Skip to main content

Signal-to-Noise in Confocal Microscopes

  • Chapter
Handbook of Biological Confocal Microscopy

Abstract

Strictly, to obtain true confocal imaging, the detector pinhole must be infinitesimally small, which would result in a vanishingly weak image signal. On the other hand, a very large pinhole degrades the confocal imaging effect. So, in practice it is necessary to adopt some optimum size for the pinhole, which may depend on the design of microscope, how it is operated, and the type of specimen. The resultant imaging performance will then also depend on these various factors. In this way we can compare the performance of different designs of confocal microscopes and also compare them with wide-field (WF) microscopes that have electronic image capture coupled with digital 3D image restoration. In addition, we can understand how best to use the microscope in order to achieve optimum imaging performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Awamura, D., and Ode, T., 1992, Optical properties of Type 1-Type 2 microscopes. In: New Trends in Scanning Optical Microscopy, Okinawa, Japan, pp. 43–48.

    Google Scholar 

  • Benedetti, D.A., Evangelista, V., Guidarini, D., and, Vestri, S., 1992, Confocal line microscopy, J. Microsc. 165:119–129.

    Article  PubMed  CAS  Google Scholar 

  • Brakenhoff, G.J., and Visscher, K., 1992, Confocal imaging with bilateral scanning and array detectors, J. Microsc. 165:139–146.

    Article  Google Scholar 

  • Cox, I.J., and Sheppard, C.J.R., 1983, Digital processing of confocal images, Image Vision Comput. 1:52–56.

    Article  Google Scholar 

  • Cox, I.J., and Sheppard, C.J.R., 1986, The information capacity of a multidimensional communication system, Int. J. Electron. 60:655–662.

    Article  Google Scholar 

  • Draaijer, A., and Houpt, P.M., 1988, A standard video-rate confocal laser-scanning reflection and fluorescence microscope, Scanning 10:139–145.

    Article  Google Scholar 

  • Gan, X.S., and Sheppard, C.J.R., 1993, Detectability: A new criterion for evaluation of the confocal microscope, Scanning 15:187–192.

    Article  Google Scholar 

  • Gu, M., and Sheppard, C.J.R., 1991, Effects of a finite-sized detector on the OTF of confocal fluorescent microscopy, Optik 88:6569.

    Google Scholar 

  • Koester, C.J., 1980, Scanning mirror microscope with optical sectioning characteristics: Applications in ophthalmology, Appl. Optics 19:1749–1757.

    Article  CAS  Google Scholar 

  • Machida, S., Yamamoto, Y., and Itaya, Y., 1987, Observation of amplitude squeezing in a constant-current-driven semiconductor laser, Phys. Rev. Lett. 58:1000–1003.

    Article  PubMed  CAS  Google Scholar 

  • Roy, M., and Sheppard, C.J.R., 1993, Effects of image processing on the noise properties of confocal images, Micron. 24:623–636.

    Article  Google Scholar 

  • Shannon, C.E., 1949, Communications in the presence of noise, Proc. IRE 37:1021.

    Article  Google Scholar 

  • Sheppard, C.J.R., 1991, Stray light and noise in confocal microscopy, Micron Microsc. Acta 22:239–243.

    Article  Google Scholar 

  • Sheppard, C.J.R., and Mao, X.Q., 1988, Confocal microscopes with slit apertures, J. Mod. Optics 35:1169–1185.

    Article  Google Scholar 

  • Sheppard, C.J.R., Hamilton, D.K., and Cox, I.J., 1983, Optical microscopy with extended depth of field, Proc. R. Soc. Lond. 387:171–186.

    Article  Google Scholar 

  • Sheppard, C.J.R., Cogswell, C.J., and Gu, M., 1991, Signal strength and noise in confocal microscopy: Factors influencing selection of an optimum detector aperture, Scanning 13:233–240.

    Article  Google Scholar 

  • Sheppard, C.J.R., Gu, M., and Roy, M., 1992, Signal-to-noise ratio in confocal microscope systems, J. Microsc. 168:209–218.

    Article  Google Scholar 

  • Slusher, R.E., Hollberg, L.W., Yurke, B., Mertz, J.C., and Valley, J.F., 1985, Observation of squeezed states generated by four-wave mixing in an optical cavity. Phys. Rev. Lett. 55:2409–2412.

    Article  PubMed  CAS  Google Scholar 

  • Webb, W.W., Wells, K.S., Sandison, D.R., and Strickler, J., 1990, Optical Microscopy for Biology, Wiley-Liss, pp. 73–108.

    Google Scholar 

  • Wells, K.S., Sandison, D.R., Strickler, J., and Webb, W.W., 1990, Quantitative laser scanning confocal microscopy. In: Handbook of Biological Confocal Microscopy (J.B. Pawley, ed.), Plenum Press, New York, pp. 23–35.

    Google Scholar 

  • Wilson, T., and Hamilton, D.K., 1982, Dynamic focusing in the scanning microscope, J. Microsc. 128:139–143.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sheppard, C.J.R., Gan, X., Gu, M., Roy, M. (1995). Signal-to-Noise in Confocal Microscopes. In: Pawley, J.B. (eds) Handbook of Biological Confocal Microscopy. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-5348-6_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-5348-6_22

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-5350-9

  • Online ISBN: 978-1-4757-5348-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics