Skip to main content

In Vivo Metabolism of Oligodendroglial Lipids

  • Chapter
Oligodendroglia

Part of the book series: Advances in Neurochemistry ((ANCH,volume 5))

Abstract

A basic assumption for studies of in vivo lipid metabolism in oligodendroglial cells is that the metabolism of lipids in myelin reflects the activity of these glial cells. This is not a trivial assumption. The cytoplasmic connection between the oligodendroglial cell perikaryon and myelin can be visualized in the developing CNS (Bunge, 1968). However, “connections between these elements have never been demonstrated in a normal adult animal, unlike the PNS counterpart, the Schwann cell” (Raine, 1981). Nevertheless, it is generally assumed that metabolism of the mature myelin sheath (which, as will be documented below, is reasonably vigorous) requires extensive contact with elements of the oligodendroglial-cell perikaryon through cytoplasmic channels. These connections may not be easy to visualize; due to their tortuous courses, it is unlikely that a thin section prepared for electron microscopy will include the complete channel (see Chapter 1 for further discussion).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abdel-Latif, A. A., and Abood, L. G., 1966, In vivo incorporation of t.-[14C] serine into phospholipids and proteins of the subcellular fractions of developing rat brain, J. Neurochem. 13: 1189–1196.

    CAS  Google Scholar 

  • Abdel-Latif, A. A., and Smith, J. P., 1970, In vivo incorporation of choline, glycerol and orthophosphate into lecithin and other phospholipide of subcellular fractions of rat cerebellum, Biochim. Biophys. Acta 218: 134–140.

    CAS  Google Scholar 

  • Adams, C. W. M., and Davison, A. N., 1959, The occurrence of esterified cholesterol in the developing nervous system, J. Neurochem. 4: 282–289.

    PubMed  CAS  Google Scholar 

  • Agrawal, H. C., Banik, N. L., Bone, A. H., Davison, A. N., Mitchell, R. F., and Spohn, M., 1970, The identity of a myelin-like fraction isolated from developing brain, Biochem. J. 120: 635–642.

    PubMed  CAS  Google Scholar 

  • Agrawal, H. C., Trotter, J. L., Burton, R. M., and Mitchell, R. F., 1974, Metabolic studies on myelin—Evidence for a precursor role of a myelin subfraction, Biochem. J. 140: 99–109.

    PubMed  CAS  Google Scholar 

  • Ailing, C., and Svennerholm, L., 1969, Concentration and fatty acid composition of cholesteryl esters of normal human brain, J. Neurochem. 16: 751–759.

    Google Scholar 

  • Ansell, G. B., 1973, Phospholipids and the nervous system, in: Form and Function of Phospholipids ( G. B. Ansell, J. N. Hawthorne, and R. M. C. Dawson, eds.), pp. 377–422, Elsevier, New York.

    Google Scholar 

  • Arienti, G., Brunetti, M., Gaiti, A., Orlando, P., and Porcellati, G., 1976, The contribution of net synthesis and base-exchange reactions in phospholipid biosynthesis, in: Function and Metabolism of Phospholipids in the Central and Peripheral Nervous Systems ( G. Porcellati, L. Amaducci, and C. Galli, eds.), pp. 63–78, Plenum Press, New York.

    Google Scholar 

  • Autilio-Gambetti, L., Gambetti, P., and Schafer, B., 1975, Glial and neuronal contribution to proteins and glycoproteins recovered in myelin fractions, Brain Res. 84: 336–340.

    PubMed  CAS  Google Scholar 

  • Balasurbramanian, A. S., and Bachhawat, B. K., 1965, Formation of cerebroside sulphate from 3’-phosphoadenosine-5’-phosphosulphate in sheep brain, Biochim. Biophys. Acta 106: 218220.

    Google Scholar 

  • Banik, N. L., and Davison, A. N., 1971, Exchange of sterols between myelin and other membranes of developing rat brain, Biochem. J. 122: 751–758.

    PubMed  CAS  Google Scholar 

  • Basu, S., Schultz, A. M., Basu, M., and Roseman, S., 1971, Enzymatic synthesis of galactocerebroside by a galactosyltransferase from embryonic chicken brain, J. Biol. Chem. 246: 4272–4279.

    PubMed  CAS  Google Scholar 

  • Baumann, N. (ed.), 1980, Neurological Mutations Affecting Myelination, INSERM Symposium No. 14, Elsevier/North-Holland, Amsterdam.

    Google Scholar 

  • Benjamins, J. A., and Iwata, R., 1979, Kinetics of entry of galactolipids and phospholipids into myelin, J. Neurochem. 32: 921–926.

    PubMed  CAS  Google Scholar 

  • Benjamins, J. A., and McKhann, G. M., 1973a, [2–3H] Glycerol as a precursor of phospholipids in rat brain: Evidence for lack of recycling, J. Neurochem. 20: 1111–1120.

    Google Scholar 

  • Benjamins, J. A., and McKhann, G. M., 1973b, Properties and metabolism of soluble lipoproteins containing choline and ethanolamine phospholipids in rat brain, J. Neurochem. 20: 1121–1129.

    PubMed  CAS  Google Scholar 

  • Benjamins, J. A., and Morell, P., 1977, Assembly of myelin, in: Mechanisms, Regulation and Special Functions of Protein Synthesis in the Brain ( S. Roberts, A. Lajtha, and W. H. Gispen, eds.), pp. 183–197, Elsevier/North-Holland, Amsterdam.

    Google Scholar 

  • Benjamins, J. A., and Smith, M. E., 1977, Metabolism of myelin, in: Myelin ( P. Morell, ed.), pp. 233–270, Plenum Press, New York.

    Google Scholar 

  • Benjamins, J. A., Herschkowitz, N. Robinson, J., and McKhann, G. M., 1971, The effects of inhibitors of protein synthesis on incorporation of lipids into myelin, J. Neurochem. 18: 729–738.

    CAS  Google Scholar 

  • Benjamins, J. A., Miller, K., and McKhann, G. M., 1973, Myelin subfractions in developing rat brain: Characterization and sulphatide metabolism, J. Neurochem. 20: 1589–1603.

    PubMed  CAS  Google Scholar 

  • Benjamins, J. A., Guarnieri, M., Sonneborn, M., and McKhann, G. M., 1974, Sulphatide synthesis in isolated oligodendroglial and neuronal cells, J. Neurochem. 23: 751–757.

    PubMed  CAS  Google Scholar 

  • Benjamins, J. A., Gray, M., and Morell, P., 1976a, Metabolic relationships between myelin subfractions: Entry of proteins, J. Neurochem. 27: 521–575.

    Google Scholar 

  • Benjamins, J. A., Miller, S. L., and Morell, P., 1976b, Metabolic relationships between myelin subfractions: Entry of galactolipids and phospholipids, J. Neurochem. 27: 565–570.

    PubMed  CAS  Google Scholar 

  • Benjamins, J. A., Hadden, T., and Skoff, R. P., 1982, Cerebroside sulfotransferase in Golgienriched fractions from rat brain, J. Neurochem. 38: 233–241.

    PubMed  CAS  Google Scholar 

  • Bennett, G., di Giamberardino, L., Koenig, H. L., and Droz, B., 1973, Axonal migration of protein and glycoprotein to nerve endings. II. Radioautographic analysis of the renewal of glycoproteins in nerve endings of chicken ciliary ganglion after intracerebral injection of 3Hfucose and 3H-glucosamine, Brain Res. 60: 129–146.

    PubMed  CAS  Google Scholar 

  • Berthold, C. H., 1973, Local “demyelination” in developing feline nerve fibers, Neurobiology 3: 339–345.

    Google Scholar 

  • Berthold, C.-H., 1974, A comparative morphological study of the developing node—paranode region in lumbar spinal roots. II. OTAN-staining, Neurobiology 4: 117–131.

    PubMed  CAS  Google Scholar 

  • Berthold, C. H., and Hildebrand, C., 1979, Free and esterified cholesterol in developing feline lumbosacral spinal roots, J. Neurochem. 32: 237–240.

    PubMed  CAS  Google Scholar 

  • Bowen, D. M., and Radin, N. S., 1969a, Cerebroside galactosidase: A method for determination and a comparison with other lysosomal enzymes in developing rat brain, J. Neurochem. 16: 501–511.

    PubMed  CAS  Google Scholar 

  • Bowen, D. M., and Radin, N. S., 1969b, Hydrolase activities in brain of neurological mutants: Cerebroside galactosidase, nitrophenyl galactoside hydrolase, nitrophenyl glucoside hydro-lase and sulphatase, J. Neurochem. 16: 457–460.

    PubMed  CAS  Google Scholar 

  • Bowen, D. M., Davison, A. N., and Ramsey, R.B., 1974, The dynamic role of lipids in the nervous system, Int. Rev. Sci. (Biochem. Ser. 1) 4: 141–179.

    Google Scholar 

  • Bardy, R. O., Bradley, R. M., Young, O. M., and Kalles, H., 1965, An alternative pathway for the enzymatic synthesis of sphingomyelin, J. Biol. Chem. 240: 3693–3694.

    Google Scholar 

  • Brammer, M. J., 1978, The protein-mediated transfer of lecithin to sub-fractions of mature and developing rat myelin, J. Neurochem. 31: 1435–1440.

    PubMed  CAS  Google Scholar 

  • Braun, P. E., Pereyra, P. M., and Greenfield, S., 1980a, Myelin organization and development: A biochemical perspective, in: Myelin: Chemistry and Biology ( G. A. Hashim, ed.), pp. 117, Alan R. Liss, New York.

    Google Scholar 

  • Braun, P. E., Pereyra, P. M., and Greenfield, S., 19806, Mechanisms of assembly of myelin in mice: A new approach to the problem, in: Neurological Mutations Affecting Myelination (N. Baumann, ed.), INSERM Symposium Vo. 14, pp. 413–421, Elsevier/North-Holland, Amsterdam.

    Google Scholar 

  • Brenkert, A., and Radin, N. S., 1972, Synthesis of galactocerebroside and glucocerebroside by rat brain: Assay procedures and changes with age, Brain Res. 36: 183–193.

    PubMed  CAS  Google Scholar 

  • Brunetti, M., diGiamberardino, L., Porcellati, G., and Droz, B., 1981, Contribution of axonal transport to the renewal of myelin phospholipids in peripheral nerves. II. Biochemical study, Brain Res. 219: 73–84.

    PubMed  CAS  Google Scholar 

  • Bunge, R. P., 1968, Glial cells and the central myelin sheath, Physiol. Rev. 48: 197–251.

    PubMed  CAS  Google Scholar 

  • Burkart, T., Caimi, L., Siegrist, H. P., Herschkowitz, N. N., and Wiesmann, U. N., 1982, Vesicular transport of sulfatide in the myelinating mouse brain: Functional association with liposomes?, J. Biol. Chem. 257: 3151–3156.

    PubMed  CAS  Google Scholar 

  • Burton, R. M., Sodd, M. A., and Brady, R. O., 1958, The incorporation of galactose into galactolipids, J. Biol. Chem. 233: 1053–1059.

    PubMed  CAS  Google Scholar 

  • Butler, M., and Morell, P., 1982, Sidedness of phospholipid synthesis on brain membranes, J. Neurochem. 39: 155–164.

    PubMed  CAS  Google Scholar 

  • Butler, M., and Morell, P., 1983, The role of phosphatidylserine decarboxylase in brain phospholipid metabolism, J. Neurochem. 41: 1446–1454.

    Google Scholar 

  • Cammer, W., Fredman, R., Rose, A. L., and Norton, W. T., 1976, Brain carbonic anhydrase: Activity in isolated myelin and the effect of hexachlorophene, J. Neurochem. 27: 167–171.

    Google Scholar 

  • Cammer, W., Sirota, S. R., Zimmerman, T. T., Jr., and Norton, W. T., 1980, 5’-Nucleotidase in rat brain myelin, J. Neurochem. 35: 367–373.

    Google Scholar 

  • Carey, E. M., and Foster, P. C., 1977, Protein-mediated transfer of phosphatidyl choline to myelin, Biochem. Soc. Trans. 5: 1412–1414.

    PubMed  CAS  Google Scholar 

  • Cleland, W. W., and Kennedy, E. P., 1960, The enzymatic synthesis of psychosine, J. Biol. Chem. 235: 45–51.

    PubMed  CAS  Google Scholar 

  • Cochran, F. B., Yu, R. K., and Ledeen, R. W., 1982, Myelin gangliosides in vertebrates, J. Neurochem. 39: 773–779.

    PubMed  CAS  Google Scholar 

  • Colman, D. R., Kreibich, G., Frey, A. B., and Sabatini, D. D., 1982, Synthesis and incorporation of myelin polypeptides into CNS myelin, J. Cell Biol. 95: 598–608.

    PubMed  CAS  Google Scholar 

  • Costantino-Ceccarini, E., and Morell, P., 1972, Biosynthesis of brain sphingolipids and myelin accumulation in the mouse, Lipids 7: 656–659.

    PubMed  CAS  Google Scholar 

  • Costantino-Ceccarini, E., and Suzuki, K., 1975, Evidence for presence of UDP-galactose:ceramide galactosyltransferase in rat myelin, Brain Res. 93: 358–362.

    PubMed  CAS  Google Scholar 

  • Cullen, M. J., and Webster, H. de F., 1977, The effects of low temperature on myelin formation in optic nerves of Xenopus tadpoles, Tissue Cell 9: 1–10.

    PubMed  CAS  Google Scholar 

  • Curtino, J. A., and Caputto, R., 1974, Enzymic synthesis of cerebroside from glycosylsphingosine and stearoyl-CoA by an embryonic chicken brain preparation, Biochem. Biophys. Res. Commun. 56: 142–147.

    PubMed  CAS  Google Scholar 

  • Daniel, A., Day, E. D., and Kaufman, B., 1972, Studies on central nervous system myelin, Fed. Proc. Fed. Am. Soc. Exp. Biol. 31: 490.

    Google Scholar 

  • Danks, D. M., and Matthieu, J.-M., 1979, Hypotheses regarding myelination derived from comparisons of myelin subfractions, Life Sci. 24: 1425–1440.

    PubMed  CAS  Google Scholar 

  • Davison, A. N., 1970, The biochemistry of the myelin sheath, in: Myelination ( A. N. Davison and A. Peters, eds.), pp. 80–161, Charles C. Thomas, Springfield, Illinois.

    Google Scholar 

  • Davison, A. N., Dobbing, J., Morgan, R. S., and Payling-Wright, G., 1958, The deposition and disposal of [4–14C] cholesterol in the brain of growing chickens, J. Neurochem. 3: 39–94.

    Google Scholar 

  • Deshmukh, D. S., Inoue, T., and Pieringer, R. A., 1971, The association of the galactosyl diglycerides of brain with myelination. II. The inability of the myelin deficient mutant, jimpy mouse, to synthesize galactosyl diglycerides effectively, J. Biol. Chem. 246: 5695–5699.

    PubMed  CAS  Google Scholar 

  • Deshmukh, D. S., Bear, W. D., and Brockerhoff, H., 1978a, Polyphosphoinositide biosynthesis in three subfractions of rat brain myelin, J. Neurochem. 30: 1191–1193.

    PubMed  CAS  Google Scholar 

  • Deshmukh, D. S., Bear, W. D., and Soifer, D., 1978b, Isolation and characterization of an enriched Golgi fraction from rat brain, Biochim. Biophys. Acta 542: 284–295.

    PubMed  CAS  Google Scholar 

  • Deshmukh, D. S., Kuizon, S., Bear, W. D., and Brockerhoff, H., 1981, Rapid incorporation in vivo of intracerebrally injected 32Pi into polyphosphoinositides of three subfractions of rat brain myelin, J. Neurochem. 36: 594–601.

    PubMed  CAS  Google Scholar 

  • Diringer, H., Marggraf, W. D., Koch, M. A., and Anderer, F. A., 1972, Evidence for a new biosynthetic pathway of sphingomyelin in SV40 transformed mouse cells, Biochem. Biophys. Res. Commun. 47: 1345–1352.

    PubMed  CAS  Google Scholar 

  • Dobbing, J., 1963, The entry of cholesterol into rat brain during development, J. Neurochem. 10: 739–742.

    CAS  Google Scholar 

  • Dorman, R. V., Toews, A. D., and Horrocks, L. A., 1977, Plasmalogenase activities in neuronal perikarya, astroglia and oligodendroglia isolated from bovine brain, J. Lipid Res. 18: 115–117.

    PubMed  CAS  Google Scholar 

  • Droz, B., and Boyenval, J., 1975, Le réticulum endoplasmique des axones: Son róle probable dans le transport axoplasmique des phospholipides membranaires, J. Microsc. Biol. Cell. 23: 45–46.

    Google Scholar 

  • Droz, B., Koenig, H. L., and diGiamberardino, L., 1973, Axonal migration of protein and glycoprotein to nerve endings. I. Radioautographic analysis of the renewal of protein in nerve endings of chicken ciliary ganglion after intracerebral injection of 3H-lysine, Brain Res. 60: 93–127.

    PubMed  CAS  Google Scholar 

  • Droz, B., diGiamberardino, L., Koenig, H. L., Boyenval, J., and Hassig, R., 1978, Axon—myelin transfer of phospholipid components in the course of their axonal transport as visualized by radioautography, Brain Res. 155: 347–353.

    PubMed  CAS  Google Scholar 

  • Droz, B., Brunetti, M., diGiamberardino, L., Koenig, H. L., and Porcellati, G., 1979, Transfer of phospholipid constituents to glia during axonal transport, Soc. Neurosci. Symp. 4: 344–360.

    CAS  Google Scholar 

  • Droz, B., diGiamberardino, L., and Koenig, H. L., 1981, Contribution of axonal transport to the renewal of myelin phospholipids in peripheral nerves. I. Quantitative radioautographic study, Brain Res. 219: 57–71.

    PubMed  CAS  Google Scholar 

  • Edmond, J., 1974, Ketone bodies as precursors of sterols and fatty acids in the developing rat, J. Biol. Chem. 249: 72–80.

    PubMed  CAS  Google Scholar 

  • Edmond, J., and Popjak, G., 1974, Transfer of carbon atoms from mevalonate to n-fatty acids, J. Biol. Chem. 249: 66–71.

    PubMed  CAS  Google Scholar 

  • Eichberg, J., and Dawson, R. M. C., 1965, Polyphosphoinositides in myelin, Biochem. J. 96: 644–650.

    PubMed  CAS  Google Scholar 

  • Eichberg, J., and Hauser, G., 1973, The subcellular distribution of phosphoinositides in myelinated and unmyelinated rat brain, Biochem. Biophys. Acta 326: 210–223.

    PubMed  CAS  Google Scholar 

  • Eng, L. F., and Bignami, A., 1972, Myelin proteins in young and adult brains, Trans. Am. Soc. Neurochem. 3: 75.

    Google Scholar 

  • Eto, Y., and Suzuki, K., 1972, Cholesterol esters in developing rat-brain: Concentration and fatty acid composition, J. Neurochem. 19: 109–115.

    CAS  Google Scholar 

  • Eto, Y., and Suzuki, K., 1973, Cholesterol ester metabolism in rat brain: A cholesterol ester hydrolase specifically localized in the myelin sheath, J. Biol. Chem. 248: 1986–1991.

    PubMed  CAS  Google Scholar 

  • Farrell, D. F., and McKhann, G. M., 1971, Characterization of cerebroside sulfotransferase from rat brain, J. Biol. Chem. 246: 4694–4702.

    PubMed  CAS  Google Scholar 

  • Fischer, C. A., and Morell, P., 1974, Turnover of proteins in myelin and myelin-like material of mouse brain, Brain Res. 74: 51–65.

    PubMed  CAS  Google Scholar 

  • Fleischer, B., 1977, Localization of some glycolipid glycosylating enzymes in the Golgi apparatus of rat kidney, J. Supramol. Struct. 7: 79–89.

    PubMed  CAS  Google Scholar 

  • Freysz, L., and Horrocks, L. A., 1980, Regulation of the metabolism of myelin phospholipids, in: Neurological Mutations Affecting Myelination (N. A. Baumann, ed.), INSERM Symposium No. 14, pp. 223–230, Elsevier/North-Holland, Amsterdam.

    Google Scholar 

  • Freysz, L., and Mandel, P., 1980, Turnover of molecular species of sphingomyelin in microsomes and myelin of rat brain, J. Neurochem. 34: 305–308.

    PubMed  CAS  Google Scholar 

  • Freysz, L., Horrocks, L. A., and Mandel, P., 1980, Activities of enzymes synthesizing diacyl, alkylacyl, and alkenylacyl glycerophosphoethanolamine and glycerophosphocholine during development of chicken brain, J. Neurochem. 34: 963–969.

    PubMed  CAS  Google Scholar 

  • Fujino, Y., Nakano, M., Negishi, T., and Ito, S., 1968, Substrate specificity for ceramide in the enzymatic formation of sphingomyelin, J. Biol. Chem. 243: 4650–4651.

    PubMed  CAS  Google Scholar 

  • Fumigalli, R., Smith, M. E., Urna, G., and Paoletti, R., 1969, The effect of hypocholesteremic agents on myelinogenesis, J. Neurochem. 16: 1329–1339.

    Google Scholar 

  • Gatt, S., and Barenholz, Y., 1973, Enzymes of complex lipid metabolism, Annu. Rev. Biochem. 42: 61–90.

    PubMed  CAS  Google Scholar 

  • Gonzalez-Sastre, F., Eichberg, J., and Hauser, G., 1971, Metabolic pools of polyphosphoinositides in rat brain, Biochim. Biophys. Acta 248: 96–104.

    PubMed  CAS  Google Scholar 

  • Hajra, A., 1969, Biosynthesis of alkyl-ether containing lipid from dihydfoxyacetone phosphate, Biochem. Biophys. Res. Commun. 37: 486–492.

    PubMed  CAS  Google Scholar 

  • Hajra, A. K., and Radin, N. S., 1963, In vivo conversion of labeled fatty acids to the sphingolipid fatty acids in rat brain, J. Lipid Res. 4: 448–453.

    CAS  Google Scholar 

  • Haley, J. E., and Ledeen, R. W., 1979, Incorporation of axonally transported substances into myelin lipids, J. Neurochem. 32: 735–742.

    PubMed  CAS  Google Scholar 

  • Hammarström, S., 1972a, On the biosynthesis of cerebrosides: Non-enzymatic N-acylation of psychosine by stearoyl coenzyme A, FEBS Lett. 21: 259–263.

    PubMed  Google Scholar 

  • Hammarström, S., 1972b, On the biosynthesis of cerebrosides containing non-hydroxy acids. 2. Mass spectrometric evidence for the ceramide pathway, Biochem. Biophys. Res. Commun. 45: 468–475.

    Google Scholar 

  • Hammarström, S., and Samuelsson, B., 1972, On the biosynthesis of cerebrosides containing 2hydroxy acids: Mass spectrometric evidence for biosynthesis via the ceramide pathway, J. Biol. Chem. 247: 1001–1011.

    PubMed  Google Scholar 

  • Harvey, M. S., Wirtz, K. W. A., Kamp, H. H., Zegers, B. J. M., and Van Deenen, L. L. M., 1973, A study on phospholipid exchange proteins present in the soluble fractions of beef liver and brain, Biochim. Biophys. Acta 323: 234–239.

    PubMed  CAS  Google Scholar 

  • Hawkins, R. A., Williamson, D. H., and Krebs, H. A., 1971, Ketone-body utilization by adult and suckling rat brain in vivo, Biochem. J. 122: 13–18.

    PubMed  CAS  Google Scholar 

  • Hawthorne, J. N., and Kai, M., 1970, Metabolism of phosphoinositides, in: Handbook of Neurochemistry, Vol. 3 ( A. Lajtha, ed.), pp. 491–508, Plenum Press, New York.

    Google Scholar 

  • Hayes, L., and Jungalwala, F. B., 1976, Synthesis and turnover of cerebrosides and phosphatidyl serine of myelin and microsomal fractions of adult and developing rat brain, Biochem. J. 160: 195–204.

    PubMed  CAS  Google Scholar 

  • Hendrickson, H. S., and Reinertsen, J. L., 1971, Phosphoinositide interconversion: A model for control of Na+ and K+ permeability in the nerve axon membrane, Biochem. Biophys. Res. Commun. 44: 1258–1264.

    PubMed  CAS  Google Scholar 

  • Hennacy, D. M., and Horrocks, L. A., 1978, Recent developments in the turnover of proteins and lipids in the myelin and other plasma membranes in the central nervous system, Bull. Mol. Biol. Med. 3: 207–221.

    CAS  Google Scholar 

  • Herschkowitz, N., McKhann, G. M., Saxena, S., and Shooter, E. M., 1968, Characterization of sulphatide-containing lipoproteins in rat brain, J. Neurochem. 15: 1181–1188.

    PubMed  CAS  Google Scholar 

  • Herschkowitz, N., McKhann, G. M., Saxena, S., Shooter, E. M., and Herndon, R M., 1969, Synthesis of sulphatide-containing lipoproteins in rat brain, J. Neurochem. 16: 1049–1057.

    PubMed  CAS  Google Scholar 

  • Hildebrand, C., and Berthold, C.-H., 1977, Free and esterifield cholesterol in developing feline white matter, Lipids 12: 711–716.

    PubMed  CAS  Google Scholar 

  • Hildebrand, J., Stoffyn, P., and Hauser, G., 1970, Biosynthesis of lactosyl-ceramide by rat brain preparations and comparisons with the formation of ganglioside GM, and psychosine during development, J. Neurochem. 17: 403–411.

    PubMed  CAS  Google Scholar 

  • Hirano, A., and Dembitzer, H., 1967, Structural analysis of the myelin sheath in the central nervous system, J. Cell Biol. 34: 555–567.

    PubMed  CAS  Google Scholar 

  • Hirata, F. and Axelrod, J., 1980, Phospholipid methylation and biological signal transmission, Science 209: 1082–1090.

    PubMed  CAS  Google Scholar 

  • Hogan, E. L., 1977, Animal models of genetic disorders of myelin, in: Myelin ( P. Morell, ed.), pp. 489–515, Plenum Press, New York.

    Google Scholar 

  • Horrocks, L. A. and Harder, H. W., 1983, Fatty acids and cholesterol, in: Handbook of Neurochemistry, Vol. 3, 2nd ed. ( A. Lajtha, ed.), pp. 1–16, Plenum Press, New York.

    Google Scholar 

  • Horrocks, L. A., and Sharma, M., 1982, Plasmalogens and 0-alkyl glycerophospholipids, in: Phospholipids ( J. N. Hawthorne and G. B. Ansell, eds), pp. 51–93, Elsevier, Amsterdam.

    Google Scholar 

  • Horrocks, L. A., Meckler, R. J., and Collins, R. L., 1966, Variations in the lipid composition of mouse brain myelin as a function of age, in: Variations in the Chemical Composition of the Nervous System as Determined by Development and Genetic Factors ( G. B. Ansell, ed.), p. 46, Pergamon Press, Oxford.

    Google Scholar 

  • Horrocks, L. A., Toews, A. D., Thompson, D. K., and Chin, J. Y., 1976, Synthesis and turnover of brain phosphoglycerides—Results, methods of calculation and interpretation, in: Function and Metabolism of Phospholipids in the Central and Peripheral Nervous Systems ( G. Porcellati, L. Amaducci, and C. Galli, eds.), pp. 37–54, Plenum Press, New York.

    Google Scholar 

  • Horrocks, L. A., Spanner, S., Mozzi, R., Fu, S. C., D’Amato, R. A., and Krakowka, S., 1978, Plasmalogenase is activated in early demyelinating lesions, in: Myelination and Demyelination ( J. Palo, ed.), pp. 423–437, Plenum Press, New York.

    Google Scholar 

  • Hoshi, M., and Kishimoto, Y., 1973, Synthesis of cerebronic acid from lignoceric acid by rat brain preparation: Some properties and distribution of the a-hydroxylation system, J. Biol. Chem. 248: 4123–4130.

    PubMed  CAS  Google Scholar 

  • Hübscher, G., 1962, Metabolism of phospholipide. VI. The effect of metal ions on the incorporation of L-serine into phosphatidyl-serine, Biochim. Biophys. Acta 57: 555–561.

    PubMed  Google Scholar 

  • Igarashi, M., and Suzuki, K., 1977, Solubilization and characterization of the rat brain cholesterol ester hydrolase localized in the myelin sheath, J. Neurochem. 28: 729–738.

    PubMed  CAS  Google Scholar 

  • Inoue, T., Deshmukh, D. S., and Pieringer, R. A., 1971, The association of the galactosyl diglycerides of brain with myelination. I. Changes in the concentration of monogalactosyl diglyceride in the microsomal and myelin fractions of brain of rats during development, J. Biol. Chem. 246: 5688–5694.

    PubMed  CAS  Google Scholar 

  • Jungalwala, F. B., 1974a, Synthesis and turnover of cerebroside sulfate of myelin in adults and developing rat brain, J. Lipid Res. 15: 114–123.

    PubMed  CAS  Google Scholar 

  • Jungalwala, F. B., 1974b, The turnover of myelin phosphatidylcholine and sphingomyelin in the adult rat brain, Brain Res. 78: 99–108.

    PubMed  CAS  Google Scholar 

  • Kennedy, E. P., 1961, Biosynthesis of complex lipids, Fed. Proc. Fed. Am. Soc. Exp. Biol. 20: 934–940.

    CAS  Google Scholar 

  • Kishimoto, Y., Davis, W. E., and Radin, N. S., 1965, Turnover of the fatty acids of rat brain gangliosides, glycerophosphatides, cerebrosides, and sulfatides as a function of age, J. Lipid Res. 6: 525–531.

    PubMed  CAS  Google Scholar 

  • Kobayashi, T., Yamanaka, T., Jacobs, J. M., Teixeira, F., and Suzuki, K., 1980, The twitcher mouse: An enzymatically authentic model of human globoid cell leukodystrophy (Krabbe disease), Brain Res. 202: 479–483.

    PubMed  CAS  Google Scholar 

  • Kopaczyk, K. C., and Radin, N. S., 1965, In vivo conversions of cerebroside and ceramide in rat brain, J. Lipid Res. 6: 140–155.

    PubMed  CAS  Google Scholar 

  • Koper, J. W., Lopes-Cardozo, M., and Van Golde, L. M. G., 1981, Preferential utilization of ketone bodies for the synthesis of myelin cholesterol in vivo, Biochim. Biophys. Acta 666: 411–417.

    PubMed  CAS  Google Scholar 

  • Krigman, M. R., and Hogan, E. L., 1976, Undernutrition in the developing rat: Effect upon myelination, Brain Res. 107: 257–273.

    PubMed  Google Scholar 

  • Kunishita, T., and Ledeen, R. W., 1984, Phospholipid biosynthesis in myelin: Presence of CTP: Phosphoethanolamine cytidylyltransferase in purified myelin of rat brain, J. Neurochem. 42: 326–333.

    PubMed  CAS  Google Scholar 

  • Lapetina, E. G., Lunt, G. G., and deRobertis, E., 1970, The turnover of phosphatidylcholine in rat cerebral cortex membranes in vivo, J. Neurobiol. 1: 295–302.

    CAS  Google Scholar 

  • LeBaron, F. N., Sanyal, S., and Jungalwala, F. B., 1981, Turnover rate of molecular species of sphingomyelin in rat brain, Neurochem. Res. 6: 1081–1089.

    PubMed  CAS  Google Scholar 

  • Ledeen, R. W., and Haley, J. E., 1983, Axon—myelin transfer of glycerol-labeled lipids and inorganic phosphate during axonal transport, Brain Res. 269: 267–275.

    PubMed  CAS  Google Scholar 

  • Ledeen, R. W., Yu, R. K., and Eng. L. F., 1973, Gangliosides of human myelin: Sialosylgalactosylceramide (G7) as a major component, J. Neurochem. 21: 829–839.

    PubMed  CAS  Google Scholar 

  • Ledeen, R. W., Cochran, F. B., Yu, R. K., Samuels, F. G., and Haley, J. E., 1980, Gangliosides of the CNS myelin membrane, in: Advances in Experimental Medicine and Biology, Vol. 125, Structure and Function of Gangliosides ( P. Mandel and L. Svennerholm, eds.), pp. 167–176, Plenum Press, New York.

    Google Scholar 

  • Mallia, A. K., and Radin, N. S., 1977, Proteins in the rat brain cytosol which bind cerebrosides, Trans. Am. Soc. Neurochem. 8: 187.

    Google Scholar 

  • Marggraf, W. D., and Anderer, F. A., 1974, Alternative pathways in the biosynthesis of sphingomyelin and the role of phosphatidylcholine, CDPcholine and phosphorylcholine as precursors, Hoppe-Seyler’s Z. Physiol. Chem. 355: 803–810.

    PubMed  CAS  Google Scholar 

  • Matthieu, J.-M., Quarles, R. H., Brady, R. O., and Webster, H. de F., 1973, Variation of proteins, enzyme markers and gangliosides in myelin subfractions, Biochim. Biophys. Acta 329: 305–317.

    PubMed  CAS  Google Scholar 

  • Matthieu, J.-M., Webster, H. de F., DeVries, G. H., Corthay, S., and Koellreutler, B., 1978, Glial versus neuronal origin of myelin proteins and glycoproteins studied by combined intra-ocular and intracranial labelling, J. Neurochem. 31: 93–102.

    PubMed  CAS  Google Scholar 

  • McKhann, G. M., and Ho, W., 1967, The in vivo and in vitro synthesis of sulphatides during development, J. Neurochem. 14: 717–724.

    PubMed  CAS  Google Scholar 

  • McKhann, G. M., Levy, R., and Ho, W., 1965, Metabolism of sulfatides. I. The effect of galactocerebrosides on the synthesis of sulfatides, Biochem. Biophys. Res. Commun. 20: 109–113.

    PubMed  CAS  Google Scholar 

  • McMurray, W. C., Strickland, K. P., Berry, J. F., and Rossiter, R. J., 1957, Incorporation of 32P-labeled intermediates into the phospholipids of cell-free preparations of rat brain, Biochem. J. 66: 634–644.

    PubMed  CAS  Google Scholar 

  • Miller, E. K., and Dawson, R. M. C., 1972a, Can mitochondria and synaptosomes of guinea-pig brain synthesize phospholipids?, Biochem. J. 126: 805–821.

    PubMed  CAS  Google Scholar 

  • Miller, E. K., and Dawson, R. M. C., 1972b, Exchange of phospholipids between brain membranes in vitro, Biochem. J. 126: 823–835.

    PubMed  CAS  Google Scholar 

  • Miller, S. L., and Morell, P., 1978, Turnover of phosphatidylcholine in microsomes and myelin in brains of young and adult rats, J. Neurochem. 31: 771–777.

    PubMed  CAS  Google Scholar 

  • Miller, S. L., Benjamins, J. A., and Morell, P., 1977, Metabolism of glycerophospholipids of myelin and microsomes in rat brain: Reutilization of precursors, J. Biol. Chem. 252: 4025–4037.

    PubMed  CAS  Google Scholar 

  • Morell, P., and Radin, N. S., 1969, Synthesis of cerebroside by brain from uridine diphosphate galactose and ceramide containing hydroxy fatty acid, Biochemistry 8: 506–512.

    PubMed  CAS  Google Scholar 

  • Morell, P., and Radin, N. S., 1970, Specificity in ceramide biosynthesis from long chain bases and various fatty acyl coenzyme A’s by brain microsomes, J. Biol. Chem. 245: 342–350.

    PubMed  CAS  Google Scholar 

  • Morell, P., Costantino-Ceccarini, E., and Radin, N. S., 1970, The biosynthesis by brain microsomes of cerebrosides containing nonhydroxy fatty acids, Arch. Biochem. Biophys. 141: 738–748.

    PubMed  CAS  Google Scholar 

  • Morell, P., Bornstein, M. B., and Raine, C. S., 1981, Diseases involving myelin, in: Basic Neurochemistry, 3rd ed. ( G. J. Siegel, R. W. Albers, B. W. Agranoff, and R. Katzman, eds.), pp. 641–659, Little, Brown, Boston.

    Google Scholar 

  • Morganstern, R. D., and Abdel-Latif, A. A., 1974, Incorporation of [14C]ethanolamine and [3H] methionine into phospholipids of rat brain and liver in vivo and in vitro, J. Neurobiol. 5: 393–411.

    PubMed  CAS  Google Scholar 

  • Morré, D. J., Kartenbeck, J., and Franke, W. W., 1979, Membrane flow and interconversions among endomembranes, Biochim. Biophys. Acta 559: 71–152.

    PubMed  Google Scholar 

  • Moser, H. W., and Karnovsky, M. L., 1959, Studies on the biosynthesis of glycolipides and other lipides of brain, J. Biol. Chem. 234: 1990–1997.

    PubMed  CAS  Google Scholar 

  • Murad, S., and Kishimoto, Y., 1975, a-Hydroxylation of lignoceric acid to cerebronic acid during brain development: Diminished hydroxylase activity in myelin-deficient mouse mutants, J. Biol. Chem. 250: 5841–5846.

    Google Scholar 

  • Neskovic, N. M., Nussbaum, J. L., and Mandel, P., 1969, Enzymatic synthesis of psychosine in “Jimpy” mice brain, FEBS Lett. 3: 199–201.

    PubMed  CAS  Google Scholar 

  • Neskovic, N. M., Sarlieve, L. L., and Mandel, P., 1972, Biosynthesis of glycolipids in myelin deficient mutants: Brain glycosyl transferases in jimpy and quaking mice, Brain Res. 42: 147–157.

    PubMed  CAS  Google Scholar 

  • Neskovic, N. M., Sarlieve, L. L., and Mandel, P., 1973, Subcellular and submicrosomal distribution of glycolipid-synthesizing transferases in jimpy and quaking mice, J. Neurochem. 20: 1419–1430.

    PubMed  CAS  Google Scholar 

  • Norton, W. T., 1974, Isolation of myelin from nerve tissue, in: Methods in Enzymology, Vol. 31 ( S. Fleischer and L. Packer, eds.), pp. 435–444, Academic Press, New York.

    Google Scholar 

  • Norton, W. T., 1977a, Isolation and characterization of myelin, in: Myelin ( P. Morell, ed.), pp. 161–200, Plenum Press, New York.

    Google Scholar 

  • Norton, W. T., 1977b, Chemical pathology of diseases involving myelin, in: Myelin ( P. Morell, ed.), pp. 383–407, Plenum Press, New York.

    Google Scholar 

  • Norton, W. T., 1981, Formation, structure and biochemistry of myelin, in: Basic Neurochemistry ( G. J. Siegel, R. W. Albers, B. W. Agranoff, and R. Katzman, eds.), pp. 63–92, Little, Brown, Boston.

    Google Scholar 

  • Norton, W. T., and Autilio, L. A., 1966, The lipid composition of purified bovine brain myelin, J. Neurochem. 13: 213–222.

    PubMed  CAS  Google Scholar 

  • Norton, W. T., and Brotz, M., 1963, New galactolipids of brain: A monoalkyl-monoacyl-glycerylgalactoside and cerebroside fatty esters, Biochem. Biophys. Res. Commun. 12: 198–203.

    PubMed  CAS  Google Scholar 

  • Norton, W. T., and Poduslo, S. E., 1973a, Myelination in rat brain: Method of myelin isolation, J. Neurochem. 21: 749–757.

    PubMed  CAS  Google Scholar 

  • Norton, W. T., and Poduslo, S. E., 19736, Myelination in rat brain: Changes in myelin composition during brain maturation, J. Neurochem. 21: 759–773.

    Google Scholar 

  • Page, M. A., Krebs, H. A., and Williamson, D. H., 1971, Activities of enzymes of ketone-body utilization in brain and other tissues of suckling rats, Biochem. J. 121: 49–53.

    PubMed  CAS  Google Scholar 

  • Palade, G., 1975, Intracellular aspects of the process of protein synthesis, Science 189: 347–358.

    PubMed  CAS  Google Scholar 

  • Paltauf, F., and Holasek, A., 1973, Enzymatic synthesis of plasmalogens: Characterization of the 1-O-alkyl-2-acyl-sn-glycero-3-phosphoryl-ethanolamine desaturase from mucosa of hamster small intestine, J. Biol. Chem. 248: 1609–1615.

    PubMed  CAS  Google Scholar 

  • Pasquini, J. M., Gomez, C. J., Najle, R., and Soto, E. F., 1975, Lack of phospholipid transport mechanisms in cell membranes of the CNS, J. Neurochem. 24: 439–443.

    PubMed  CAS  Google Scholar 

  • Paulus, H., and Kennedy, E. P., 1960, The enzymatic synthesis of inositol monophosphatide, J. Biol. Chem. 235: 1303–1311.

    PubMed  CAS  Google Scholar 

  • Pereyra, P. M., and Braun, P. E., 1983, Studies on subcellular fractions which are involved in myelin membrane assembly: Isolation from developing mouse brain and characterization by enzyme markers, electron microscopy, and electrophoresis, J. Neurochem. 41: 957–973.

    PubMed  CAS  Google Scholar 

  • Pereyra, P. M., Braun, P. E., Greenfield, S., and Hogan, E. L., 1983, Studies on subcellular fractions which are involved in myelin assembly: Labeling of myelin proteins by a double radioisotope approach indicates developmental relationships, J. Neurochem. 41: 974–988.

    PubMed  CAS  Google Scholar 

  • Pieringer, J., Rao, G. S., Mandel, P., and Pieringer, R. A., 1977, The association of the sulphogalactosyl-glycerolipids of rat brain with myelination, Biochem. J. 166: 421–428.

    PubMed  CAS  Google Scholar 

  • Pieringer, R. A., Deshmukh, D. S., and Flynn, T. J., 1973, The association of the galactosyldiglycerides of nerve tissue with myelination, Prog. Brain Res. 40: 397–405.

    CAS  Google Scholar 

  • Pleasure, D. E., and Prockop, D. J., 1972, Myelin synthesis in peripheral nerve in vitro: Sulfatide incorporation requires a transport lipoprotein, J. Neurochem. 19: 283–295.

    PubMed  CAS  Google Scholar 

  • Pleasure, D., Lichtman, C., Eastman, S., Lieb, M., Abramsky, O., and Silberberg, D., 1979, Acetoacetate and D-(—)-beta-hydroxybutyrate as precursors for sterol synthesis by calf oligodendrocytes in suspension culture: Extramitochondrial pathway for acetoacetate metabolism, J. Neurochem. 32: 1447–1450.

    PubMed  CAS  Google Scholar 

  • Poduslo, S. E., 1975, The isolation and characterization of a plasma membrane and a myelin fraction derived from oligodendroglia of calf brain, J. Neurochem. 24: 647–654.

    PubMed  CAS  Google Scholar 

  • Poduslo, S. E., Miller, K., and McKhann, G. M., 1978, Metabolic properties of maintained oligodendroglia purified from brain, J. Biol. Chem. 253: 1592–1597.

    PubMed  CAS  Google Scholar 

  • Porcellati, G., Biasion, M. G., and Pirotta, M., 1970, The labeling of brain ethanolamine phos- phoglycerides from cytidine disphosphate ethanolamine in vitro, Lipids 5: 734–742.

    CAS  Google Scholar 

  • Porcellati, G., Arienti, G., Pirotta, M., and Giorgini, D., 1971, Base-exchange reactions for the synthesis of phospholipids in nervous tissues: The incorporation of serine and ethanolamine into the phospholipids of isolated brain microsomes, J. Neurochem. 18: 1395–1402.

    PubMed  CAS  Google Scholar 

  • Porcellati, G., Ceccarelli, B., and Tettamanti, G. (eds.), 1976, Advances in Experimental Medicine and Biology, Vol. 71, Ganglioside Function: Biochemical and Pharmacological Implications, Plenum Press, New York.

    Google Scholar 

  • Possmayer, F., Meiners, B., and Mudd, J. B., 1973, Regulation by cytidine nucleotides of the acylation of sn-[10.C]glycerol 3-phosphate: Regional and subcellular distribution of the enzymes responsible for phosphatidic acid synthesis de novo in the central nervous system of the rat, Biochem. J. 132: 391–394.

    Google Scholar 

  • Pullarkat, R. K., Sbaschnig-Agler, M., and Reha, H., 1981, Biosynthesis of phosphatidylserine in rat brain microsomes, Biochim. Biophys. Acta 663: 117–123.

    Google Scholar 

  • Quarles, R. H., 1978, The biochemical and morphological heterogeneity of myelin and myelin-related membranes, in: Biochemistry of Brain ( S. Kumar, ed.), pp. 81–102, Pergamon Press, Oxford.

    Google Scholar 

  • Raine, C. S., 1981, Neurocellular anatomy, in: Basic Neurochemistry, 3rd ed. ( G. J. Siegel, R. W. Albers, R. Katzman, and B. W. Agranoff, eds.), pp. 21–47, Little, Brown, Boston.

    Google Scholar 

  • Ramachandran, C. K., and Shah, S. N., 1977, Studies on mevalonate kinase, phosphomevalonate kinase, and pyrophosphomevalonate decarboxylase in developing rat brain, J. Neurochem. 28: 751–757.

    PubMed  CAS  Google Scholar 

  • Rambourg, A., and Droz, B., 1980, Smooth endoplasmic reticulum and axonal transport, J. Neurochem. 35: 16–25.

    PubMed  CAS  Google Scholar 

  • Ramsey, R. B., 1977, Effect of extended hypocholesterolemic drug treatment on peripheral and central nervous system sterol content of the rat, Lipids 12: 841–846.

    PubMed  CAS  Google Scholar 

  • Ramsey, R. B., Jones, J. P., Naqui, S. H. M., and Nicholas, H. J., 1971, The biosynthesis of cholesterol and other sterols by brain tissue. II. A comparison of in vitro and in vivo methods, Lipids 6: 225–232.

    PubMed  CAS  Google Scholar 

  • Rawlins, F. A., 1973, A time-sequence autoradiographic study of the in vivo incorporation of [1,2–31-I] cholesterol into peripheral nerve myelin, J. Cell Biol. 58: 42–53.

    PubMed  CAS  Google Scholar 

  • Reiss, D. S., Lees, M. B., and Sapirstein, V. S., 1981, Is Na+K+-ATPase a myelin-associated enzyme?, J. Neurochem. 36: 1418–1426.

    PubMed  CAS  Google Scholar 

  • Robinson, A. M., and Williamson, D. H., 1980, Physiological roles of ketone bodies as substrates and signals in mammalian tissues, Physiol. Rev. 60: 143–187.

    PubMed  CAS  Google Scholar 

  • Rumsby, M. G., 1978, Organization and structure in central-nerve myelin, Biochem. Soc. Trans. 6: 448–462.

    PubMed  CAS  Google Scholar 

  • Rumsby, M. G., 1980, Myelin structure and assembly—introductory thoughts, in: Neurological Mutations Affecting Myelination (N. Baumann, ed.), INSERM Symposium No. 14, pp. 383–388, Elsevier/North-Holland, Amsterdam.

    Google Scholar 

  • Sapirstein, V. S., Lees, M. B., and Tractenberg, M. C., 1978, Soluble and membrane bound carbonic anhydrase from rat CNS: Regional development, J. Neurochem. 31: 283–288.

    PubMed  CAS  Google Scholar 

  • Schwartz, M., Ernst, S. A., Siegel, G. J., and Agranoff, B. W., 1981, Immunocytochemical local- ization of (Na+,K+)-ATPase in the goldfish optic nerve, J. Neurochem. 36: 107–115.

    PubMed  CAS  Google Scholar 

  • Serougne, C., Lefevre, C., and Chevallier, F., 1976, Cholesterol transfer between brain and plasma in the rat: A model for the turnover of cerebral cholesterol, Exp. Neurol. 51: 229–240.

    PubMed  CAS  Google Scholar 

  • Shah, S. N., 1971, Glycosyl tranferases of microsomal fractions from brain: Synthesis of glucosyl ceramide and galactosyl ceramide during development and the distribution of glucose and galactose transferase in white and grey matter, J. Neurochem. 18: 395–402.

    PubMed  CAS  Google Scholar 

  • Shah, S. N., 1981, Modulation in vitro of 3-hydroxy-3-methylglutaryl coenzyme A reductase in brain microsomes: Evidence for the phosphorylation and dephosphorylation associated with inactivation and activation of the enzyme, Arch. Biochem. Biophys. 211: 439–446.

    PubMed  CAS  Google Scholar 

  • Shoyama, Y., and Kishimoto, Y., 1978, In vivo metabolism of 3-ketoceramide in rat brain, J. Neurochem. 30: 377–382.

    CAS  Google Scholar 

  • Singh, I., 1983, Ceramide synthesis from free fatty acids in rat brain: Function of NADPH, and substrate specificity, J. Neurochem. 40: 1565–1570.

    PubMed  CAS  Google Scholar 

  • Singh, I., and Kishimoto, Y., 1980, Ceramide synthesis in rat brain: Characterization of the synthesis requiring pyridine nucleotide, Arch. Biochem. Biophys. 202: 93–100.

    PubMed  CAS  Google Scholar 

  • Singh, I., and Kishimoto, Y., 1982, Brain-specific ceramide synthesis activity: Change during brain maturation and in jimpy mouse brain, Brain Res. 232: 500–505.

    PubMed  CAS  Google Scholar 

  • Smith, M. E., 1967, The metabolism of myelin lipids, in: Advances in Lipid Research, Vol. 6 ( R. Paoletti and D. Kritchevsky, eds.), pp. 241–278, Academic Press, New York.

    Google Scholar 

  • Smith, M. E., 1968, The turnover of myelin in the adult rat, Biochim. Biophys. Acta 164: 285–293.

    PubMed  CAS  Google Scholar 

  • Smith, M. E., and Benjamins, J. A., 1977, Model systems for the study of perturbations of myelin metabolism, in: Myelin ( P. Morell, ed.), pp. 447–488, Plenum Press, New York.

    Google Scholar 

  • Smith, M. E., and Eng. L. F., 1965, The turnover of the lipid components of myelin, J. Am. Oil. Chem. Soc. 42: 1013–1018.

    PubMed  CAS  Google Scholar 

  • Smith, M. E., and Hasinoff, C. M., 1971, Biosynthesis of myelin proteins in vitro, J. Neurochem. 18: 739–747.

    PubMed  CAS  Google Scholar 

  • Smith, M. E., Hasinoff, C. M., and Fumigalli, R., 1970, Inhibitors of cholesterol synthesis and myelin formation, Lipids 5: 665–671.

    PubMed  CAS  Google Scholar 

  • Snyder, F., 1972, The enzymic pathways of ether linked lipids and their precursors, in: Ether Lipids: Chemistry and Biology ( F. Snyder, ed.), pp. 121–156, Academic Press, New York, and London.

    Google Scholar 

  • Sribney, M., 1966, Enzymatic synthesis of ceramide, Biochim. Biophys. Acta 125: 542–547.

    PubMed  CAS  Google Scholar 

  • Sribney, M., and Kennedy, E. P., 1958, The enzymatic synthesis of sphingomyelin, J. Biol. Chem. 233: 1315–1322.

    PubMed  CAS  Google Scholar 

  • Stoffel, W., 1971, Sphingolipids, Annv. Rev. Biochem. 40: 57–82.

    CAS  Google Scholar 

  • Stoffyn, A., Stoffyn, P., Farooq, M., Snyder, D. S., and Norton, W. T., 1981, Sialosyltransferase activity and specificity in the biosynthesis in vitro of sialosylgalactosylceramide (GM4) and sialosylgalactosylceramide (GM3) by rat astrocytes, neuronal perikarya, and oligodendroglia, Neurochem. Res. 6: 1149–1157.

    PubMed  CAS  Google Scholar 

  • Subba Rao, G. Norcia, L. N., Pieringer, J., and Pieringer, R. A., 1977, The biosynthesis of sulphogalactosyldiacylglycerol of rat brain in vitro, Biochem. J. 166: 429–435.

    CAS  Google Scholar 

  • Sun, G. Y., 1973, The turnover of phosphoglycerides in the subcellular fractions of mouse brain: A study using [1–14C] oleic acid as precursor, J. Neurochem. 21: 1083–1092.

    PubMed  CAS  Google Scholar 

  • Sun, G. Y., and Horrocks, L. A., 1973, Metabolism of palmitic acid in the subcellular fractions of rat brain, J. Lipid Res. 14: 206–214.

    PubMed  CAS  Google Scholar 

  • Suzuki, K., Poduslo, J. F., and Poduslo, S. E., 1968, Further evidence for a specific ganglioside fraction closely associated with myelin, Biochim. Biophys. Acta 152: 576–586.

    PubMed  CAS  Google Scholar 

  • Toews, A. D., Horrocks, L. A., and King, J. S., 1976, Simultaneous isolation of purified microsomal and myelin fractions from rat spinal cord, J. Neurochem. 27: 25–31.

    PubMed  CAS  Google Scholar 

  • Ullman, M. D., and Radin, N. S., 1972, Enzymatic formation of hydroxy ceramides and comparison with enzymes forming non-hydroxy ceramides, Arch. Biochem. Biophys. 152: 767–777.

    PubMed  CAS  Google Scholar 

  • Ullman, M. D. and Radin, N. S., 1974, The enzymatic formation of sphingomyelin from ceramide and lecithin in mouse liver, J. Biol. Chem. 249: 1506–1512.

    PubMed  CAS  Google Scholar 

  • Walters, S. N., and Morell, P., 1981, The effects of altered thyroid states on myelinogenesis, J. Neurochem. 36: 1792–1801.

    PubMed  CAS  Google Scholar 

  • Webber, R. J., and Edmond, J., 1979, The in vivo utilization of acetoacetate, ß(—)-3-hydroxybutyrate, and glucose for lipid synthesis in brain in the 18-day-old rat, J. Biol. Chem. 254: 3912–3920.

    PubMed  CAS  Google Scholar 

  • Wenger, D. A., Pititpas, J. W., and Pieringer, R. A., 1968, The metabolism of glygeride glycolipids. II. Biosynthesis of monogalactosyl diglyceride from uridine diphosphate galactose and diglyceride in brain, Biochemistry 7: 3700–3707.

    PubMed  CAS  Google Scholar 

  • Wenger, D. A., Subba Rao, K., and Pieringer, R. A., 1970, The metabolism of glyceride glycolipids. III. Biosynthesis of digalactosyl diglyceride by galactosyl transferase pathways in brain, J. Biol. Chem. 245: 2513–2519.

    PubMed  CAS  Google Scholar 

  • Wiegandt, H., 1982, The gangliosides, in: Advances in Neurochemistry, Vol. 4 ( B. W. Agranoff and M. H. Aprison, eds.), pp. 149–223, Plenum Press, New York.

    Google Scholar 

  • Wiggins, R. C., 1982, Myelin development and nutritional insufficiency, Brain Res. 257: 151–176.

    PubMed  CAS  Google Scholar 

  • Wiggins, R. C., Miller, S. L., Benjamins, J. A., Krigman, M. R., and Morell, P., 1976, Myelin synthesis during postnatal nutritional deprivation and subsequent rehabilitation, Brain Res. 107: 257–273.

    PubMed  CAS  Google Scholar 

  • Woelk, H., and Porcellati, G., 1978, Myelin catabolism, Proc. Eur. Soc. Neurochem. 1: 64–77.

    CAS  Google Scholar 

  • Wood, J. G., Jean, D. H. Whitaker, J. N., McLaughlin, B. J., and Albers, R. W., 1977, Immunocytochemical localization of sodium, potassium ATPase in knifefish brain, J. Neurocytol. 6: 571–581.

    PubMed  CAS  Google Scholar 

  • Wu, P.-S., and Ledeen, R. W., 1980, Evidence for the presence of ethanolaminephosphotransferase in rat central nervous system myelin, J. Neurochem. 35: 659–666.

    PubMed  CAS  Google Scholar 

  • Wüthrich, C., and Steck, A. J., 1981, A permeability change of myelin membrane vesicles towards cations is induced by MgATP but not by phosphorylation of myelin basic protein, Biochim. Biophys. Acta 640: 195–206.

    PubMed  Google Scholar 

  • Wykle, R. L., 1977, Brain, in: Lipid Metabolism in Mammals, Vol. 1 ( F. Snyder, ed.), pp. 317–366, Plenum Press, New York.

    Google Scholar 

  • Wykle, R. L., and Snyder, F., 1969, The glycerol source for the biosynthesis of alkyl glycerol ethers, Biochem. Biophys. Res. Commun. 37: 658–662.

    PubMed  CAS  Google Scholar 

  • Wykle, R. L., Blank, M. L., Malone, B., and Snyder, F., 1972, Evidence for a mixed-function oxidase in the biosynthesis of ethanolamine plasmalogens from 1-alkyl-2-acyl-sn-glycero-3–phosphorylethanolamine, J. Biol. Chem. 247: 5442–5447.

    PubMed  CAS  Google Scholar 

  • Yahara, S., Singh, I., and Kishimoto, Y., 1980, Cerebroside and cerebroside III-sulfate in brain cytosol: Evidence for their involvement in myelin assembly, Biochim. Biophys. Acta 619: 177–185.

    PubMed  CAS  Google Scholar 

  • Yahara, S., Singh, I., and Kishimoto, Y., 1981, Levels and syntheses of cerebrosides and sulfa-tides in subcellular fractions of jimpy mutants, Neurochem. Res. 6: 885–892.

    PubMed  CAS  Google Scholar 

  • Yandrasitz, J. R., Ernst, S. A., And Salganicoff, L., 1976, The subcellular distribution of car- bonic anhydrase in homogenates of perfused rat brian, J. Neurochem. 27: 707–716.

    PubMed  CAS  Google Scholar 

  • Yavin, E., and Gatt, S., 1969, Enzymatic hydrolysis of sphingolipids. VIII. Further purification and properties of rat brain ceramidase, Biochemistry 8: 1692–1698.

    PubMed  CAS  Google Scholar 

  • Yavin, E., and Zeigler, B. P., 1977, Regulation of phospholipid metabolism in differentiating cells from rat brain cerebral hemispheres in culture, J. Biol. Chem. 252: 260–267.

    PubMed  CAS  Google Scholar 

  • Yu, R. K., and Lee, S. H., 1976, In vitro biosynthesis of sialosylgalactosylceramide (G7) by mouse brain microsomes, J. Biol. Chem. 251: 198–203.

    PubMed  CAS  Google Scholar 

  • Zimmerman, A. W., Quarles, R. H., Webster, H. de F., Matthieu, J., and Brady, R. O., 1975, Characterization and protein analysis of myelin subfractions in rat brain: Developmental and regional comparisons, J. Neurochem. 25: 749–757.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer Science+Business Media New York

About this chapter

Cite this chapter

Morell, P., Toews, A.D. (1984). In Vivo Metabolism of Oligodendroglial Lipids. In: Norton, W.T. (eds) Oligodendroglia. Advances in Neurochemistry, vol 5. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-6066-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-6066-8_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-6068-2

  • Online ISBN: 978-1-4757-6066-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics