ssp. andigena and a gene in Globodera rostochiensis and between H2 from S. multidissectum and a gene in G. pallida, Nematologica 27:372.

    Article  Google Scholar 

  • Parsons, P.A., 1980, Isofemale strains and evolutionary strategies in natural populations, in: “Evolutionary Biology,” Vol. XIII, M. Hetch, Stecre, W., and Wallace, B., eds., Plenum Press, New York.

    Google Scholar 

  • Piotte, C., Castagnone-Sereno, P., Uijthof, J., Abad, P., Bongiovanni, M., and Dalmasso, A., 1992, Molecular characterization of species and populations of Meloidogyne from various geographic origins with repeated-DNA homologous probes, Fundam. Appl Nematol. 15:271.

    Google Scholar 

  • Prot, J.C., 1984, A naturally occurring resistance breaknig biotype of Meloidogyne arenaria on tomato. Reproduction and pathogenicity on tomato cultivars Roma and Rossol, Rev. Nématol. 7:23.

    Google Scholar 

  • Riggs, R.D., and Winstead, N.N., 1959, Studies on resistance in tomato to root-knot nematodes and on the occurrence of pathogenic biotypes, Phytopathology 49:716.

    Google Scholar 

  • Roninson, I. B., 1983, Detection and mapplng of homologous, repeated and amplified DNA sequences by DNA renaturation in agarose gels, Nucl. Acids Res. 2:1911.

    Google Scholar 

  • Sasser, J.N., 1979, Pathogenicity, host ranges and variability in Meloidogyne species, in: “Root-knot Nematodes (Meloidogyne species). Systematics, Biology and Control,” F. Lamberti and Taylor, C.E., eds., Academic Press, London.

    Google Scholar 

  • Shaner, G., Stromberg, E.L., Lacy, G.H., Barker, K.R., and Pirone, T.P., 1992, Nomenclature and concepts of pathogenicity and virulence, Annu. Rev. Phytopathol. 30:47.

    Article  PubMed  CAS  Google Scholar 

  • Sidhu, G. S., 1987, Host-parasite genetics, in: “Plant Breeding Reviews,” J. Janick, ed., Van Nostrand Reinhold, New York.

    Google Scholar 

  • Sikora, R.A., Sitaramaiah, K., and Singh, R.S., 1973, Reaction of root-knot nematode-resistant tomato cultivars to Meloidogyne javanica in India, Plant Dis. Reptr. 57:141.

    Google Scholar 

  • Slana, J.L., and Stavely, J.R., 1981, Identification of the chromosome carrying the factor for resistance to Meloidogyne incognita in tobacco, J. Nematol. 13:61.

    PubMed  CAS  Google Scholar 

  • Southards, C.J., and Priest, M.F., 1973, Variation in pathogenicity of seventeen isolates of Meloidogyne incognita, J. Nematol. 5:63.

    PubMed  CAS  Google Scholar 

  • Staskawicz, B.J., Dahlbeck D., and Keen, N.T., 1984, Cloned avirulence gene of Pseudomonas syringae pv. glycinea determines race-specific incompatibility on Glycine max (L.) Merr., Proc. Natl. Acad. Sci. USA 81:6024.

    Article  PubMed  CAS  Google Scholar 

  • Straus, D., and Ausubel, F.M., 1990, Genomic substraction for cloning DNA corresponding to deletion mutations, Proc. Natl. Acad. Sci. USA 87:1889.

    Article  PubMed  CAS  Google Scholar 

  • Tanksley, S.D., Bernatzky, R., Laitan, N.L., and Prince, J.P., 1988, Conservation of gene repertoire but not gene order in pepper and tomato, Proc. Natl. Acad. Sci. USA 85:6419.

    Article  PubMed  CAS  Google Scholar 

  • Taylor, D.P., 1975, Observations on a resistant and a susceptible variety of tomato in a field heavily infested with Meloidogyne in Senegal, Cah. ORSTOM, Sér. Biol. 10: 239.

    Google Scholar 

  • Travis, G.H., Brennan, M.B., Danielson, P.E., Kozak, C.A., and Sutcliffe, J.G., 1989, Identification of a photoreceptor-specific mRNA encoded by the gene responsible for retinal degeneration slow (rds), Nature 338:70.

    Article  PubMed  CAS  Google Scholar 

  • Triantaphyllou, A.C., 1985, Cytogenetics, cytotaxonomy and phylogeny of root-knot nematodes, in: “An Advanced Treatise on Meloidogyne. Vol. I. Biology and Control,” J.N. Sasser and Carter, C.C., eds., North Carolina State University Graphics, Raleigh.

    Google Scholar 

  • Triantaphyllou, A.C., 1987, Genetics of nematode parasitism on plants, in: “Vistas on Nematology,” J.A. Veech and Dickson, D.W., eds., Society of Nematologists, Hyattsville.

    Google Scholar 

  • Triantaphyllou, A.C., and Sasser, J.N., 1960, Variation in perineal patterns and host specificity of Meloidogyne incognita, Phytopathology 50:724.

    Google Scholar 

  • Trudgill, D.L., 1991, Resistance to and tolerance of plant parasitic nematodes in plants, Annu. Rev. Phytopathol. 29:167.

    Article  Google Scholar 

  • Turner, S.J., 1990, The identification and fitness of virulent potato cyst-nematode populations (Globodera pallida) selected on resistant Solanum vernei hybrids for up to eleven generations, Ann. Appl. Biol. 117:385.

    Article  Google Scholar 

  • Turner, S.J., Stone, A.R., and Perry, J.N., 1983, Selection of potato cyst-nematodes on resistant Solanum vernei hybrids, Euphytica 32:911.

    Article  Google Scholar 

  • Van Der Plank, J.E., 1982, “Host Pathogen Interactions in Plant Disease,” Academic Press, New York.

    Google Scholar 

  • Van Kan, J.A.L., Van Den Ackerveken, G.F.J.M., and De Wit, P.J.G.M., 1991, Cloning and characterization of of cDNA of avirulence gene avr9 of the fungal pathogen Cladosporium fulvum, causal agent of tomato leaf mold, Mol. Plant-Microbe Inter. 4:52.

    Article  Google Scholar 

  • Viglierchio, D.R., 1978, Resistant host responses to ten California populations of Meloidogyne incognita, J. Nematol. 10:224.

    PubMed  CAS  Google Scholar 

  • Weigel, R.J., and Nevins, J.R., 1990, Adenovirus infection of differentiated F9 cells results in a global shut-off of differentiation-induced gene expression, Nucl. Acids Res. 18:6107.

    Article  PubMed  CAS  Google Scholar 

  • Whitehead, A.G., 1991, Selection for virulence in the potato cyst-nematode Globodera pallida, Ann. Appl. Biol. 118:395.

    Article  Google Scholar 

  • Wieland, I., Bolger, G., Asouline, G., and Wigler, M., 1990, A method for difference cloning: gene amplification following substractive hybridization, Proc. Natl. Acad. Sci. USA 87:2720.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Castagnone-Sereno, P. (1994). Genetics of Meloidogyne Virulence Against Resistance Genes from Solanaceous Crops. In: Lamberti, F., De Giorgi, C., Bird, D.M. (eds) Advances in Molecular Plant Nematology. NATO ASI Series, vol 268. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9080-1_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9080-1_22

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9082-5

  • Online ISBN: 978-1-4757-9080-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics